

Developing a QRNG ECU for
automotive security: Experience of
testing in the real-world
Nguyen, H. N., Tavakoli, S., Shaikh, S. & Maynard, O.

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

Nguyen, HN, Tavakoli, S, Shaikh, S & Maynard, O 2019, Developing a QRNG ECU for
automotive security: Experience of testing in the real-world. in 2019 IEEE
International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), Xi'an, China, 2019. IEEE, pp. 61-68, 14th Workshop on Testing,
Xi'an, China, 22/04/19.
https://dx.doi.org/10.1109/ICSTW.2019.00033

DOI 10.1109/ICSTW.2019.00033
ISBN 978-1-7281-0889-6
ISBN 978-1-7281-0888-9

Publisher: IEEE

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

Developing a QRNG ECU for automotive security:
Experience of testing in the real-world

Hoang Nga Nguyen
Coventry University

Coventry, UK
Hoang.Nguyen@coventry.ac.uk

Siamak Tavakoli
Crypta Labs Limited

London, UK
Siamak@cryptalabs.com

Siraj Ahmed Shaikh
Coventry University

Coventry, UK
Siraj.Shaikh@coventry.ac.uk

Oliver Maynard
Crypta Labs Limited

London, UK
Oliver@cryptalabs.com

Abstract—Over the last decade, automotive components and
systems have become increasingly connected and digital in nature.
This trend has significantly increased the risk of malicious
interference with car components, vehicles and infrastructure,
and cybersecurity defences have generally proven to be lacking.
The success of, and trust in, connected and autonomous vehicles
(CAVs) relies upon these security gaps being closed as soon as
possible. To this end, Crypta Labs introduced a novel electronic
control unit (ECU) prototype for enabling secure digital com-
munication in the transport domain. Due to its novelty, it is
a challenge to evaluate its functionality, robust and reliable for
automotive platforms. In this paper, we introduce the novel ECU,
apply a testing methodology specially adapted to this product to
achieve the evaluation goal, and conclude with a discussion.

Index Terms—Automotive, Security, Testing, ECU, Quantum
Random Number Generator, Testbeds, Denial of Service (DoS)

I. INTRODUCTION

Automotive components and systems have become increas-
ingly connected and digital. This trend has significantly in-
creased the risk of malicious interference with car compo-
nents, vehicles and infrastructure, and cybersecurity defences
have generally proven to be lacking. For example, traditional
telematics capability for vehicles has evolved to support
critical functionality including firmware updates for onboard
Electronic Control Units (ECUs). Known as Over-The-Air
(OTA) updates, this is significant to remotely address feature
updates and performance flaws; indeed Tesla demonstrated
this to address problems with braking systems on their recent
model [11]. Supporting safety-critical functions through such
connectivity, however, brings to fore the concerns around se-
curity of such components [13]. However, a key concern here
is remote exploitation of vulnerabilities on the communication
units onboard vehicles. Miller and Valasek brought attention to
this [18] when they managed to perform remote code execution
due to authentication flaws in the Uconnect System [9]. A
further concern is attacks due to infiltration of software supply
chains [12]. Essentially, third-party software could carry a
‘backdoor’ to bypass authentication measures. Therefore, the
success of, and trust in, CAVs relies upon these security gaps
being closed as soon as possible.

To this end, a key and traditional solution is encryption
which is vital to protect confidential data by converting it
so that cannot be read by humans or computers without
authorised access. Kerckhoffs’s principle states that the se-

curity of a cipher must reside entirely in the key, that is it
must be entirely random. High-quality random numbers are
therefore the essential foundation and enabler of encrypted-
communication systems and products. Currently, the vast
majority of cryptographic systems use algorithmically based
random number generators (RNG), so-called Pseudo-RNG
(PRNG). The weakness of this approach is that PRNGs
are entirely deterministic: an eavesdropper who obtains the
initialisation settings of the algorithm will be able to predict
all possible outcomes, thus compromising the entire protocol.

In a true random number generator (TRNG) randomness
comes from a naturally occurring source of randomness, i.e.
entropy. Because the outcome of quantum-mechanical events
cannot be predicted, they are considered the gold standard for
random number generation (QRNG). QRNGs have typically
been based on specialised hardware, such as single-photon
sources and detectors resulting in cumbersome, large and often
high-end/expensive systems [8]. Using the quantum properties
of light, Crypta Labs have developed QRNG technology for
deployment in small, remote and/or portable devices in a
dynamic environment. They have implemented this foundation
of secure digital communication in an electronic control unit
(ECU) prototype for the automotive industry. The prototype
requires evaluation in terms of technical and commercial
suitability of Crypta Labs’ QRNG technology to CAVs.

The rest of this paper is structured as follows. Section
II introduces the design and implementation of the QRNG
prototype. Section III presents our methodology for evaluating
the prototype. Section IV analyses the test results, and Section
V concludes the paper with a discussion.

II. PROTOTYPING QRNG ECU

This section introduces the ECU that generates Quantum
Random Numbers (QRNs). We describe the QRNG module
responsible for generating random numbers followed by im-
plementation of the QRNG ECU prototype.

A. QRNG module

The basis for our QRNG module is a controlled light source,
such as an LED, shining on a sensor of a CMOS digital
camera. The camera takes a picture and stores a frame in an
uncompressed file format. This matrix of raw numerical values
corresponds to the number of photons which were detected

Fig. 1. A high-level overview of the QRNG mechanism proposed by Crypta Labs: The LED provides a source of photons which are captured by the Camera
sensor; the number of detected photons during exposure time is stored in the raw random data matrix; This matrix is, later, analysed to generate the final
random numbers.

during the exposure time of the picture. The raw data is then
processed by an algorithm to enhance the entropy per bit of
the final random numbers. The overall process is depicted in
Fig. 1. The QRNG firmware provides three main activities.
Firstly, it controls the camera, allowing the user to set the
desired capture parameters. The software also allows the user
to set the luminosity of the light source.

Secondly, it reads the value of the pixels from the image
and converts this into a digital value. This is our raw random
number. We developed a post-processing library in ANSI C
that can take the input from the raw images and generate the
random data. This library should be portable to most operating
systems and platforms.

Finally, the software applies a post-processing algorithm
which performs several functions on the input to produce the
usable random number.

B. Implementing the QRNG ECU prototype

Within the controller area network (CAN) of nodes that
would at some point in the network communicate with the
entities outside the network, implementation of secure com-
munication seems to be of the essence. It is important to
establish that not every single node inside CAN would require
to facilitate secure data to exchange with the other nodes inside
the same CAN. It is equally important that those nodes that
establish connections with outside CAN and exchange data do
so in its most secure way in order to protect the privacy of
data, communication protocol, as well as the security of the
rest of the CAN nodes in the same network.

Prototype Architecture

The prototype system is split into two sub-systems each
of which is realised by an ECU. The first ECU, containing
the QRNG module, is in charge of receiving QRN requests,
generating and providing QRNs for the second. In turn, the
second ECU is responsible for requesting and using the

provided QRNs such as in a hardware security module (HSM)
for encrypting or authenticating a data. However, we shall not
discuss the HSM in details and its implementation is left for
future work.

Fig. 2 shows the building blocks of both sub-systems of the
prototyping system. In the diagram, each block has operation
access on its lower block. The thin lines between some of the
blocks show the data communication links between them.

Furthermore, the interaction between two sub-systems is
illustrated by the sequence diagram in Fig. 3. It shows the
order of the interaction between the main building blocks
of the software in the two ECUs. From top to bottom, the
Custom code on a secondary ECU would decide to start one
round of such process by issuing a request for a QRN on the
CAN bus. The request would be understood and processed by
the QRNG ECU by chaining the requests towards the QRN
Engine and from there the camera device. Custom code, then
upon the receipt of the QRN decides to use it by invoking
an encryption function from the HSM block. Furthermore,
the Fixed Environment part of the software in QRNG ECU
would be wrapped in the application code, i.e. wrapper part
of the Custom Environment code. Fixed firmware would also
reside on the second ECU where it would need to access the
encryption functionality, for example from the HSM block.

System Implementation

Each ECU in the prototype is implemented by a Raspberry
Pi1 extended with a PiCAN2 board2.

This PiCAN2 board extends the Raspberry Pi with CAN-
Bus communication ability. Connections to physical CAN
bus from the PiCAN2 are enabled via a DB9 socket or a
screw terminal. The two ends of the CAN bus use termination

1https://www.raspberrypi.org/
2http://skpang.co.uk/catalog/pican2-canbus-board-for-raspberry-pi-23-p-

1475.html

https://www.raspberrypi.org/
http://skpang.co.uk/catalog/pican2-canbus-board-for-raspberry-pi-23-p-1475.html
http://skpang.co.uk/catalog/pican2-canbus-board-for-raspberry-pi-23-p-1475.html

Fig. 2. The building blocks of the prototype QRNG system. Each block has operation access on its lower block. The thin lines between some of the blocks
show the data communication links between them.

resistors in order to avoid attenuation of the signal due to
mismatch of line impedance.

In Fig. 5, the Raspberry Pi board is coloured in green; the
Pi-CAN2 board, coloured blue, is mounted on the Raspberry
Pi board as a shield. CryptaLabs QRNG firmware operates on
the Raspberry Pi device.

Fig. 4 shows the schematic block diagrams of the QRNG
ECU and the secondary ECU, i.e., other ECU in Fig. 3. In Fig.
4, the main computing platform, Raspberry Pi is connected to
the PiCAN2 device through its main on-board Input/Output
pins that also provide power to the PiCAN2 board. The camera
is connected to the Raspberry Pi board through USB port for
both powering the camera and the data exchange. The light
source that is coupled to the camera is powered separately
but is connected via USB to the Raspberry Pi board to allow
commands to set up the colour strength of the light source.

Fig. 6 shows provides a physical view of the components
of the two ECUs. QRNG ECU is connected on its USB
(Universal Serial Bus) port to the camera device which in turn
is coupled to the LED (Light Emitting Diode) light source. The
characteristics of the camera and its light source are set to the
settings that guaranty the quality of the randomness of the
generated random number. Obviously, this is also supported
by the post-processing software that QRN Engine runs.

Fig. 7 shows a view of the interactions of the ECU at
execution. The exchange of the CAN messages between the
two ECUs is also monitored by means of standard CAN
software.

Both operating systems of the two Raspberry Pi ECUs are
Linux based. They support the software drivers that the camera
and the PiCAN2 require.

Fig. 3. Functional architecture of QRNG ECU which will served as a means for transmitting of confidential data between other ECUs. For example, upon a
over the air update request, a telematics ECU on a Tesla [11] wants to send to a brake ECU an encrypted firmware for update. The QRNG ECU can provide
secure encryption key to both ECUs to enable a secure transmittion of the firmware.

Fig. 4. Schematic diagrams of the QRNG ECU prototype and the secondary ECU. The QRNG ECU is responsible for receiving QRN requests, generating
and providing QRNs. The secondary EC is responsible for requesting QRNs.

Fig. 5. PiCAN2 board2 (blue) connected to a Raspberry-Pi (green). PiCAN2
board extends the Raspberry Pi with CAN-Bus communication ability. Con-
nections to physical CAN bus from the PiCAN2 are enabled via a DB9 socket
or a screw terminal.

III. TESTING METHODOLOGY

Given a prototype QRNG-ECU, our testing objectives are to
validate its functionality and evaluate its performance as well
as its fault tolerance. Towards functionality, we check if the
QRNG-ECU serves requests for random numbers as expected.
Towards performance, our aim is to determine the maximal
capability of serving requests. Finally, towards fault tolerance,
we evaluate the fault tolerance of the QRNG ECU. We are
most concerned with the influence that an attacker can have
on disrupting the functioning of QRNG ECU via the CAN

Fig. 6. A physical view of the prototype. The QRNG ECU is on the left. The
camera is connected to it via USB port. The secondary ECU is on the right.
It is connected with the QRNG ECU via an orange-yellow CAN bus cable.

bus network and on reducing the quality of random numbers
generated by the ECU. To this end, we employ a threat model
where an attacker has access to the CAN bus to carry out a
Denial of Service (DoS) attack or ability to guess numbers to
be generated in advance, e.g., by the technique described in
[17]. Therefore, we carry out two security tests: an availability
test where DoS attacks are used and a quality test for random
numbers generated by the QRNG ECU.

Our testing methodology is based on a testbed for auto-
motive security testing introduced in [7]. This testbed uses
a commercial Hardware In the Loop (HIL) tool which is
capable of faithfully reproducing a CAN bus network. HIL

Fig. 7. QRNG ECU and the secondary ECU in execution. (1) The secondary ECU sent a request to the QRNG EC. (2a) The QRNG ECU received the
request. (2b) It generated a QRN and replied back. (3a) The secondary ECU received the QRN. (3b) It then used the random number to encrypt some data.

Fig. 8. The logical CAN-bus network setup. Req ECU emulates a manual request for a random number. ID Inspect ECU sequentially sends request messages
with IDs from 0x0 to 0x7FF to the QRNG ECU. Perf ECU sends request messages at a high frequency. DoS ECU carries out attacks by emitting CAN
messages. ReqUDoS ECU sends requests during a DoS attack.

tool used in our QRNG-ECU testing is commercially provided
by Vector Informatik GmbH and consists of CANoe, a soft-
ware to configure and simulate real-time CAN bus networks,
and VN1630, a hardware to provide a physical interface to
the simulated network. Then, the QRNG-ECU under test is
connected to the simulated CAN bus network via VN1630.
This ECU is provided by Crypta Labs with their firmware
installed. Due to lack of the camera during testing, Crypta
Labs also provided pre-captured images by the camera and
customised their firmware to used these images to generate
QRNs. This setting does not affect the testing purposes for
functionality, performance and availability. For each of these
tests is facilitated by the creation of several virtual ECUs in the
simulation software CANoe. They are summarised in Table I.

Finally, in the test for randomness quality, Crypta Labs used

TABLE I
VIRTUAL ECUS SET-UP.

Test type Virtual ECU Purpose

Functionality
Req ECU to emulate a manual request for a

random number

ID Inspect to sequentially send request mes-
sages with IDs from 0x0 to 0x7FF

Performance Perf ECU to send request messages at a high
frequency

Availability
DoS ECU to carry out DoS attacks to the

QRNG

ReqUDoS to benignly send request during
DoS attacks

Virtual ECUs are configured in CANoe to facilite tests.

the prototype system, see Fig. 6, to log about 55M generated

random numbers as input in our test.
The simulated CAN bus network is configured to operate at

the standard rate 500kbps. We configured CANoe to connect
all 5 ECUs to the CAN-bus. On the physical side, the QRNG-
ECU is connected to the simulated CAN-bus network via one
of the provided sub-D ports on VN1630A box. The logical
setup is depicted in Fig. 8. The physical setup is demonstrated
in Figure 9 where three virtual ECUs are hosted by the laptop.

Fig. 9. The physical setup for security testing. CANoe and the virtual ECUs
run on the laptop. The QRNG ECU (Raspberry and PiCAN2), in the middle, is
connected to the laptop via the VN1630 box (coloured red, while and black).

IV. TEST RESULT AND ANALYSIS

We treated the QRNG ECU as a blackbox where only
the firmware was updated on the Raspberry Pi. Through its
description provided by Crypta Labs, the functionality of the
QRNG ECU is to receive random number request, which is
processed as follows:

1) If the request has no data, a random number is generated.
2) The random number is then replied back to the CAN

bus within a message with ID of 0x234.
3) Otherwise, no random number will be generated.

Functional test

There are two tests for validating the functionality of the
QRNG-ECU as discovered by the code analysis.

First, a manual test is carried out. We used Req ECU to send
requests with 5 different IDs to QRNG ECU. For each test, we
recorded CAN id, data length, expected effect (if QRNG ECU
responds to the request with a message whose ID is 0x234),
observed effect and finally a verdict (passed if expected is
the same as observed, or failed otherwise). The records are
detailed in Table II.

In this test, it is clear that all the tests result as expected.
However, in some case, the response message with ID of
0x234 from the ECU contains no random number. This must
be classified as an error and it will be analysed more in the
performance testing.

Second, an automated test is scheduled. We use ID Inspect
ECU to send request message with ID ranging from 0x1 to
0x7FF. The ID 0x7FF corresponds to using all 11-bit in the
ID field of a CAN message. In this test, a request is sent

TABLE II
RESULTS FROM FUNCTIONAL TESTING

Test CAN id DL Expected Actual Status
1 0 0 Yes Yes Passed
2 0 8 No No Passed
3 1 0 Yes Yes Passed
4 123 0 Yes Yes Passed
5 20 8 No No Passed

Req ECU sends 5 requests with IDs to QRNG ECU. Each test is
recorded with CAN id, data length (DL), expected effect (wherether
QRNG ECU to response with a message of ID 0x234), observed
effect (yes if QRNG ECU responded, no otherwise) and a verdict
(passed/failed).

every 10ms with IDs starting from 0x0. If the response from
QRNG ECU contains a random number, the ID of the next
request is increased by 1. Otherwise, the next request will
repeat the last ID. The test confirms that QRNG ECU responds
to all request messages with ID ranging from 0x0 to 0x7FF.
However, repeated requests with the same ID as the last one
are indeed needed due to the presence of response message
from QRNG ECU without a random number.

Performance test

We used Perf ECU to send 30,000 requests to QRNG ECU
in 1/2 minute, i.e., a request is sent every 1ms. All requests
are valid for QRNG ECU and have the same configuration:

1) CAN id is 60;
2) Data length is 0.

We recorded the response from QRNG ECU. In total, 29998
responses are received. This means 99.99% of the requests
are processed. Only 13499 of them contain a random number.
This means only 45% of the requests are actually served.
These results are illustrated in Figure 10. We expect the low
percentage of actual serves to come from a software bug,
which gives room for further improvement.

0 5 10 15 20 25 30

Request
Response

Served

messages×1000

Fig. 10. Performance testing result: With 30000 requests sent, 29998
responses are received (99.99%) and only 13499 of them contain a random
number (45%).

Availability test

We use the DoS ECU to carry out three DoS attacks where
1) DoS ECU constantly emits n CAN messages with ID 0

every 1ms;
2) Req U Dos ECU repeatedly emits a request message

with ID 60 every 100ms.

In the first attack, n=100. For the subsequent attacks, we relax
the attack messages by 10 times. In particular, for the 2nd,
n=10, and, for 3rd, n=1. In each test, we scheduled requests
by each ECU to send on the CAN bus network, then observed
and recorded the actual requests by each ECU registered on
the CAN. The results are presented in Table III.

In Test 1 the number of attacking messages by DoS ECU is
invasive; messages by Req U Dos ECU are hardly sent on the
CAN bus. It is improved in the second and third tests as the
attacks are relaxed. Tests 1 and 2 reveal the maximal number
of requests that can be placed successfully on the simulated
CAN bus. For test 1, the number is 284, 284 + 8 + 332 =
284, 624; for test 2, it is 284, 030+269+332 = 284, 631. This
indicates a baseline for the maximal amount of data frames
that the simulated CAN bus network can handle in 30 seconds.
Therefore, the low performance of the QRNG-ECU under DoS
Attack is closely related to the nature of CAN bus network.

Randomness test

The Crypta Labs used the prototype system, as in Fig. 6,
to collect about 55M generated random numbers. They are
used as input for our test of the quality of the random number
generator. This is a statistical test which is done by the random
number generator testing suite Dieharder [2]. The Dieharder
suit incorporates the diehard tests and Statistical Test Suite by
the National Institute for Standards and Technology. A test
named runs checks the correspondence between the number
of identical bit runs in a generated bit stream and that of
a random one, and the frequency of bit flips. Each test in
the suit computes a p-value indicating the likelihood that the
sequence of tested random numbers can be generated by a
purely random number generator. The pass thresholds of these
p-values vary for each test. In total, there are 114 different tests
carried out with 104 passed, 4 weak and 6 failed. Table IV
shows the results. However, we are confident the failures are
down to the fact that not enough data has been tested and
further tests are planned for larger datasets.

V. RELATED WORK AND DISCUSSION

We have presented an ECU prototype for generating random
numbers based on the quantum technology by Crypta Labs.
This has revealed a number of practical insights into how to
apply and extend existing approaches to security testing and
analysis for automotive ECUs. The prototype has then been

TABLE IV
RANDOMNESSS TESTING RESULT.

Test Ntup Tsamples Psamples p-value Assess.
birthdays 0 100 100 0.98314746 PASSED
operm5 0 1000000 100 0.98856574 PASSED
rank32x32 0 40000 100 0.99367566 PASSED
rank6x8 0 100000 100 0.27602164 PASSED
bitstream 0 2097152 100 0.36259481 PASSED
opso 0 2097152 100 0.13629271 PASSED
oqso 0 2097152 100 0.24398521 PASSED
dna 0 2097152 100 0.59938792 PASSED
cnt1s str 0 256000 100 0.70084853 PASSED
cnt1s byt 0 256000 100 0.50112894 PASSED
parkinglot 0 12000 100 0.54444845 PASSED
2dsphere 2 8000 100 0.65623976 PASSED
3dsphere 3 4000 100 0.36259517 PASSED
squeeze 0 100000 100 0.08852922 PASSED
sums 0 100 100 0.36526772 PASSED
runs 0 100000 100 0.59823491 PASSED
runs 0 100000 100 0.05432660 PASSED
craps 0 200000 100 0.55273023 PASSED
craps 0 200000 100 0.89971117 PASSED

This table is drawn by Dieharder [2] where p-values indicate the likelihood
that the sequence of tested random numbers can be generated by a purely
random number generator and the pass thresholds of these p-values vary for
each test.

preliminarily assessed in a CAN security testbed for evaluating
its functionality, performance and reliability. The implemented
prototype managed to function with occasional miss, and keep
service up to certain level (45%) of speed performance. While
the test result shows the weakness of the ECU prototype
against DoS attacks, our baseline analysis pointed out that
this is related to the nature of automotive CAN.

Functional testing for automotive ECU development has
been a key activity for the automotive industry. While aspects
of safety are well understood for such testing, emerging
functionality around connectivity, sensing, autonomy and cy-
bersecurity has thrown up considerable challenges for func-
tional and non-functional assurance on new ECU designs. The
challenge is compounded by the manufacturers’ desire for cost
reduction and test automation of testing; cybersecurity is in
itself a new challenge. The state-of-the-art on ECU security
testing has offered a number of approaches: some based on
formal methods [4], [10], some on simulation [1], [5], [7],
[19], some on combination of both [3], and some on fuzzy
approaches to penetration testing [6].

Simulation approaches generally concern with the need for

TABLE III
AVAILABILITY TESTING RESULT.

Test DoS ECU ReqUDoS ECU QRNG ECU PercentScheduled Actual (1) Scheduled Actual (2) Response (3)
1 3000000 284284 300 8 332 0.12%
2 300000 284030 300 269 332 0.12%
3 30000 30000 300 300 30300 100%

In each test, we recorded the number of requests scheduled by DoS ECU; the actual number (1) of
requests by DoS ECU registered on the CAN bus; the number of scheduled requests by ReqUDoS; the
actual number (2) of registered requests by ReqUDoS; the number of registered responses from QRNG
ECU; and computed the serving percent = (3)/((1) + (2))× 100.

a testing environment where a large number of test cases can
be executed on ECUs under test without making damages
to an actual car. Boot and Richert propose a hardware-in-
the-loop simulation to create a testing environment for en-
gine ECUs [1]. The simulation emulates internal combustion
engines which are modelled in MATLAB/Simulink. These
models are implemented on the dSpace real-time hardware by
automatic C code generation. In essence, the models receive
input from an ECU under test such as the throttle valve
position, injection amount and ignition angle and then compute
the output of an engine such as the engine speed and sensor
signals from the crankshaft, the camshaft and the exhaust
system. Similarly Drolia et al. developed a testbed for remote
ECU recalls [5]. Remote ECU recalls are used to analyse
and update ECUs with software bugs. The analysis of ECU
software is realised by a monitor implemented in MATLAB.
The monitor is validated in the testbed which simulates a cars
environment and comprises of nine ECUs (for pedals, control,
cabin comfort, transmission, console and propulsion).

Our approach is similar to those using CANoe from Vector.
For example, [19] carried out a feasibility study where CANoe
is used to test the design scheme of a CAN bus network.
Such a design scheme includes the network topology, its
components, and speeds. They are implemented in CANoe to
derive an environment for testing node functionalities, network
load and the occurrence of error data frames. Flower et al. have
utilised CANoe and Vectors hardware simulators to create a
testbed for automotive security [7].

Formal methods are used for automated test case generation.
Santos et al. model a CAN bus and formalise a threat model in
CSP to generate test cases via model checking [4]. Similarly,
Cheah et al. propose to transform attack tree threat models into
CSP specifications to generate test cases automatically [3],
making use of the simulation testbed proposed in [7] to
provide a testing environment from generating test cases to
test execution. Kaindl et al. are working on formalising ECU
functionality and test environments in semantic specifications
to automate test cases [10].

While simulation approaches are powerful and provide for
an ideal environment to emulate on-board automotive archi-
tectures, specifying security properties remains a challenge.
Approaches based formal methods, on the other hand, have
the power to predicate security constraints effectively, but are
yet to demonstrate effective translation from one environment
to the other. This paper only serves to demonstrate the
complex nature of such real-world security testing. Emerging
approaches to detecting intrusions on CAN [14] hold further
promise in baselining component behaviour, and detecting
malicious anomalous behaviour [16] [15].

VI. ACKNOWLEDGEMENT

Collaboration between Coventry University and Crypta Labs
Ltd. has been funded by Innovate UK under the Connected and
Autonomous Vehicles 2 Stream 3 FS project titled ”Quantum-
based secure communications for CAVs” (Reference 132999).

Support was provided by The Centre for Connected and
Autonomous Vehicles (CCAV) through Innovate UK.

REFERENCES

[1] R. Boot, J. Richert, H. Schutte, and A. Rukgauer. Automated test of
ECUs in a hardware-in-the-loop simulation environment. In Proceedings
of the 1999 IEEE International Symposium on Computer Aided Control
System Design, pages 587–594. IEEE, 1999.

[2] Robert G. Brown. Dieharder: A Random Number Test Suite. https://
webhome.phy.duke.edu/˜rgb/General/dieharder.php, Acc. 12/2018.

[3] Madeline Cheah, Hoang Nga Nguyen, Jeremy Bryans, and Siraj A.
Shaikh. Formalising Systematic Security Evaluations Using Attack
Trees for Automotive Applications. In Information Security Theory and
Practice, volume 10741, pages 113–129. Springer, 2018.

[4] Eduardo dos Santos, Andrew Simpson, and Dominik Schoop. A Formal
Model to Facilitate Security Testing in Modern Automotive Systems. In
Proceedings of Theoretical Computer Science, 271:95–104, May 2018.

[5] Utsav Drolia, Zhenyan Wang, Yash Pant, and Rahul Mangharam. Au-
toPlug: An automotive test-bed for electronic controller unit testing and
verification. In 2011 14th International IEEE Conference on Intelligent
Transportation Systems (ITSC), pages 1187–1192. IEEE, October 2011.

[6] Daniel S. Fowler, Jeremy Bryans, Siraj Ahmed Shaikh, and Paul
Wooderson. Fuzz testing for automotive cyber-security. In 48th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops, DSN Workshops 2018, Luxembourg, June 25-28,
2018, pages 239–246. IEEE Computer Society, 2018.

[7] Daniel S. Fowler, Madeline Cheah, Siraj Ahmed Shaikh, and Jeremy
Bryans. Towards a Testbed for Automotive Cybersecurity. In 2017
IEEE International Conference on Software Testing, Verification and
Validation (ICST), pages 540–541. IEEE, March 2017.

[8] M. Herrero-Collantes and J. C. Garcia-Escartin. Quantum random
number generators. Reviews of Modern Physics, 89(1):015004, 2017.

[9] ICS-CERT. Harman-Kardon Uconnect Vulnerability. https://ics-cert.us-
cert.gov/advisories/ICSA-15-260-01, August 2018.

[10] Hermann Kaindl, Franz Lukasch, Matthias Heigl, Sevan Kavaldjian,
Christoph Luckeneder, and Sebastian Rausch. Verification of Cyber-
Physical Automotive Systems-of-Systems: Test Environment Assign-
ment. In 2018 IEEE International Conference on Software Testing,
Verification and Validation Workshops, pages 390–391, April 2018.

[11] Aarian Marshall. TESLA’S QUICK FIX FOR ITS BRAKING SYS-
TEM CAME FROM THE ETHER. https://www.wired.com/story/tesla-
model3-braking-software-update-consumer-reports/, Acc. 12/2018.

[12] NCSC. Example supply chain attacks. https://www.ncsc.gov.uk/guidan
ce/example-supply-chain-attacks, Created 28/1/2018.

[13] Dennis K. Nilsson, Ulf E. Larson, and Erland Jonsson. Creating a
Secure Infrastructure for Wireless Diagnostics and Software Updates in
Vehicles. In Computer Safety, Reliability, and Security, volume 5219,
pages 207–220. Springer, 2008.

[14] A. Tomlinson, J. Bryans, and S. A. Shaikh. Towards viable intrusion
detection methods for the automotive controller area network. In 2nd
Computer Science in Cars Symposium – Future Challenges in Artificial
Intelligence Security for Autonomous Vehicles. ACM, 2018.

[15] A. Tomlinson, J. Bryans, and S. A. Shaikh. Using a one-class compound
classifier to detect in-vehicle network attacks. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion 2018,
Kyoto, Japan, July 15-19, 2018, pages 1926–1929. ACM, 2018.

[16] A. Tomlinson, J. Bryans, S. A. Shaikh, and H. K. Kalutarage. Detection
of automotive CAN cyber-attacks by identifying packet timing anomalies
in time windows. In 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops, DSN Workshops 2018,
Luxembourg, June 25-28, 2018, pages 231–238. IEEE Computer Society,
2018.

[17] Nhan Duy Truong, Jing Yan Haw, Syed Muhamad Assad, Ping Koy
Lam, and Omid Kavehei. Machine Learning Cryptanalysis of a Quan-
tum Random Number Generator. IEEE Transactions on Information
Forensics and Security, 14(2):403–414, February 2019.

[18] Chris Valasek and Charlie Miller. A Survey of Remote Automo-
tive Attack Surfaces. https://ioactive.com/pdfs/IOActive Remote At
tack Surfaces.pdf, 2014.

[19] Fang Zhou, Shuqin Li, and Xia Hou. Development method of simulation
and test system for vehicle body CAN bus based on CANoe. In 2008
7th World Congress on Intelligent Control and Automation, pages 7515–
7519, Chongqing, China, 2008. IEEE.

https://webhome.phy.duke.edu/~{}rgb/General/dieharder.php
https://webhome.phy.duke.edu/~{}rgb/General/dieharder.php
https://www.ncsc.gov.uk/guidance/example-supply-chain-attacks
https://www.ncsc.gov.uk/guidance/example-supply-chain-attacks
https://ioactive.com/pdfs/IOActive_Remote_Attack_Surfaces.pdf
https://ioactive.com/pdfs/IOActive_Remote_Attack_Surfaces.pdf

	Developing a QRNG cs
	Developing a QRNG pdf
	Introduction
	Prototyping QRNG ECU
	QRNG module
	Implementing the QRNG ECU prototype

	Testing methodology
	Test Result and Analysis
	Related work and Discussion
	Acknowledgement
	References

