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Abstract 

In this paper, isogeometric analysis (IGA) is employed to solve the problem of a curved beam with free-

form geometry, arbitrary loading, and variable flexural/axial rigidity. The main objective of the study is to 

develop a unified approach for full free-from curved beam problems that can be integrated with a newly 

developed semi-analytical sensitivity analysis to solve pre-bent shape design problems. The required set 

of B-spline control points are calculated using an interpolation technique based on chord-length 

parameterization. The one-to-one correspondence is considered for parameters of the geometry, loading, 

and rigidity which is proven to have extreme importance. An IGA curved beam element is suggested 

based on the Euler-Bernoulli beam theory for the general curvilinear coordinate. The validity and 

effectiveness of the proposed formulation is confirmed by application to a variety of examples. Moreover, 

three shape optimization examples are taken into consideration. In the first two examples, the pre-bent 

shapes of spiral and Tschinhausen curved beams with free-form geometry under distributed loading are 

obtained. In the third example, the pre-bending problem of wind turbine blades is addressed as an 

industrial example. 

Keywords: Isogeometric analysis; Free-form curved beams; Semi-analytical sensitivity analysis; Pre-

bending, Parameterization 

1. Introduction

Shape optimization (design) deals with finding the best geometric shape satisfying linear/nonlinear 

constraints of the domain. Three general steps are included in a shape optimization problem: design tool 

with geometric design variables, structural analysis tool, and optimization tool.  FEM and BEM are 

usually implemented in the design process as the structural analysis tool [1-3]. However, these methods 

have experienced limitations such as mesh distortion, frequent remeshing, and element locking [3]. 

Moreover, another disadvantage of FE-based models is their very large design space which leads to 

rough-irregular solutions. Therefore a post-optimization filtering step is always necessary. Therefore, 
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tendency toward finding more efficient algorithms has been increased. Meshless methods and IGA are in 

the spotlight for this purpose. IGA has emerged as an efficient tool since it integrates the first two 

mentioned steps of the shape optimization problem, i.e. design tool and structural analysis tool. With 

IGA, the problem with remeshing no longer exists.  

The concept of isogeometric analysis (IGA) which has been recently introduced by Hughes et al. [4]can 

be regarded as an improvement to the well-stablished finite element method (FEM). The meshed 

geometry required in FEM approximates the perfect geometry which can reduce the accuracy of expected 

results. IGA takes steps to resolve the shortcoming by employing shape functions based on B-spline, 

NURBS and T-splines theories. IGA’s shape functions not only represent the CAD geometry, but also are 

considered as a basis for the numerical approximation of the solution space. In other words, IGA allows 

the integration of the 3D model generated in commercial CAD systems into finite element analysis 

concepts without extra computational meshes. The developed approach was successfully applied to a 

wide range of physical problems such as solid mechanics [5-7], fluid mechanics [8, 9], heat transfer [10], 

and Eigen value problems [11-12]. Moreover, isogeometric analysis was profitably implemented in shape 

[13, 14], rigidity [15, 16], and topological [17, 18] optimization of various structures. 

Despite the recent progress of IGA in shell structures, isogeometric analysis of curved beams demands 

more improvement efforts. Recent researches in the field focused on the static [19-21], free vibration [22-

25], buckling [26, 27], and optimization [28, 29] analyses of curved beams. Thus far, there is no 

comprehensive model for optimizing the shape of free-form beams under arbitrary distributed 

loading/rigidity. A schematic model of the aforementioned problem is depicted in Fig. (1). The equivalent 

beam representing a pre-bent wind turbine blade is an example of such a complex structure and loading. 

 

Figure 1 - A beam with free-form curve, loading and cross section 

In the study presented by Nagy et al. [29], sizing and shape optimization was performed for maximum 

fundamental natural frequency. Since their work was devoted to the natural frequency calculations, there 

was no consideration for loads. Moreover, a method is needed to express the geometry, load and rigidity 

with a single spline parameter to be applicable in optimization purposes. Based on the order of 

complexity of a problem, different B-splines may be used to interpolate the shape, the flexural/axial 

rigidity, and/or the distributed loading. The relationship between aforementioned B-splines’ 

parameterization plays a vital role in the accuracy of solutions which will be categorized as the “analysis 
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aware modeling”. The term “analysis aware modeling” introduced by Cohen et al. [30], emphasizes that 

the model parameters and properties should be selected so as to facilitate the isogeometric analysis.  

It should be noted that an arbitrary distributed set of points representing the curve’s shape, rigidity or load 

can be fitted using B-spline interpolation techniques [31-32]. The interpolated B-spline can be directly 

used in the framework of isogeometric analysis for all-purpose optimization problems. Since the B-spline 

control points are regarded as control variables, optimization with IGA is less time consuming and more 

accurate compared to the conventional FEM optimization. A unified IGA curved beam element is the 

outcome of the present research which is also extended into pre-bent shape design problems. It should be 

pointed out that in a pre-bent shape design problem, the deformed configuration of a beam is known and 

the initial and un-loaded configuration is sought using optimization techniques. A gradient-based method 

with semi-analytical sensitivity analysis is employed as the optimizer in this paper. An interesting 

relevant paper was presented by Choi et al. [33] where design sensitivity analysis (DSA) was employed to 

solve the isogeometric large deformation analysis of curved beams, but in their work, the stiffness and 

loading were constants. 

Both discrete and analytical DSA methods involve the analytical differentiation of discretized geometry 

equation with respect to design variables. Since finite element and isogeometric analyses stiffness 

matrices are constructed using numerical integration, the explicit expression of matrices in terms of 

design variables may not be available and these discrete differentiations may not be achieved easily for 

general cases. Therefore, a semi-analytical sensitivity analysis is employed in the current research [33]. 

Henceforth, the article is organized as follows: In Section 2 a brief introduction into B-spline functions is 

presented and the interpolation method is introduced. Isogeometric analysis formulation of free-form 

beams under arbitrary distributed loads is presented in Section 3. In this section, the effect of 

parameterization on geometry, loading and rigidity is addressed and numerical examples validate the 

effectiveness of the developed method. In Section 4, IGA is integrated with a developed semi-analytical 

sensitivity analysis technique for optimization and the validity of the optimization model is investigated 

using three examples. The pre-bending problem of wind turbine blades is addressed in this section as the 

third example. Finally, section 5 concludes the findings of the study. 

2. Basic Definitions 

 

B-spline curve algorithms which are required for implementing isogeometric analysis are briefly 

introduced in this section. The B-spline representations of geometry, load and rigidity which will be used 

throughout this paper are obtained through curve interpolation/approximation to be applicable in the real 

problem of pre-bending of wind turbine blade. Although NURBS are more general and more flexible than 

B-splines, there are further considerations and limitations in using NURBs in interpolation and 

approximation techniques [34-35], Therefore it was decided to choose B-splines in this paper. 
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2.1. B-spline curves and interpolation procedure 

A clamped B-spline curve is a piecewise polynomial which is expressed by: 

 

(1) 𝐶(𝜉) =∑𝑁𝑖,𝑝(𝜉)𝑃𝑖

𝑛

𝑖=0

 

where p is the degree and 𝑃𝑖, 𝑖 = 0, . . , 𝑛  is the control polygon defined by 𝑃𝑖 = (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖). The term 

𝑁𝑖,𝑝(𝜉), 𝑖 = 0,… , 𝑛 represents B-spline basis functions that are defined on the knot vector, U given by: 

(2) 𝑈 = {0,… ,0⏟  
𝑝+1

, 𝑢𝑝+1, … , 𝑢𝑚−𝑝−1, 1, … ,1⏟  
𝑝+1

} 

Outstanding properties and programming capabilities have made the B-spline curves popular for 

CAD/CAM/IGA applications. Three main steps employed in the current work for curve interpolation are 

as follows [31]:  

a) Chord length parameterization 

b) Knot vector generation using De-Boor algorithm 

c) Calculating control points as the output of the problem 

Parameters are in fact the reflection of distribution of data points. From Various parameterization 

techniques, Chord length parameterization which leads to linear parameterization [23, 36, 37, 38] is used. 

It should be noted that other parameterization techniques such as the equally spaced parameterization 

won’t lead to linear or pseudo arc length parameterization. In this case, mesh distortion may occur and 

higher number of elements is needed to reach the desired convergence of the solution parameter. 

If the input data points and their corresponding parameters are denoted by 𝑄𝑖 , 𝑖 = 0,… , 𝑘, and𝜉𝑖 , 𝑖 =

0,… , 𝑘, data point parameters are calculated by the chord length parameterization as: 

 

(3) {

𝜉0 = 0

𝜉𝑖 = 𝜉𝑖−1 +
|𝑄𝑖 − 𝑄𝑖−1|

𝐿
𝜉𝑘 = 1

 

where 

𝐿 =∑|𝑄𝑖 − 𝑄𝑖−1|

𝑘

𝑖=1

 

Several methods are suggested for knot vector selection, amongst them the De-boor algorithm is preferred 

and implemented [31]: 

 

 

(4) 

𝑑 =
𝑘 + 1

𝑛 − 𝑝 + 1
 

𝑖 = 𝑖𝑛𝑡(𝑗𝑑)   ,    𝛼 = 𝑗𝑑 − 𝑖 

𝑢𝑝+𝑗 = (1 − 𝛼)𝑢̅𝑖−1 + 𝛼𝑢̅𝑖     ,    𝑗 = 1, … , 𝑛 − 𝑝 
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where k is the number of data points, n is the number of control points and p is the degree of B-spline. 

The "int" command gives the largest integer that is smaller than its input real number. The above 

algorithm will ensure that there is almost an equal number of parameters between the two consecutive 
knots which plays an important role in the stability of solutions and escaping the ill-conditioning issues of 

the stiffness matrices [39]. 

3. Isogeometric analysis of plane free-form beams 

3.1. Stiffness Matrix and force vector 

It is advantageous to use curvilinear coordinates and local bases for the description of free form curves as 

depicted in Fig. (2).  

 

Figure 2 - Curved beam configurations in reference and deformed (current) states 

 

In this Figure,  𝑨 and 𝒂 are the base vectors in reference and current configurations respectively. The 

deformation of a thin, elastic and uniform Euler-Bernoulli beam is comprised of membrane and flexural 

components. The plane position of each point on the deformed beam configuration (Fig. (3)) can be 

obtained using the following relation: 

(5) 𝒙(𝜃1, 𝜃2) = 𝒓(𝜃1) + 𝜃2𝒂𝟐(𝜃
1) 

 

where 𝜃1 and 𝜃2 are curvilinear coordinates and r is the position vector of the corresponding midline 

point. 
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Figure 3 -  A curvilinear configuration 

The direction vector 𝒂𝟐 can be written as: 

(6) 𝒂𝟐 = 𝑨𝟐 +𝜱× 𝑨𝟐 

where 𝜱 is the rotation vector. The rotation vector can be written as a function of rotation angle as: 

(7) 𝜱 = 𝜑1𝑨𝟑 

 

where 𝜑1 is the rotation angle and can be calculated using the following equation: 

(8) 𝜑1 = 𝝂,𝟏. 𝑨𝟐 

 

where 𝛎,𝟏 is the partial derivative of midline displacement field, 𝝂, with respect to the coordinate 𝜃1. 

The difference between position vectors x and X will lead to a displacement field “u” as: 

(9) 𝒖 = 𝒙 − 𝑿 
 

 

In derivation of the Green-Lagrange strain tensor coefficients, 𝜀𝑖𝑗 , it is necessary to compute partial 

derivatives of the displacement field, u, with respect to the coordinate 𝜃1: 

(10) 𝒖,𝟏 = 𝒗,𝟏 + 𝜃
2(𝚽,𝟏 × 𝑨𝟐 +𝚽× 𝐀𝟐,𝟏) 

 

The individual strain can be obtained using Green-Lagrange formula as: 

(11) 𝜀11 = 𝒗,𝟏𝑨𝟏 + 𝜃
2(𝒗,𝟏𝑨𝟐,𝟏 +𝚽,𝟏 × 𝑨𝟐. 𝑨𝟏) 

 

The total potential energy, 𝜋, is the sum of the elastic strain energy, U, and the potential energy due to 

external forces, V. Considering energy minimization, the relation between external and internal virtual 

works is: 



7 

 

(12) 
𝛿𝜋 = 𝛿(𝑈 + 𝑉) = ∫𝛿(𝜀)𝑇𝐶𝜀𝑑Ω

Ω

−∫𝛿𝒖𝑇𝒘𝑑S

S

− ∫𝛿𝒖𝑇𝒇𝑑S

Ω

= 0 

 

where w is the vector of distributed line loads, f is the vector of body forces and C is the material property 

coefficient. 

In IGA, discretization is performed using B-spline basis functions. According to the isoparametric 

concept, the discrete displacement field of the midline, 𝒗, is determined from basis functions defining the 

geometry and associated control points of the displacement field: 

 

(13) 𝒗(𝜉) =∑𝑁𝑖
𝑝
(𝜉) 

𝑛𝑐𝑝

𝑖=1

𝒗𝑖 

 

where 𝑛𝑐𝑝 is the number of control points, 𝜉 is the parameter, p is the B-spline degree, 𝑁𝑖
𝑝

 are the basis 

functions, and 𝒗𝑖 are control point values. 𝒗𝑖 are the problem unknowns. 

Since the vector 𝑨𝟏 is always tangent to the curve, it can be written as: 

 

(14) 𝑨𝟏(𝜉) =∑𝑁𝑖
𝑃(𝜉),𝜉

𝑛𝑐𝑝

𝑖=1

𝑷𝑖 

 

where 𝑷𝑖 are the control points of the input geometry. The stiffness matrix and force vector are computed 

by discretization of equation (12) using equations (10), (11), (13), and (14). 

3.2. Analysis aware modeling in parameterizations of geometry, loading 

and rigidities 

In a unified approach, the distributions of line loads and body forces have to be in the form of B-spline 

functions. The interpolation method which had been previously applied to geometry is similarly 

implemented for distributed loads/rigidities. It should be noted that the parameterization of the B-spline 

curve representing the distributed loading must be the same as that of geometry. In other words, the chord 

length parameterization of geometry introduced in Section 2, is directly assigned to load and rigidity. The 

one-to-one correspondence between parameters of loading and geometry is of extreme importance. 

Although the parameterization of geometry should be chord length (or linear), it is not the case for the 

parameterization of loading. 

Independent parameterization for loading and geometry may change the definition of problem. To clarify 

this important issue, an illustrative example is provided in Fig. (4). Table (1) reports the values of B-

spline parameters of geometry and load for independent and dependent cases. It should be mentioned that 

in the independent case, the parameterization of load (𝜉𝐿) is obtained using equation (3). It can be seen 

that in the independent case, the values of 𝜉 and 𝜉𝐿  are not equal at a specified position, therefore, a 

unified parameter (𝜉) will shift the load positions on the top of the beam. In this situation, the problem 

will be wrongly regarded as another problem with a different loading. 
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Figure 4 - A beam with 3-stage ramp loading 

 

Table 1 - Values of B-spline parameters of geometry and load for the independent and dependent cases 

Independent parameterization Dependent parameterization 

Position A B C D Position A B C D 

Parameterization 

of geometry (𝜉) 
0 1/3 2/3 1 

Parameterization 

of geometry (𝜉) 
0 1/3 2/3 1 

Parameterization 

of load (𝜉𝐿) 
0 1/6 5/6 1 

Parameterization 

of load (𝜉𝐿) 
0 1/3 2/3 1 

 

The flexural rigidity of a curved-beam can vary along the length of the beam. The variation may be due to 

cross section changes (such as tapered beams), Young’s modulus variations (composite materials) or 

both. A B-spline curve is capable of representing the flexural rigidity variations and can be directly 

implemented into IGA. The one-to-one correspondence between parameters of B-splines representing 

rigidity and geometry is again crucial here. Therefore, the B-spline representative of flexural rigidity 

variation is: 

 

(15) 𝐸𝐼(𝜉) =  ∑𝑁𝑖
𝑝(𝜉)𝐸𝐼̅̅ ̅𝑖(𝜉)

𝑛

𝑖=1

 

where 𝐸𝐼̅̅ ̅𝑖 are the interpolated control points. A similar procedure can be taken for the axial rigidity 

variation as: 

 

(16) 𝐸𝐴(𝜉) =  ∑𝑁𝑖
𝑝(𝜉)𝐸𝐴̅̅ ̅̅ 𝑖(𝜉)

𝑛

𝑖=1

 

 

3.3. Validation of Numerical Tests 

Validation tests were conducted to ensure the effectiveness of the developed IGA formulation for free-

form curves with arbitrarily load variations. The essential chord length parameterization method is used to 

assure the linearity of parameterization. In additions, the importance of one-to-one correspondence 

between parameterizations of load and geometry is discussed in details. It should be noted that in the 

following examples, the flexural/axial rigidities are assigned as constants. 
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Figs. (5) to (7) illustrate three examples along with the results obtained with IGA and FEM. In all cases, 

the cross section is circular with the diameter of 0.2 m. The modulus of elasticity is set equal to 200 GPa. 

The number of IGA and FE elements as well as the degree of shape/basis functions for a convergence up 

to 2 decimal points is reported in Table (2) for all examples. It should be noted that our objective is not to 

only compare IGA and FEM results, but is to ensure the validity of IGA formulations to be used in 

optimization problems where there are lots of deficiencies in implementing FE models [40].   

 

Figure 5 - (a) quadrant beam with variable horizontal loading  (b) Comparing IGA and FEM results 

 

Figure 6 - (a) Tschirnhausen beam with variable vertical loading (b) Comparing IGA and FEM results 
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Figure 7 - (a) Spiral beam with variable vertical loading; (b) Comparing IGA and FEM results 

Table 2 - The number of IGA and FE elements/degrees for a convergence up to 2 decimal points 

Example 
FEM IGA 

# of elements Degree # of elements Degree 

1 (Fig (5)) 24 2 6 3 

2 (Fig (6)) 36 2 11 3 

3 (Fig (7)) 67 2 21 3 
 

Comparing IGA and FEM results shows the validity of the IGA formulated method.  

It is worth reminding here the relationship between parameterizations of the geometry and loading by a 

descriptive example. Based on the example depicted in Fig. (6), the variations of Jacobian versus B-spline 

parameter for the geometry and loading are taken into consideration and presented in Fig. (8). 

 

Figure 8 - The variation of Jacobian with respect to B-spline parameter for geometry and load of Fig. (6-a) 
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This figure illustrates that the parameterization of geometry is linear (constant Jacobian), while the 

parameterization of load, which is correctly adopted from the geometry, is not linear. Therefore, 

employing an independent linear parameterization for loading in this example seriously affects the 

accuracy of results. 

 

4. Formulation of the Shape/Flexural Rigidity Optimization 

4.1. Optimization procedure 

For a linear elastic body, the aim of shape optimization is to find the shape of a domain which minimizes 

an objective function. The optimization problem may be expressed as:  

min
Ω⊆D

𝐹(𝑥) 

subject to:  

ℎ𝑗(𝑥) = 0,    𝑗 = 1, 2… 𝑛ℎ  

𝑞𝑘(𝑥) ≤ 0,    𝑘 = 1,2…𝑛𝑘 

 

whereD ⊆ R2 denotes the set of admissible shapes defined through the local geometric constraints. Design 

variables defining the shape are denoted by 𝑥𝑖  (𝑖 = 1,… , 𝑛)  while ℎ𝑗  and 𝑞𝑘  are the equality and 

inequality constraints respectively. The objective function, F(x), can be volume, weight, strain energy, or 

stress.   

Among various optimization strategies developed for shape optimization problems, the superiority of 

gradient-based optimization methods have been underscored by many researchers [41, 42]. Gradient-

based algorithms seek to iteratively update the design variables based on the results of sensitivity 

analyses. The sensitivity analysis addresses how much the variation of a design variable will affect the 

objective function and what is the update direction for function minimization.  

In this paper, Sequential Quadratic Programming (SQP) is used as the optimization tool in sensitivity 

analysis. In SQP optimization with only inequality constraints, all information related to the problem are 

incorporated into the Lagrangian functional as: 

(17) L = f(x) + λTq(x) 

where λ are Lagrangian multipliers. 

The Karush-Kuhn-Tucker condition is obtained by imposing the well-known Newtons method on the 

Lagrangian function which takes the following matrix form: 

(18) 
[H GT

G 0
] [ −𝐏̅
𝛌k+1

] = [
𝐠
𝐪] 
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where 𝐏̅ =
𝐱k+1−𝐱k

α
 , G = 𝛁x𝐪 , g = 𝛁xF , H = 𝛁xx

2 F  , α  is the step length and  λk+1  are the updated 

Lagrangian multipliers. The analytical calculation of the Hessian matrix (H) is not possible in the present 

work. Therefore, the Hessian matrix is approximated using the Symmetric Rank-one (SRI) quasi Newton 

iteration method as: 

(19) 
Hk+1 = Hk +

(𝛁𝐠 − Hk𝛁𝐱)(𝛁𝐠 − Hk𝛁𝐱)
T

(𝛁𝐠 − Hk𝛁𝐱)T𝛁𝐱
 

 

The values of xk+1 are updated iteratively by solving equation (18). It should be mentioned that the value 

of α is chosen based on the feasibility conditions of the updated design variables. The simplest method of 

calculating the gradient of objective function with respect to each design variable is the global finite 

difference method: 

 

 (20) 𝛁f(xi) =
f(x1, x2, … , xi + ε,… , xn) − f(x1, x2, … , xi, … , xn)

ε
 

 

where ε  is a disturbance parameter. The convergence of global finite difference method is highly 

dependent on the disturbance parameter and it is an inefficient method in many applications [43]. One 

reliable alternative is the semi-analytical sensitivity analysis method which is based on the direct 

manipulation of the derivatives. The objective function of a shape optimization problem aiming at pre-

bent shape design is: 

 

 (21) OF = [𝐂𝐏𝐩𝐫𝐞−𝐛𝐞𝐧𝐭 + 𝐂𝐏𝐝𝐢𝐬𝐩 − 𝐂𝐏𝐩𝐫𝐞𝐬𝐜𝐫𝐢𝐛𝐞𝐝]
T
[𝐂𝐏𝐩𝐫𝐞−𝐛𝐞𝐧𝐭 + 𝐂𝐏𝐝𝐢𝐬𝐩 − 𝐂𝐏𝐩𝐫𝐞𝐬𝐜𝐫𝐢𝐛𝐞𝐝] 

 

where 𝐂𝐏𝐩𝐫𝐞−𝐛𝐞𝐧𝐭  are control point positions of the design variables at each iteration step, 𝐂𝐏𝐝𝐢𝐬𝐩 are 

control points of the displacement field (𝑣𝑖 in equation (13)), and 𝐂𝐏𝐩𝐫𝐞𝐬𝐜𝐫𝐢𝐛𝐞𝐝 are the required deflected 

positions of control points after loading (constant input values). 

The derivative of objective function with respect to the design variable, xi, can be formulated as: 

 

 (22) ∂OF

∂xi
= 2 ∗ [𝐂𝐏𝐩𝐫𝐞−𝐛𝐞𝐧𝐭 + 𝐂𝐏𝐝𝐢𝐬𝐩 − 𝐂𝐏𝐩𝐫𝐞𝐬𝐜𝐫𝐢𝐛𝐞𝐝]

T
(𝛅 +

∂𝐂𝐏𝐝𝐢𝐬𝐩

∂xi
) 

where δ is a vertical vector which all of its members are zero except for the ith member which equals 1.  

The derivative of displacement control points with respect to the design variable, xi , is obtained by 

deriving the equilibrium equation: 

 

 (23) d

dxi
{[K]{𝐂𝐏𝐝𝐢𝐬𝐩}} =

d

dxi
{𝐟} 

Therefore 

 

 (24) d 𝐂𝐏𝐝𝐢𝐬𝐩

dxi
= [K]−1 ({

∂𝐟

∂xi
} − [

∂K

∂xi
] {𝐂𝐏𝐝𝐢𝐬𝐩}) = [K]

−1{𝐟∗} 

𝐟∗ is called the Pseudo load vector and is defined as: 

 

 (25) {𝐟∗} = {
∂𝐟

∂xi
} − [

∂K

∂xi
] {𝐂𝐏𝐝𝐢𝐬𝐩} 
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The derivative 
∂𝐟

∂xi
 is usually zero since the applied force is almost independent of design variables 

whereas the derivative of stiffness matrix with respect to the design variables (
∂K

∂xi
) is frequently 

approximated by the global finite difference method. Semi-analytically computation of the Pseudo load 

vector requires only computing the stiffness matrix of the perturbed system, meaning that no mapping 

from the analytical model to the design model is required [41]. 

In shape optimization of curved beams, the control points defining the beam’s shape are taken as design 

variables. Although global optimization methods such as PSO are very suitable for the selection of the 

initial design, especially when the derivatives of the objective function are unknown [44], in the pre-

bending shape design problems, it is advantageous to use the deflected values (𝐂𝐏𝐩𝐫𝐞𝐬𝐜𝐫𝐢𝐛𝐞𝐝 ) as the initial 

guess. This is because the deflected configuration is somehow similar to the pre-bent configuration in 

curvature variations and visual appearance, therefore, the values of 𝐂𝐏𝐩𝐫𝐞𝐬𝐜𝐫𝐢𝐛𝐞𝐝 are selected as the initial 

guess for all subsequent optimization examples. In the present work, inequality constraints are emerged as 

limit bounds as will be shown in the following examples. 

 

4.2. Optimization Examples 

The following examples are used to ensure the validity of semi-analytical optimization method developed 

in the current research. 

4.2.1. Pre-bent shape design of cantilever Tschirnhausen beam 

In order to solve the pre-bent design of a curved beam using the optimization algorithm, the control points 

of the geometry (Fig. (9)) are allowed to move in horizontal and vertical directions throughout the design 

space. 

 

Figure 9 - Control points of the Tschirnhausen curve as optimization design variables 

The geometry and configuration of loading are as previously shown in Fig. (6.a), but the magnitude of 

distributed load is  𝑤 = 5000𝑦2 in the current example. The Semi-analytical technique is performed to 
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find out the control points of the pre-bent configuration. The optimization input parameters of this 

example are listed in Table (3).  

Table 3 - Optimization parameters of the pre-bending of Tschirnhausen's example 

Initial step 

length [𝛼] 

 

Initial 

Hessian [𝐻] 

Disturbance 

parameter of 

finite difference 

method (𝜀) 

Optimization 

formulation 

Selection of 

initial design 
Design space 

1 

 

Identity 

matrix 
0.001 Acc. to section 4 

Equals to 

𝑪𝑷𝒑𝒓𝒆𝒔𝒄𝒓𝒊𝒃𝒆𝒅 

Bounded 

𝑥 ∈ [−10,10] 
𝑦 ∈ [−10,10] 

 

The convergence histories of the semi-analytical technique using IGA and FEM as structural analysis 

tools are demonstrated in Fig. (10). High convergence rate (only 9 iterations to reach an objective 

function value of lower than 10−4 ) can be seen in the IGA case. The superiority of IGA with respect to 

FEM is clearly observed. It is worth noting that the time required for each iteration with FEM is 4 times 

greater than that of IGA, a fact which comes from lower number of design variables for accuracy 

requirements in IGA compared to FEM (see Table (2)). 

 

Figure 10 – iterative history of example 1  

 

The pre-bending results are shown in Fig. (11). The deflected curve is closely lying on the required 

deformed geometry. Therefore, the proposed technique can predict the pre-bent shape of free-form curves 

under arbitrary distributed loading accurately. 
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Figure 11 –Pre-bent shape design of the Tschirnhausen curved beam 

 

4.2.2. Pre-bent shape design of cantilever spiral beam 

Spiral shapes are of important and complicated planar curved beams that are widely used in engineering 

applications. In this section, the pre-bent shape design of a spiral beam is considered. The geometry and 

control polygon of the problem is shown in Fig. (12). All control points are allowed to move freely in 

both x and y directions inside the design space. The geometry and loading are the same as Fig. (7.a), but 

the direction of the distributed load is reversed. All necessary information related to the optimization 

problem of this example is listed in Table (4). 

 

Figure 12 - Control points of the Spiral curve as optimization design variables 
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Table 4 - Optimization parameters of the pre-bending of Spiral’s example 

Initial step 

length [𝛼] 

 

Initial 

Hessian [𝐻] 

Disturbance 

parameter of 

finite difference 

method (𝜀) 

Optimization 

formulation 

Selection of 

initial design 
Design space 

1 

 

Identity 

matrix 
0.001 Acc. to section 4 

Equals to 

𝑪𝑷𝒑𝒓𝒆𝒔𝒄𝒓𝒊𝒃𝒆𝒅 

Bounded 

𝑥 ∈ [−10,10] 
𝑦 ∈ [−10,10] 

 

Fig. (13) shows the convergence history of the objective function with respect to the iteration number. 

Good convergence is shown which is promising. The superiority of IGA with respect to FEM is again 

observed. In this example, the average time required for each iteration with IGA is 9 times faster than the 

average time required for each iteration step with FEM. The pre-bending results are shown in Fig. (14) for 

comparison purposes. The deflected and predefined configurations are matched well indicating that the 

predicted pre-bent curve is well-designed. 

 

Figure 13 -The iteration history of example 2 
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Figure 14 - Pre-bent shape design of the Spiral curved beam 

 

4.2.3.  Pre-bending of Wind Turbine Blades (a practical example) 

The wind turbine blade design, in terms of functionality, can be divided into structural and aerodynamic 

areas [45, 46]. The main objective of aerodynamic design is to convert the kinetic energy of wind into 

differential lift and drag forces which eventually result in the main shaft torsional moment. On the other 

hand, the objective of structural analysis is to design the composite layup to sustain large amount of 

bending moments which are maximized on the blade root. Large deflection is the main concern and the 

critical issue in structural (Layup) design of composite wind turbine blades. Although composite materials 

have considerable amount of strength, their stiffness is not very high. Therefore, such composite 

structures may undergo large deflections during operational and extreme conditions. Large deflection of 

typical wind turbine blades is the source of many design problems. The blades have to be stiff enough so 

that they don’t hit the tower under extreme wind conditions. There are some practices to raise the 

clearance safety factor without sacrificing the material and cost such as defining a cone angle, a tilt angle, 

and pre-bending. These are shown schematically in Fig. (15). 
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Figure 15- Practical methods of increasing the tower clearance 

A Cone angle of 3o, Tilt angle of 5o and 1.5 m pre-bending for a 50 meters wind turbine blade are  

common figures [47].  It is obvious that allocating cone and tilt angles needs some adjustment in the 

design of nacelle, but pre-bending is implemented in the mold design of the blade itself. The pre-bent 

blades are bent toward the wind. When the blades are exposed to the wind loads, they become straight 

which is their best configuration based on aerodynamic considerations. Hence, pre-bending allows the 

blades to be longer and lighter with larger swept area [48]. The required pre-bent configuration can be 

obtained using the optimization method introduced in this paper. 

 In this section, the introduced IGA-SQP semi-analytical optimization procedure was performed on a 13m 

wind turbine blade. The flapwise aerodynamic load on the beam representing the blade is computed using 

FAST [49]. The blade’s structure consists of glass-epoxy composites in its shell and spar. The variation of 

flexural and axial rigidities along the blade is obtained using Precomp [50]. In the next step, the blade’s 

initial geometry, loading, and rigidities are interpolated using the method described in Section 2. The 

results for an example of 10 control points and degree 3 are shown in Fig. (16). The optimization input 

parameters of this example are listed in Table (5).  
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Figure 16 - The variation of (a) load, (b) flexural rigidity and (c) axial rigidity with respect to the B-spline parameter 

 

Table 5 - Optimization parameters of the pre-bending of wind turbine blade example 

Initial step 

length [𝛼] 

 

Initial 

Hessian [𝐻] 

Disturbance 

parameter of 

finite difference 

method (𝜀) 

Optimization 

formulation 

Selection of 

initial design 
Design space 

0.25 

 

Identity 

matrix 
0.0001 Acc. to section 4 

Equals to 

𝑪𝑷𝒑𝒓𝒆𝒔𝒄𝒓𝒊𝒃𝒆𝒅 

Bounded 

𝑥 ∈ [−15,15] 
𝑦 ∈ [−15,15] 

 

The control points of geometry (except for the fixed end) are given freedom to move vertically and create 

different curved beams. The convergence study of the proposed semi-analytical procedure and the final 

pre-bent shape are shown in Figs. (17) and (18) respectively. 
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Figure 17 – Iterative history of wind turbine blade’s pre-bending example 

 

Figure 18 – The Pre-bent shape of a wind turbine blade using semi-analytical optimization 

 

According to Fig. (17), the normalized objective function converged to a number below the required 

accuracy (10−5  in this article) in only 3 iterations. The straight deformed configuration in Fig. (18) 

confirms the validity of the pre-bent shape designed. Fig. (18) also illustrates that for the present example, 

a maximum tip pre-bending of approximately 0.4 m is sufficient. 

Finally, a convergence study has been conducted to investigate the effect of number of design variables 

on the convergence of the objective function value which is shown in Fig. (19).  
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Figure 19 - The effect of number of design variables on the converged objective value of the wind turbine blade example 

The figure suggests that slightly better results are obtained by increasing the number of control points 

from 10 to 20 using the knot insertion algorithm [31]. Nevertheless, 10 control points can be also 

sufficient for this example. 

 

1. Conclusion 

In this paper, the isogeometric analysis formulation of a curved beam with free-form geometry, arbitrary 

loading and variable flexural/axial rigidity is presented. It is shown that the parameterization of the 

loading/rigidity should be the same as the parameterization of the geometry. The tried and tested chord-

length parameterization is used for parameterization of the curved beam geometry. The B-spline 

representations of geometry, loading and rigidity are constructed using the interpolation technique. The 

results obtained by IGA of curved beam models are verified by refined FEA solutions. Isogeometric 

analysis is then profitably integrated with the semi-analytical sensitivity analysis to solve pre-bent shape 

design problems. As an industrial example, the proposed optimization method is successfully employed in 

the pre-bent shape design of composite wind turbine blades under distributed aerodynamic loading. 

Finally, much remains to be done in order to extend the presented optimization methodology to bivariate 

problems like shells, which can be suggested as a future work. 
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