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Abstract: Parkinson’s Disease (PD) is currently the second most common neurodegenerative
disease. One of the most characteristic symptoms of PD is resting tremor. Local Field Potentials
(LFPs) have been widely studied to investigate deviations from the typical patterns of healthy
brain activity. However, the inherent dynamics of the Sub-Thalamic Nucleus (STN) LFPs and their
spatiotemporal dynamics have not been well characterized. In this work, we study the non-linear
dynamical behaviour of STN-LFPs of Parkinsonian patients using e-recurrence networks. RNs are a
non-linear analysis tool that encodes the geometric information of the underlying system, which can
be characterised (for example, using graph theoretical measures) to extract information on the
geometric properties of the attractor. Results show that the activity of the STN becomes more
non-linear during the tremor episodes and that e-recurrence network analysis is a suitable method to
distinguish the transitions between movement conditions, anticipating the onset of the tremor, with
the potential for application in a demand-driven deep brain stimulation system.

Keywords: nonlinear dynamics; Recurrence Networks (RNs); Support Vector Machine (SVM); Deep
Brain Stimulation (DBS); Parkinson’s Disease (PD); Local Field Potentials (LFPs)

1. Introduction

It is estimated that the number of Parkinson’s patients will outnumber those with Alzheimer’s
disease by 2040, thus reaching pandemic proportions [1]. Although Parkinson’s disease is currently
the second most frequent neurodegenerative disorder, in 95% of the cases, it remains an idiopathic
disease [2]. Thus, there is a need for the medical and research community to understand its origin and
to explore improved diagnostic methods and treatments that work better in the long term.

Parkinson’s symptomatology is diverse. Patients can experience tremor of the extremities at rest,
the so-called Resting Tremor (RT), muscle rigidity, slow motion (bradykinesia) or difficulty in carrying
out precise movements (akinesia). The patients in this study were diagnosed with benign tremulous
Parkinsonism. This type of Parkinson’s is manifested by the following characteristics: (1) a noticeable
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RT; (2) symptoms not related to tremor have a confined incidence; (3) predominant lack of gait disorder;
and (4) lack of impairments apart from tremor [3].

Associated with this symptomatology, clinical states can be differentiated: the Non-Tremorous
resting state (NT), in which the patient does not experience tremor, and the Tremor state (T), in which
the patient suffers from tremor at rest. Among them, we can find a state called Tremor Onset (TO),
which is supposed to hold the key to understanding the transition between NT and T. A similar
dynamical behaviour of the brain, transitioning between different states, can be found in other diseases.
Such conditions are known as dynamical diseases [4]. As a general definition, a dynamic disease
causes abnormal dynamics in a physiological control system operating within a range of control
parameters [5]. Methods derived from non-linear dynamics analysis have been shown to be good at
detecting key features of the different dynamical states, providing a formal understanding of how the
emergence of the manifestations of dynamical diseases takes place [4,6].

An oral treatment, generally with dopaminergic effects, is usually the first option. Unfortunately,
these patients have a high resistance to levodopa, even at doses above the tolerable levels [3].
Furthermore, after a few years of use, the patients begin to suffer from the so-called ON-OFF effect:
ON periods, in which the drug works, along with alternate OFF periods, in which despite the patient
taking the drug as prescribed, it does not perform well and the patient continues suffering from the
symptoms [7]. Furthermore, the use of levodopa leads to dyskinesias (LID), causing involuntary
movements that are often worse than the original PD’s symptomatology [8,9].

Deep Brain Stimulation (DBS) constitutes an alternative line of treatment in these cases. DBS
consists of the surgical implantation of a neurostimulator. A neurostimulator is an Implantable
Medical Device (IMD) made up of a pulse generator (IPG), and a set of electrodes, which provides
High-Frequency Stimulation (HFS) to the target area, usually the Sub-Thalamic Nucleus (STN). Current
neurostimulators work uninterruptedly after its implantation. As a consequence, several adverse
effects have been reported in the literature, including paresthesia, cognitive or psychiatric dysfunction
and even an increased risk of suicide [10,11]. Demand-driven deep brain stimulation strategies
constitute an improved version of the current procedure, triggering stimulation only when necessary,
which is believed to reduce the side effects [12-15]. Moreover, a closed-loop approach would extend
the battery lifetime, as a result of the more efficient use of it.

The implementation of a demand-driven system requires an understanding of what features
of the basal ganglia activity, the STN in the case of this study, change shortly before the symptoms
appear. Understanding the tremor nature is paramount to decipher the behaviour of the STN nucleus
in the different clinical states (NT, TO and T). However, this is challenging since STN-Local Field
Potential (LFP) recordings in humans are generally acquired in 2-3 days after the surgical procedure,
before the connection of the electrodes to the IPG, not being accessible any longer. Note that this
procedure is carried out for research purposes. Otherwise, the electrodes are usually implanted during
the surgery. Furthermore, we need to gather the neural activity when the patient (without medication
and spontaneously) makes the transition from the NT to the T state. These two limitations make this
type of recording difficult to obtain. In this work, we analyse four of them from our dataset, which
fulfil these properties. The length of the four files studied ranged from 40 s-3.6 min (40 s, 2.13 min and
3.6 min). The objective is to characterise the dynamics of the different clinical states, with a particular
interest in finding a fingerprint for the TO state, as this is the first step in preventing or suppressing
the tremor with demand-driven DBS.

Local Field Potentials (LFPs) have been widely studied. While some researchers have explored
the spectral power of the neural oscillations, usually assuming the existence of pathology when its
range deviates from those present in control subjects [16,17], others have studied the connectivity
between the neurons within the STN [10,18,19]. However, the inherent dynamics and spatiotemporal
profile of STN-LFPs have not been characterised for their application to a demand-driven DBS system.
In the cases of dynamical diseases, algorithms from the non-linear dynamical analysis are particularly
attractive to find biomarkers that differ between normal and pathological states of the disease [20].
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In this work, we apply time-series analysis methods derived from non-linear dynamics to the
study of the STN activity under the different tremor states. A moving window Recurrence Network
(RN) analysis is carried out to capture such rich dynamical behaviour. RNs are constructed based on
the recurrences in the phase space. By applying network analysis methods, the dynamically-relevant
structures of the time series data can be studied, extracting the geometrical properties of the
attractor [21]. The study of the topological structure of the RN allows us to infer the complexity
of the dynamics associated with the STN-LFP time series.

Methods based on RN constitute an excellent approach to analyse the structural complexity of
neural signals, as they can be applied to short and non-stationary data, since the network properties,
such as global clustering coefficient, transitivity or assortativity, can still be reliably estimated.
This makes RNs an ideal method for capturing the dynamical transitions in neural data. Previous works
have demonstrated the applicability of this method in detecting the onset of epileptic seizures [6,22].

The present study aims to answer two main questions: (1) Do the dynamics of STN-LFPs have
a permanent character or do they change depending on the movement state that the patient is in?
(2) Would it be possible to characterise some feature in the neural signal, which can aid in predicting
the onset of the tremor?

2. Data Preparation

2.1. Dataset

The data consist of LFPs recording from the STN of four Parkinsonian patients. All patients were
implanted with a neurostimulator at the John Radcliffe Hospital in Oxford, U.K. The proper positioning
of the DBS electrodes within the STN was verified by postoperative magnetic resonance imaging.

LFPs captured the electrical activity of the neuron population in the electrode neighbourhood.
A Medtronic DBS Lead Model 3387 with four electrodes (1.5 mm apart) was the device employed for
the signal acquisition. Recordings were made within 2-3 days following the surgical procedure, the
time in which the electrodes have not been connected to the IPG and internalized, and therefore, the
signal was accessible for recording. Note that the recordings have been obtained under the DBS-OFF
condition. In this regard, the validity of the proposed system in recognizing the patient’s clinical
states in a DBS-ON context could be questioned. As will be explained later in Section 8.3, this will
not be a problem in the new generation of neurostimulation devices, in which closed-loop strategies
are framed.

Additionally, simultaneous to the LFP recording, the Electromyography (EMG) signal was
acquired in order to label the data into tremorous and atremorous sections. The EMG records were
taken from the extensor with the arm contralateral to the neurostimulator implantation side.

All patients gave their informed consent for inclusion before they participated in the study.
The study was conducted following the Declaration of Helsinki, and the protocol was approved
by the local research ethics committee of the Oxfordshire Health Authority (RECReference Number
08/H0604158).

2.2. Signal Preprocessing

The sampling rate of the recordings varied between 250 and 1000 Hz. In order to make the results
comparable, we started by resampling the recordings so that we could apply the same processing
procedure to all the data. To avoid redundant information and according to the Nyquist theorem,
downsampling to 125 Hz was performed. After that, STN-LFP recordings were filtered with a 500th
order [2-45]-Hz band-pass FIR filter designed with a Hamming window in which we used two seconds
of real data as padding. This step eliminated the movement artefacts (around 1 Hz) and the line noise
(50 Hz in Europe). Finally, the filtered data were segmented into windows of two seconds, using
overlapping of 90%. Using this level of overlapping, we can seize with a high temporal resolution the
dynamics of the signal.
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The EMG signal during tremor is composed of bursts having frequency peaks at 30 Hz and above.
The data were filtered using a two-pass procedure with a high-pass filter above 30 Hz of order 500 and
designed using a Hamming window. Then, the signal was rectified using the Hilbert envelope. Finally,
the rectified signal was filtered with an FIR 2-45 Hz filter, getting the EMG signal at low frequencies.

2.3. Data Labelling

The NT and T sections were determined by a clinical specialist in movement disorders and
subsequently confirmed by the EMG signal. An additional process has been carried out for the
labelling of the tremor onset TO. Like in previous works [19,23], the TO sections were identified relying
on the amplitude of the filtered and rectified EMG signal. The magnitude of the EMG signal was
compared against a threshold of three times the mean of the EMG amplitude in the first 5 s of the
recording (which contained atremorous data). If a peak of high tremor frequency activity was detected
at any point in time, the average of the following 5 s (enough to cover any period of tremor-onset) of
data was calculated to confirm the tremor-onset detection. The EMG value could have been compared
against a simple threshold, but in that case, the presence of small magnitude spikes might have
triggered an incorrect detection.

3. Recurrence Networks

A dynamical system is a model in which the current state depends on the previous states and
the transitional laws between them followed by the system. The state is defined through the values
taken by the system variables. By connecting the different states through which the system passes,
the trajectory of the system is obtained, which can be represented in the well-known phase space of
the system [24].

The phase space trajectory of a dynamical system can be reconstructed from a scalar time series,
by taking m time lagged observations of it. This is the well-known Taken’s embedding theorem [25]:

x(n) = (u(n),u(n+1),...,u(n+(m—1)7)) 1)

where x(n) € R, T is the embedding delay and m is the embedding dimension. Taken’s theorem does
not specify the values that T and m should take. Here, we make use of two widely-used methods to set
these parameters:

3.1. Embedding Delay: T

The selection of T has to be performed carefully, to avoid redundancy in the consecutive variables
of the delayed vector. When 7 is too small, no new information is extracted between successive
observations, while if 7 is too high, continuous observations are disconnected. To find an optimal
value of T, we used auto-mutual information. Given a scalar time series, x;, with n samples, one can
define the auto-mutual information function as follows [26]:

N-1
- p(Xn, Xptt)
MI(T) — nZ:O p(x'm Xn+T) IOg m (2)

where p(-) stands for probability. The optimal value for the embedding delay is the value of T at which
MI(7) reaches the first local minimum [27].

3.2. Embedding Dimension: m

For the calculation of the optimal embedding dimension, we used the False Nearest
Neighbourhood (FNN) method [28], which consists of calculating the number of points along the
trajectory that are neighbours for different values of m. The value of m at which the percentage of false
neighbours becomes zero (or arbitrarily small, due to the effect of noise) is considered the optimal
value of m. In order to construct RNs of the same size, the same values of T and m are set across
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windows of each file, allowing us to compare them. Figure 1 shows the auto-mutual information and
the minimum embedding m using the FNN method for an exemplary channel.
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Figure 1. Optimal value of the parameters for an exemplary window. Left: optimal delay 7 calculated
with auto-mutual information. The dashed line determines the first local minimum (7 = 6). Right:
the minimum embedding m employing the False Nearest Neighbourhood (FNN) method. At m = 4,
the FNN statistic is zero.

3.3. e-Recurrence Network

From the state space, it is possible to build a complex network, on which graph-theoretical
measures can be computed. In this study, a e-RN was reconstructed. These kinds of networks are a
subtype of proximity networks, in which the vertices are represented by state vectors and the edges
between the vertices are defined based on the mutual closeness between different state vectors in
the phase space [21,29]. We can find different proximity networks, depending on how the concept of
mutual closeness is defined. In the case of a e-RN, a fixed phase space distance e-centred around a
vertex i (a state vector in phase space) is defined [30]. All the vertices that fall within this volume are
connected to the vertex i by an edge. Such a network is both undirected and symmetric.

e-RNs are based on the recurrences in phase space and are obtained by reinterpreting the
recurrence matrix as the adjacency matrix of a complex network [21,30]. A recurrence matrix represents
the distance between the pairs of state vectors. It can be defined as [31]:

Rij=0(e= [ xi—x; ) ®)

where ¢ is the recurrence threshold, ©(-) is the Heaviside function and || - || is a distance norm.
Here, we used the maximum norm as a distance norm. Instead of fixing €, we fixed the recurrence
rate RR = 0.03, so that we obtained RNs with a similar number of edges across windows, which
made it possible to compare them. This threshold determines the maximum spatial distance of
neighbouring states.

The recurrence matrix is binary and symmetric. Each vertex i represents a state vector x;. The entry
is one if the distance between two states is less than the defined threshold, zero otherwise.

The adjacency matrix can be obtained from the recurrence matrix by removing the self-loops,
that is subtracting the identity matrix:

A=R-1 4)

A represents an undirected, unweighted complex network known as a recurrence network.
From it, we can characterize the dynamically-invariant properties of the neural dynamical system by
using graph theoretical methods.
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4. Network Measures

By applying network analysis methods, the dynamically-relevant structures underlying the time
series can be studied by extracting the geometrical properties of the attractor. The network measures
used in this study are presented in this section.

4.1. Global Clustering Coefficient

The local clustering coefficient for a vertex i represents the probability that two randomly-chosen
vertices j and g are, themselves, neighbours. The local clustering coefficient of a vertex i can be
given by:

Ljg Al J)A(,9)A(q, i) )
ki(ki —1)

where k is the degree of a vertex. Interpreting this coefficient in the context of RNs, C; is a measure of
the fraction of vertices in the e-neighbourhood of a given vertex that is itself mutually e-close (within
the same circumference). C; is averaged over all the vertices in the network to obtain the global
clustering coefficient:

Ci =

1
C:NZCi (6)

4.2. Transitivity Dimension

The concept of transitivity is very similar to that of clustering. It measures the fraction of triples in
the network that form triangles. The main difference is that the transitivity coefficient is normalized by
the value of the whole network, a quality that makes transitivity more robust compared to clustering
against the presence of nodes with a low degree. The transitivity is defined by [32] as:

T(G) = =&y )

where T(G) and 6(G) are the total number of triples and triangles in the network, respectively. In terms
of the recurrence matrix, T can be defined as:

£ 1 Al ) AG,9)Alg, 1)

T= N . ]
Yijg—1 A(i, j)A(q,1)

®)

4.3. Assortativity

A network is assortative if the vertices with a similar degree tend to connect. The fact that a
recurrence matrix is assortative means that the density of states within the e-neighbourhood changes
slowly and continuously. This coefficient is calculated by the Pearson product-moment correlation of
the vertex degrees on either end of all the edges [33]:

1 y 1 1 Nk
N LjsikikjA(i, ) — [ ~ Ljsiz(ki "‘kj)A(lr])}

A:
2
BT 8+ K)AG ) — | & Ejsi 3 (ki + k) AG )]

©)

5. Moving Window e-Recurrence Network Analysis

In this work, we used moving window e-recurrence network analysis to compute the global
measures C, T, A. The time series was previously divided into two-second windows with 90% overlap.
In order to get the temporal profile of global network measures, we assigned the global measure to
the mid-point of each window. T and m have been set on the first local minimum of the auto-mutual
information and FNN method, respectively, and the recurrence rate RR was set to 0.03.
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To determine whether it is possible to anticipate the beginning of a tremor episode, a moving
median filter over the signals C, T, A was applied. This filtering allows one to smooth out short-term
fluctuations and to highlight the real transients in the STN-LFP signal. The £2 and £3 standard
deviations of the moving median filter were established to determine the statistical significance of the
transients (peaks henceforth). Figure 2 shows the results of the analysis of one of the recordings.

Clustering

f | | I | |
0 50 100 150 200 250 300

windows

6 T

Transitivity

A
2 Y -
WW‘MWU\M W [N\ // \\VNW J RVV/ \”\mw/\ A
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Figure 2. Moving window e-recurrence network analysis showing the median moving average of
clustering, transitivity and assortativity, before, during and after the start of the tremor, in that order.
The left and right black vertical lines represent the transition from Non-Tremorous resting state (NT) to
Tremor Onset (TO) and from TO to Tremor state (T), respectively. The horizontal lines represent the +-2
and +3 standard deviation thresholds for statistical significance.

Clustering (C): We witnessed a low level of C during NT, which increased abruptly a few seconds
before the onset of the TO (p < 0.01). The peaks described an abrupt increase in the non-linearity in the
system (for simplicity, we will talk about peaks instead of an increase in the non-linearity henceforth).
Thereupon, the level of C decreased again, although it remained higher than its level during NT. A few
seconds before the onset of the resting tremor T, we again detected an increase of C (p < 0.01). During
the T section, significant peaks (p < 0.05) were detected.

Transitivity (T): The levels of transitivity remain insignificant during NT. In both transition
periods, we detected an increase in the level of T (p < 0.05). During the tremor section, the amplitude
of the peaks increased, surpassing in some cases the 43 standard deviation.

Assortativity (A): A had the same behaviour as transitivity, in that its fluctuations remained
insignificant during the entire NT period. However, it marked the transition windows by becoming
significant (p < 0.05) and increasing in amplitude in TO and T.

Equivalent results were found for all files. Importantly, we found significant peaks before the
transition of movement conditions for all the measures and files. These peaks were significant at the
99% and 95% levels, which implies that in all cases, the onset of the tremor can be predicted in advance
by this method. Based on the obtained results, we can draw the following conclusions:
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e  The trends of the different measures were quite similar since all of them exhibited a shift in
their dynamics near the beginning of the TO episode and before the T episode. All measures
detected the tremor efficiently before its appearance and therefore before the patient showed any
physical symptoms. This fact made these measures good candidates for their application in a
demand-driven DBS system.

e  During tremor episodes, T and A displayed a growing trend, while C exhibited the behaviour
of shifting its dynamics more abruptly. The behaviour during NT and TO was similar across all
the measures.

6. System

The objective of the system was to detect the tremor through the STN-LFP signal recorded
by the electrodes, through the network features studied. The aim was to provide stimulation as
soon as symptoms were detected, or ideally shortly before, and to stop stimulation as soon as
atremorous instances were sensed. In this way, the system will be efficient concerning the treatment of
symptomatology, as well as with the use of the battery.

As previously mentioned, it was within the section labelled as T when the patient began
to experience physically appreciable tremor, as determined by clinicians with expertise in
movement disorders.

From the moment a tremor window arrives until the system classifies it as such and orders the
stimulation to begin, a few seconds may pass. Therefore, it would be interesting to detect within the
STN signal some event that anticipates the tremor episode, i.e., the ideal solution would be to detect
the tremor before the patient begins to experience it physically, using those seconds to turn on the
stimulation. In other words, ideally, a demand-driven DBS system must detect the tremor when the
patient is in a TO episode.

With this goal in mind, the dynamics of the STN signal have been studied following the methods
presented in Section 5, since as we have seen, the network measures have proven to be outstanding at
capturing changes in the non-linearity of the system. These changes were especially noteworthy in the
TO state, detecting a peak that reached values of significance of p < 0.01 in all the studied recordings.

6.1. Start and Stop Stimulation Decision

To be valid for its purpose, the system must be able to recognise two main conditions: NT and
TO instances. Notice that we had three classes (NT, TO and T); however, the system only needed to
learn the first two to be able to carry out the two instructions that the system performed: start and
stop stimulation. Notice also that the accurate detection of TO was more critical than the detection of
NT. This was because if a delay existed in stopping the stimulation as a consequence of not correctly
classifying an instance of NT, it would not have any effect on the symptomatology, going unnoticed
by the patient. However, the same delay in detecting a tremor instance would lead to the patient
experiencing tremor as many seconds as windows the system would need to perform a correct
classification. The system has to avoid this situation, therefore, and give the accuracy shown detecting
a peak of non-linearity within the TO state, and the system will base the decision to start stimulation
on the presence of that peak. These possible scenarios are depicted in Figure 3.
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Figure 3. This figure represents the four cases that can take place in our system when turning on/off
the stimulation. (a) The Implantable Medical Device (IMD) is not stimulating, and a TO sample
arrives (the ground-truth of the sample is therefore TO). If the system fails to classify that sample, the
stimulation will remain OFF, and the patient will begin to tremble after a few seconds (Scenario al in
the figure). If on the contrary, the system correctly identifies the sample as TO, it will order to start the
stimulation (Scenario a2 in the figure). (b) If while the system is stimulating, an NT sample arrives:
(the ground-truth of the sample is therefore NT): If the system correctly detects this new clinical state,
it will turn OFF the stimulation, as it is no longer necessary (Scenario b1 in the figure), while if the
detection fails, the system will continue to stimulate (Scenario b1 in the figure). However, in this case,
contrary to what happens in Scenario al, this will have no physical effects on the patient.

However, this non-linearity peak did not occur when the patient transits from the T to the NT state,
making a system based solely on this method not capable of detecting the stop condition. This would
lead to a situation in which the IMD would stimulate in a continuous way (which is the current state
that we were trying to improve). Therefore, to detect the stop condition, the system will made use of
an SVM classifier trained per patient using ten-fold cross-validation. Support Vector Machines (SVM)
are algorithms that create a non-linear discriminative classifier, determined by an optimal hyperplane
that separates the instances of different classes, implicitly mapping the inputs into high-dimensional
feature spaces (the well-known kernel trick) [34]. Once the system has learned the mapping function,
the new and unlabelled instances will be mapped into some of the created regions, adopting the label
of that region.

6.2. System Model

The system operated as follows: Assuming the system was running, at time ¢, a new signal
window arrived at the IMD. It preprocessed the signal as described in Section 2, calculated the network
measures as described in Sections 4 and 5 and stored the results in memory. Notice that the system
only maintained in memory the four windows before which it was evaluated. If DBS was OFF, the
system had to decide if it would turn on the stimulation or continue just sensing the signal. For that,
it averaged the current window with the four previous ones. Depending on the results: (a) If the
result exceeded two standard deviations from the subject’s baseline, a non-linearity peak was detected,
indicating that the patient was within the TO state, and therefore, the decision made by the system
would be to turn on the stimulation. (b) The system would continue in standby otherwise.

Nevertheless, if in time £, the DBS was ON, the decision that the system must make was whether
to turn off the stimulation. For this purpose, the trained SVM model would classify the sample.
If it belonged to NT, the IMD would order to stop the stimulation. It would continue stimulating
otherwise. The flow diagram of the system operating mode is depicted in Figure 4.
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Figure 4. Flow diagram of the system operating mode.

6.3. System Performance

This section discusses the validity of the proposed system. Validity reflects the accuracy of the
system, and it is measured by sensitivity and specificity. Sensitivity is the proportion of true positives,
and specificity is the proportion of true negatives that are correctly identified by the system. Besides,
we were interested in measuring the False Positive (FPR) and False Negative Rates (FNR). FPR (« or
type I error) measured the percentage of cases in which the null hypothesis was correct, but was
rejected, while FNR (8 or type Il error) measured the percentage of cases in which the null hypothesis
was false, but was accepted.

In a demand-driven DBS system, the two main actions to be taken are when to turn on and when
to turn off the stimulation. The validity of the model in each of these actions is evaluated here.

Shut down the stimulation:

In this usage scenario, the system was stimulating (DBS ON), and it had to decide whether to
stop the stimulation, i.e., the system was registering T samples (subthalamic signal associated with
the tremor regarding the extracted features), but at a certain point, began to register NT samples
(subthalamic signal associated with the atremorous state regarding the extracted features).

Sensitivity here is the ability of the system to classify a sample as T correctly, while specificity
is the ability to classify a sample as NT correctly. A false positive in this scenario represents that the
system classified an arriving sample as NT being T. While a false negative represents that an arriving
sample was classified as T being NT.

The SVM module was trained to discriminate these two types of samples. Its performance is
presented in Table 1. In this scenario, we wanted the system to have a high degree of specificity and a
low percentage of FPR.

In the case of Patient 2, there was a specificity of 100% and an FPR of zero. This is the ideal case.
One hundred percent of the NT samples were identified without failure. Nevertheless, in the case
of Patient 3, there was a 90.8 specificity and an FPR of 9.2. This means that about nine out of 10 NT
samples were evaluated correctly, but one out of 10 were incorrectly classified as tremor.
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Table 1. SVM-subsystem performance in stopping the stimulation.

File ACC Sensitivity Specificity FPR FNR

1 84.8 89.83 79.24 20.75 10.17
2 98.4 97.44 100 0 2.56
3 94.3 95.20 90.8 9.2 4.79
4 90.3 87.13 92.05 794 1286

Notice the implication that an FPR # 0 has on this scenario: If the window being evaluated was
incorrectly classified as tremorous, the system would continue stimulating, and it would evaluate the
next window. Continued stimulating had no effect on the symptomatology and went unnoticed for
the patient (as represented in Figure 3b2). We were interested in having high specificity, but the fact of
not reaching 100% was not critical.

Start up the stimulation:

Contrary to the previous use case, in this usage scenario, the system was in standby, sensing.
For each incoming window, the system must decide whether to start stimulation, i.e, the system was
recording NT samples, but at a certain point began to register TO samples.

Sensitivity here is the ability of the system to classify a sample as NT correctly, while specificity is
the aptitude of correctly classifying a sample as TO. A false positive in this scenario represents that
the system classified an arriving sample as TO being NT, while a false negative represents that an
arriving sample was classified as NT being TO. Likewise, we wanted the system to return high values
of specificity and a low percentage of FPR.

The proposed system based the detection of TO on the existence of a non-linearity peak above 2,
as described in Section 5. The reasons we opted for this solution were:

e A peak above 30 was detected within the TO section of all subjects (specificity = 100%), indicating
a clear pattern of sudden non-linearity increase in the neuronal signal of the subthalamic nucleus,
just before the patient experienced physical tremor. This peak can be used as a trigger for the
decision to begin stimulation by the system. It is a simple and effective system.

Notice that despite detecting a peak above 3¢ in all recordings, a conservative threshold was set
at 20 (statistical significance of the peak p < 0.05) in order to ensure that the peak triggered the
start of stimulation in unseen futures cases, which might perhaps present a less significant peak.

e An SVM system was trained to distinguish NT samples from TO, obtaining worse results than in
the previous usage scenario. This was the expected outcome since the classes to be classified were
more similar between them. Remember in this regard that TO is a transition state between NT
and TO. Results are presented in Table 2. As can be seen, the specificity did not reach 100% in any
of the patients, obtaining higher values of FPR the previous use case. With the addition that in
this case, the importance of correctly classifying a sample was more critical than in the previous
usage case. If the window being evaluated was incorrectly classified as NT, being a TO sample,
the system would continue in standby, not starting the stimulation. As soon as the patient left the
TO state and entered the T state, he or she would begin to tremble (as represented in Figure 3al).
It is crucial that the system does not leave the patient needing it without stimulation. This is a red
line for the system.

Table 2. SVM-subsystem performance in starting the stimulation.

File ACC Sensitivity Specificity FPR FNR

1 69.6 74.54 50 50 25.45
2 77.1 60 81.57 18.42 40
3 86.7 80 92.06 7.93 20
4 82.1 81.39 84 16 18.6
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7. Related Work

Closed-loop neurostimulation is an umbrella term that encompasses different advanced DBS
strategies that apply various approaches to treat the symptoms. We can find the following families of
closed-loop DBS strategies [35]:

e Adaptive DBS: These methods propose a real-time adaptation of HFS parameters (the frequency,
duration and amplitude of a square-wave pulse train), which are currently determined by a
clinician during the visit of the patient to the hospital every 3-12 months.

o Demand-driven DBS: These strategies are based on detecting the fingerprints of pathological

states and triggering the HFS as a result.
In our opinion, the combination of adaptive and demand-driven DBS approximations would
provide a complete solution for an autonomous and intelligent DBS system, able to adapt the
stimulation parameters by itself and also capable of start-up and shut-down by itself as required
by the changing dynamics of the STN in real time.

o  Delayed DBS: These strategies consist of providing stimulation in a time-delayed manner, with
the added possibility of doing it in different areas using several electrodes. The objective is to
concentrate a beam of out-of-phase sinusoidal signals in the target area.

o  DBS based on proportional, derivative and integral feedback: These methods propose to design
a stimulation signal following the LFP signal sensed in real time. This signal can be designed
proportionally to the LFP activity or regarding integral or derivative LFP.

e  Optimal control strategies: These techniques base the control of the stimulation policy on finding
the minimum of a defined cost function. This cost function would be adjusted to the DBS
objectives, such as beta-band oscillation reduction or neuronal desynchronization.

Our study presented a proposal within the demand-driven DBS strategies. Focusing on this area,
we compared the results obtained with those other studies in this sub-area that provided the level
of accuracy of their systems. Wu et al. [36] proposed a system using a radial basis function neural
network based on particle swarm optimization trained with the STN-LFP signal. The system reached
an 89.91% accuracy. In [23], the authors examined several STN-LFP characteristics of both the time and
frequency domain and characteristics based on information theory. After a feature selection process,
they trained a feed-forward neural network classifier, obtaining 86% accuracy. Basu et al. [37] proposed
a system combining EMG and LFP signals making use of both spectral and non-linear properties of the
signals, obtaining 80.2% accuracy. In [38], the authors studied the spectral characteristics of the LFP
signal, classifying it in the different states of tremor employing hidden Markov models. They obtained
an accuracy level of 84%.

Finally, in two of our previous studies, we obtained a global accuracy level of 85.95% [15]
and 89.5% [14], respectively. In the first one, we proposed a fuzzy inference system by using
subthalamic-muscular synchronization features, whereas in the second, we designed a combined
system that firstly classified the type of resting tremor presented by the patient and then trained a
multi-layer perceptron with spectral features of the LFP-STN signal.

Systems that make use of both the muscle and the subthalamic signals have the disadvantage of
needing an external device that senses the EMG signal for its operation. In this sense, systems that
make use only of the STN-LFP signal are more functional, as they could be included in the existing
DBS montage. In our opinion, this is an important characteristic to take into account.

8. Discussion

8.1. Preferred Network Measures

As discussed in Section 5, the three network measures studied showed similar behaviour.
However, our results showed that the clustering measure detected more abrupt changes in the
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non-linearity level of the subthalamic signal, which translated into more marked peaks. Thus, we
would implement the trigger for starting up the DBS based on the clustering peaks.

8.2. Setting of the System Parameters

Since the actual mechanism of action of DBS is still unknown, there is not a standardised process
to fix the stimulation parameters (rate, pulse width and voltage), which have to be fixed by the medical
staff at the time of its implantation. The clinicians can later change these parameters during patient
visits to the hospital to maximise the clinical improvement of the symptoms.

In order to use the proposed closed-loop DBS system, it will be necessary to calculate the
parameters T and m for each subject. There are two possibilities: (1) They can be fixed, as with
the remainder of the parameters, at the time of implantation and reconsidered during the subsequent
visits to the doctor or (2) they can be calculated from each window data in real time.

This decision will have to be made in the design phase of the IMD. The second option is more
accurate, in so far as the value of the parameters is data-driven and performed in real time, and also
entails a higher computation. This is inconvenient because neurostimulators, as with any other IMD,
have restricted capabilities of energy, storage and computing power [39].

Considering these restrictions, we would lean towards the first option. In this case, we need to
test the robustness of the proposed method against the parameters T and m. It is necessary to know to
what extent these parameters affect the detection of the tremor states and transitively the detection of
the tremor, i.e., the robustness of the proposed approach.

For that matter, we have studied the dynamics of the system for several numbers of dimensions,
m, of the reconstructed phase space. The results showed that for all the possible number of dimensions,
the network measured show a similar trend, stabilising for higher values of m. Figure 5 shows these
results for transitivity for one of the patients.

Transitivity

0 200 400 600 800 1000 1200 1400
windows

| Dim 4 Dim 6 Dim 8 Dim 10|

Figure 5. Moving window e-recurrence network analysis showing the median moving average of
transitivity, before, during and after the start of the tremor. The temporal profile of the measure is
shown for different values of m = 4,6,8 and 10. The vertical line represent the time at which the
patients transited from NT to TO (left) and from TO to T (right). The horizontal lines represent the +2
and +3 standard deviations, the thresholds for statistical significance.

From these results, we can conclude that, even if the number of dimensions necessary to
reconstruct the phase state change slightly, this would not affect the performance in the detection of
the tremor. Nevertheless, more studies in this direction would be necessary.

For its part, the value of T across windows has a very low variance, oscillating in a unit.
For example, given a patient for which the optimal value of T for most of the windows is T = 4,
we could find some windows of this same patient with an optimal value of T = 3. In this case,
we would set T = 4.

Nevertheless, we have found that the performance of the system was suitable across all the
windows, and there was not an appreciable effect on the prediction of the peak before the onset of
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the tremor. Hence, we can conclude that the system was robust against the choice of the parameter 7,
at least in our case, in which this parameter had a minimal variance.

8.3. Towards Future DBS Systems

DBS has proven to be an effective solution for the treatment of movement disorders, especially
in cases where oral treatment is not enough. However, continued stimulation may induce adverse
effects, while the device’s battery is not used efficiently. These two drawbacks of the DBS can be
mitigated using new closed-loop strategies. In the case of demand-driven DBS strategies, the objective
is to adapt the functioning of the device in real time in response to changes in clinical (motor) status
experienced by the patient. Several studies, including significant device development companies,
agree that closed-loop strategies will be the therapy implemented in future DBS systems. To this end,
the new generation of DBS devices must be able to sense the electrical signal in the target area while
simultaneously delivering therapy. These devices will be able to obtain artefact-free LFP recordings
during stimulation. For this purpose, from the industry side, Medtronic developed the Activa®
PC+S neurostimulator, which is only available for research so far, but that points the way to future
neurostimulation systems [40].

9. Conclusions and Future Work

The behaviour of the STN becomes highly non-linear during tremor episodes, when compared
with the basal state (NT), making the geometry of the phase state more structured. We hypothesize
that the witnessed increase in nonlinearity, as reflected by the shift in the network measures, could be
attributed to the change in synchronization between the neurons during the tremor episode, as seen in
a previous study [19].

e-recurrence network analysis is a suitable method to distinguish the transitions between
movement conditions. Furthermore, the implemented method has the advantage of being able
to deal with both short and non-stationary data, making it a good option for LFP data. These two facts
make this procedure appropriate for its application to a closed-loop DBS system.

The setting of the parameters of the system, T and m, can be taken at the time of the start-up of
the device and adapted if necessary, during the visits of the patient to the clinician. This solution takes
into consideration the inherent constraints of the IMD: energy, storage and computing power, making
viable the implementation of the proposed solution.

Given the difficulty of getting STN recordings like those used in this work, only four patients
have been studied. Despite having found very similar results in all of them, it would be necessary to
consolidate these results in more patients. Our intention with this work is to propose that e-recurrence
networks may be a useful tool in the design of systems that interact with brain signals, not only in
PD [6,22], since all neural activity is a source of non-linear, non-stationary data.
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