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• Overview of the technologies for the
management of APCr/FA from incinera-
tion is given.

• Six routes for resource recovery to sub-
stitute raw materials or products were
detailed.

• Themain resource recovered were min-
erals for building industry, metals, and
deicing salts.

• Waste, incineration and APC technolo-
gies determine resource contents in
APCr/FA.

• Natural resource evaluation can be used
to assess resource recovery options of
APCr/FA.
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Environmental policies in the EuropeanUnion focus on the prevention of hazardouswaste and aim tomitigate its
impact on human health and ecosystems. However, progress is promoting a shift in perspective from environ-
mental impacts to resource recovery. Municipal solid waste incineration (MSWI) has been increasing in devel-
oped countries, thus the amount of air pollution control residues (APCr) and fly ashes (FA) have followed the
same upward trend. APCr fromMSWI is classified as hazardous waste in the List ofWaste (LoW) and as an abso-
lute entry (19 01 07*), but FA may be classified as a mirror entry (19 0 13*/19 01 14). These properties arise
mainly from their content in soluble salts, potentially toxicmetals, trace organic pollutants and highpH in contact
with water. Since these residues have been mostly disposed of in underground and landfills, other possibilities
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Table 1
Properties of waste that render it hazardous (according to

Code Hazardous property Code Hazardous

HP1 Explosive HP9 Infectious
HP2 Oxidizing HP10 Toxic for re
HP3 Flammable HP11 Mutagenic
HP4 Irritant – skin irritation

and eye damage
HP12 Release of a

HP5 Specific target organ
toxicity (STOT)/Aspiration
toxicity

HP13 Sensitizing

HP6 Acute toxicity HP14 Ecotoxic
HP7 Carcinogenic HP15 Waste capa

hazardous
directly dis

HP8 Corrosive
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must be investigated to recover secondary raw materials and products. According to the literature, four addi-
tional routes of recovery have been found: detoxification (e.g. washing), product manufacturing (e.g. ceramic
products and cement), practical applications (e.g. CO2 sequestration) and recovery of materials (e.g. Zn and
salts). This work aims to identify the best available technologies for material recovery in order to avoid landfill
solutions. Within this scope, six case studies are presented and discussed: recycling in lightweight aggregates,
glass-ceramics, cement, recovery of zinc, rare metals and salts. Finally, future perspectives are provided to ad-
vance understanding of this anthropogenic waste as a source of resources, yet tied to safeguards for the
environment.
Annex I

property

producti

n acute

ble of ex
property
played b
©2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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1. Introduction

Municipal solid waste (MSW) management includes collection,
treatment, disposal and material recovery activities and it is becoming
progressively more complex. Recently the European Commission ap-
proved an initiative in favor of fostering a circular economy, which
will entail a revision of legislation on waste with clear guidelines.
Namely, instruments to promote more recycling and discourage
landfilling are expected. In practice, innovative solutions have been pro-
posed with regard to the use of waste as resources. Although hazardous
waste is of particular concern, creative ways of recovering materials
should be considered even in this case instead of exclusive reliance on
treatment and landfilling. Of course, the impact on health and environ-
mentmust be carefully evaluated to avoid reintroducing pollutants into
thematerial cycle. It is important to note that whenever a waste is clas-
sified as hazardous, specific obligations are triggered, not only in terms
II of WFD).

on

toxic gas

hibiting a
listed above not
y the original waste
of labelling and packaging but also with respect to treatment compli-
ance (European Commission, 2015). The Waste Framework Directive
2008/98/EC (hereinafter WFD) established that a waste must be classi-
fied as “hazardous waste” if it has at least one of the hazardous proper-
ties listed in Annex III (replaced by Regulation N° 1357/2014) and is
summarized in Table 1. In addition, it must not exceed the limit values
for any of the Persistent Organic Pollutants (POPs) that are defined in
Article 7(4) (a) of Regulation (EC) 850/2004 on persistent organic
pollutants.

Currently, the classification of waste in the European Union (EU)
countries is mainly based on the List of Waste, LoW (Commission Deci-
sion 2014/955/EU), and there are now wastes in the category “mirror
entry” that can be either hazardous or non-hazardous depending on
the type and concentration of pollutants it contains. The differentiation
in those mirror entry pairs depends on the hazardous properties HP1 to
HP15 listed in Table 1. The assignment of codes may have a major im-
pact on the transport, installation permits and decisions concerning
the recyclability of waste. In municipal solid waste incineration
(MSWI) the wastes formed in gas cleaning units may be categorized
with the codes indicated in Table 2. Thus, in the case of wastes catego-
rized as 19 01 05*, 19 01 06*, 19 01 07* and 19 01 10*, the classification
designates them as absolute hazardous. However, for “fly ash” and
“boiler ash” waste, the classification is a mirror entry pair, and thus
further evaluation is possible to classify them as hazardous or non-
hazardous. In a recent study (BIO by Deloitte, 2015), the impact of
different classification approaches for hazard property “HP 14” was
assessed for fly ash from incinerators (19 01 13*/19 01 14), and it
emphasized the limited recovery options of MSWI fly ash in Europe.

Due to their classification as hazardous waste, earlier attempts at
dealing with APCr/FA mainly focused on pre-treatment or stabilization
in order to reduce the leaching of potentially toxic substances from
APCr/FA (Quina et al., 2008b; Hennebert et al., 2014). However, since

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2
Possible entries in LoW related to waste formed and collected during gas cleaning in
MSWI.

19 01 Wastes from incineration or pyrolysis of waste Entry

19 01 05* Filter cake from gas treatment AH
19 01 06* Aqueous liquid wastes from gas treatment and other

aqueous liquid wastes
AH

19 01 07* Solid wastes from gas treatment a) AH
19 01 10* Spent activated carbon from flue-gas treatment AH
19 01 13* Fly ash containing hazardous substances MH
19 01 14 Fly ash other than those mentioned in 19 01 13 MNH
19 01 15* Boiler dust containing hazardous substances MH
19 01 16 Boiler dust other than those mentioned in 19 01 15 MNH

Entriesmarkedwith an asterisk (*) are considered hazardouswaste; a) - Often referred to
as air pollution control residues (APCr); AH - absolute hazardous; ANH - absolute non-
hazardous; MH - mirror hazardous; MNH - mirror non-hazardous.
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high cost may be involved for landfilling (150 to 500 €/ton), the
recycling/recovery options may become interesting alternatives in
Europe.

This work aims to give an overview of a selection of recycling/recov-
ery technologies for the management of APCr and FA generated in
MSWI. The possibility of looking at these residues as anthropogenic re-
sourceswith the potential for recovering secondary rawmaterials is put
into perspective. Six technologies of different technology readiness
levels and various secondary raw materials that can be produced were
selected and are presented as case studies. Furthermore, the technolo-
gies and secondary raw materials considered in the case studies are
discussed from a resource evaluation and classification point of view.

2. Global perspective

Data about the characterization of MSWI residues is huge,
encompassing the total elemental composition, trace organic pollutant
content, mineralogy, speciation and geochemical modeling, thermal be-
havior, leaching and physical properties. All of this information has a
major bearing on the selection of the best way to manage APCr/FA
from MSWI. Some reviews highlight the possibilities of management
considering the available options in the waste hierarchy (Margallo
Fig. 1.Main routes to manage APCr
et al., 2015; Lindberg et al., 2015; Zacco et al., 2014; Lam et al., 2010a;
Quina et al., 2008a, 2008b). Other remarkable studies compare several
technologies based on life-cycle assessment (LCA), giving clues to de-
cide on the best methods (Huang et al., 2017; Boesch et al., 2014;
Fruergaard et al., 2010).

Fig. 1 summarizes the six main routes identified in the recent
literature to manage APCr/FA, two of them hampering further recovery
(① - backfilling and ② - treatment + landfilling) and four methods
with potential for recovery of rawmaterials or manufacture of products
(③ detoxification, ④ product manufacturing, ⑤ practical applications
and ⑥ recovery of materials).

Disposal ofMSWI residues containingwater-soluble salts and poten-
tially toxicmetals can be conducted safely through backfilling of old salt
mines and cavities in the underground, avoiding leaching with water
(Astrup, 2008; Fruergaard et al. 2010). APCr/FA may also be packed in
“big bags” made of a resistant material before backfilling.

Although the EU legislation focuses on reducing the environmental
impact caused by disposal sites, APCr/FA have been mostly treated by
stabilization/solidification (S/S) before landfilling. This technology has
economic advantages, but does not produce inert waste or facilitate re-
covery of materials. In the literature several formulations and strategies
have been applied (González et al., 2017; Ye et al., 2016; Jin et al., 2016;
Zhang et al., 2016b; Huber et al., 2016; Qiu et al., 2016; Hu et al., 2016;
Wachter et al., 2016; Li et al., 2016; Wang et al., 2015a; Alhadj-Mallah
et al., 2015; Quina et al., 2014a; Li et al., 2014; Guarienti et al., 2014;
De BoomandDegrez, 2015; Cyr et al., 2012; Lundtorp et al., 2003). Ther-
mal methods (sintering, vitrification and/ormelting) have been used to
attain environmentally stable materials, specifically with reduced
leaching of inorganic pollutants while at the same time destroying
harmful organics (Lindberg et al., 2015). The final material may be suit-
able for practical applications or it can be disposed of in landfills
accepting non-hazardous waste. The main disadvantage of the thermal
processes is the high energy demand, causing high environmental
loads/impacts in the life-cycle-assessment (LCA) of different treatment
options (Fruergaard et al., 2010). The main weakness of S/S with binder
or additives is that the mass increases and some deterioration of the
final product may occur. Thus, both methods① and② do not promote
the circular economy.
/FA sourced from incineration.
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An interesting option to encourage recovery is through detoxifica-
tion of the waste by removing or destroying the harmful substances
(toxic metals, salts or trace organic pollutants) or by decreasing the im-
pact of such pollutants. Some of the methods referred to in Fig. 1 under
route③maybebased on the same technology as in②. But the objective
in category ③ is to prepare the material for further applications, pro-
moting recovery instead of landfilling. Some of themethodologies iden-
tified in the literature are carbonation (Jiang et al., 2009; Ecke et al.,
2003; De Boom et al., 2014), washing (Wang et al., 2015b; De Boom
and Degrez, 2015; Chen et al., 2012; Wilewska-Bien et al., 2007),
leaching/bioleaching (Funari et al., 2017; Ramanathan and Ting, 2016;
Fedje et al., 2010), chemical stabilization (Liu et al., 2016; Benassi et al.
2016; Bontempi et al., 2010; Quina et al., 2010), electrocoagulation
(Liao et al., 2014), electrodialytic method (Pares Viader et al., 2016)
and ball milling (Chen et al., 2016). It should be emphasized that the
technical properties of APCr may be significantly improved by washing
either using water or acid solutions to remove salts.

The fourth route, ④, is the recovery of APCr/FA by manufacturing
products. In this case, technical specifications have to be achieved
while minimizing the impact on human health and environment. Ac-
cording to the physical and chemical properties of APCr/FA, the most
promising applications are the ceramic materials (Belmonte et al.,
2016; Jordan et al., 2015; Quina et al., 2014b, 2014c), glass-ceramic
(Luan et al., 2016; Ponsot et al. 2015), cement (Lederer et al. 2017b;
Guo et al., 2016;Wang et al., 2016; Garcia-Lodeiro et al., 2016), second-
ary building material/geotechnical applications (Colangelo et al., 2015;
Valle-Zermeño et al., 2013, 2014; Tu et al., 2010; Lin et al., 2016),
epoxy composites (Goh et al., 2016), zeolite-like material (Deng et al.,
2016), adsorbent (Xue et al., 2014) and thermal energy storage mate-
rials (Meffre et al., 2015).

The route “practical applications”, ⑤, is related to the direct utiliza-
tion of APCr/FA for attaining a specific objective. Examplesmentioned in
the recent literature are the application for biogas upgrading (Baciocchi
et al., 2013), CO2 sequestration (Cappai et al., 2012), as a stabilizing or S/
S agent (Travar et al., 2015a,b; Qian et al., 2006), embankment fill mate-
rial (Zhang et al., 2016a), landfill top cover (Brannvall and Kumpiene,
2016) and as alkali (Huang and Chuieh, 2015).

Finally, route ⑥ refers to one of the most compelling possibilities,
which corresponds to recovering specific elements or minerals. In fact,
APCr/FA from MSWI contains a substantial amount of salts and metals,
some of which are valuable and/or potentially toxic. In recent years ef-
forts have been made to develop feasible methods to recover selected
metals: Zn (Purgar et al., 2016; Fellner et al., 2015 Schlumberger et al.,
2007), Cu (Lassesson et al., 2014; Karlfeldt Fedje et al., 2012), P
(Kalmykova and Karlfeldt Fedje, 2013, Kalmykova et al., 2015), various
metals (Tang and Steenari, 2015, 2016; Okada and Tomikawa, 2016;
Kirkelund et al., 2015; Hu et al., 2015; Yu, et al., 2015; Liu et al., 2015;
Meylan and Spoerri, 2014; Yang et al., 2013; Kubonova et al., 2013), pre-
cious metals and rare earth elements (Funari et al., 2016; Hasegawa
et al., 2014; Morf et al., 2013). If the requisite technology could be
developed, a significant amount of valuable metals might be re-
inserted into the industrial material loops.

3. Case studies

In this section, an overview of three products (lightweight
aggregates, glass-ceramics and cement) and three ways of recovering
materials (zinc, rare metals, salts) will be presented. In the following
sections, all percentages refer to weight basis.

3.1. Lightweight aggregates

The possibility of recycling APCr into synthetic lightweight aggre-
gates (LWA) was assessed in previous studies (Quina et al., 2014b,
2014c). This ceramic material has been manufactured on an industrial
scale by heating pelletized expansive clay in rotary kilns at high
temperature (close to 1170 °C) to promote the bloating process. The
LWA has a dense ceramic shell with high mechanical resistance,
which involves a lighter core with highly interconnected pores. Several
technical advantages have been pointed out with regard to LWA,
namely low-bulk density (up to 50% lighter than natural aggregates
due to honeycombed internal non-interconnected pores), good thermal
characteristics, sound insulation and fire resistance, low water absorp-
tion, good chemical resistance in alkaline and acidic conditions and
high durability. Most of these properties are dependent on the aggre-
gates size, and higher density and strength are observed for smaller ag-
gregates. Accordingly, LWA has been used to produce lightweight
concrete, insulation materials, geotechnical fill, as well as used for soil
engineering and in drainage systems and roofs. The process imple-
mented on a laboratory scale may be summarized according to Fig. 2.

Initially, both granularmaterials (clay and APCr) were homogenized
by combining different proportions of clay: APCr in a range of 100:0,
99:1; 98:2; 97:3; 96:4; 95:5 and 90:10. Two additional formulations
were considered using pre-washed APCr for removing soluble salts
(clay:APCr 95:5 and 90:10). To facilitate the granulation phase, for
each formulation about 20% of water and 1% of waste lubricant oil (as
expanding agent) were added. In order to better control the size of
the green pellets, spherical granules were formed by hand, with a
mean mass of 1.4 g and a median diameter of about 11 mm. Then, the
pellets were dried at 200 °C for 2 h and fired at 1170 °C for 8 min in a
furnace. The LWA produced were characterized with respect to bulk
density, bloating index, compressive strength, water absorption capac-
ity (WAC), porosity, leaching behavior in batch conditions (EN 12457-
2) and in pH dependence tests (prEN 14429) and acid neutralization ca-
pacity (ANC).

The analysis of the external glassy shell revealed that N4% of “APCr as
received” is detrimental to the external shell of the LWA. In the case of a
washing pre-treatment, about 5% of incorporation led to good results. In
general, the bulk density and the compressive strength increased with
the APCr amount, whereas the bloating index decreases. The WAC,
which is related to the open porosity of the aggregates, also rose with
the amount of APCr to 5%, whereas for 10% of the waste a reduction oc-
curred. It is important to note that depending on the application of the
LWA, a high WAC may be beneficial (Quina et al., 2014b). Regarding
the assessment of the environmental impact, the leaching behavior of
LWA revealed that the release of metals such as Pb, Cd, Zn, Cr, Ni and
Cuwill not be significant. In spite of the lowANCof the ceramicmaterial,
their sensitivity to external pHvariationswas not relevant since the pol-
lutants were well immobilized into the glassy ceramic matrix.

Themain outcome of thework is that after a washing pre-treatment
or if the percentage of incorporation is low, APCr may be incorporated
into LWA. While this recycling route did not reveal technical advan-
tages, the environmental gains (in a life cycle perspective)may be of in-
terest. Further investigation is required in this case, namely on a pilot
scale.

3.2. Glass-ceramics

A stabilization process of APCr, based on the use of amorphous silica
waste sources, was proposed by Bontempi and co-workers (Rodella
et al., 2017). Thismethodmainly requires the use of an amorphous silica
source for toxicmetals stabilization. It was originally based on the use of
colloidal silica (Bontempi et al., 2010), but it evolved by substituting this
material with more sustainable silica sources, such as rice husk ash
(Benassi et al. 2016; Bosio et al. 2013) and silica fume (Bontempi,
2017b).

Colloidal silica is a concentrated stable dispersion of dense particles
of amorphous silica. It is used in the form of a gel andmade of a network
of interconnected pores with a silicon dioxide core in which water gets
trapped. It is a commercial material, generally very pure and quite ex-
pensive. Silica fume is a by-product due to the ferro silicon industry. It
is formed by condensation from the vapor phase of silicon oxide. In



Fig. 2. Phases for producing LWA at laboratory scale.
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this material, generally, 85% to 95% is in the form of amorphous silica.
Rice husk ash is the outer shell enclosing the rice grain, and is consid-
ered an agricultural by-product. When it is burnt, it is possible to obtain
rice husk ash containing about 80% (even 90% in the case of proper
combustion) of amorphous silica. As a consequence of their origin,
both silica fume and rice husk ash can be found at low costs. The second
main ingredient for APCr stabilization is another by-product, i.e.flue gas
desulfurisation (FGD) residues. FGD residues are obtained from the pre-
treatment made on coal in combustion plants to reduce the amount of
sulfur. It is then generated by the air pollution control equipment of
coal combustion plants, and contains large amounts of calcium
hydroxide.

Very recently (Benassi et al., 2017) it was shown that, in the stabili-
zation process, FGD residues can be substituted by wood ash obtained,
for example, from the biomass combustion in home stoves. Indeed,
the presence of CaO in these ashes makes wood biomass ash an alterna-
tive source of calcium hydroxide, derived from by-products materials.
This also makes this material available at no cost. Coal fly ash is also
used (even if it is not fundamentalmaterial) in the stabilization process.
Coal fly ash generated during flue gas cleaning at coal power plants is
composed of mullite, quartz, magnetite, hematite and anhydrite and
amorphous phases (Zacco et al., 2014).

The COSMOS technology was developed and optimized to use local
available rawmaterials to treat APCr. It was also shown that it can be ap-
plied to APCr from different geographical origins.

The COSMOS powder obtained is an inert material, as shown by
aquatic toxicological tests (Guarienti et al., 2014, Bilo et al., 2015). The
reactionmechanism involving themetals' stabilization in APCr ismainly
attributed to the amorphous silica reactivity. The amorphous silica
surface is covered by silanol groups, which are responsible for physically
adsorbing water molecules. The adsorption of metal ions seems to take
place on the silica surface and can be explained on the basis of the sur-
face complex formationmodel. In particular, a cation exchange reaction
occurs due to the substitution of protons from silanol groups present on
the amorphous silica surface by themetal ions contained in the solution
(Srivastava et al. 2006). The stabilization of soluble toxic metals present
in APCr can also be explained in terms of carbonation reactions. Carbon-
ation of APCr naturally occurs as a result of contact with atmospheric
carbon dioxide, and is commonly associated with a pH decrease
Fig. 3. Schema of the COSMOSprocess (themainmaterials used for stabilization are amorphous
been produced by using COSMOS.
(Belevi et al., 1992) from 12 to 13 (strongly alkaline) to lower values
(generally 8–10).

In the COSMOS technologies FGD residues, which contain calcium
hydroxide, promote carbonation reactions that seem to have synergic
effects with amorphous silica in the toxic metals entrapment (Bosio
et al., 2014). In addition, carbonation leads to CO2 sequestration, with
high environmental advantages in terms of the CO2 footprint. Structural
analysis of the stabilized COSMOS material showed that it is mainly
composed of calcium carbonates and silicates phases (crystalline and
amorphous). Fig. 3 shows a schema of the COSMOS process, where the
main materials used for stabilization are highlighted. In addition, some
composite materials produced by using COSMOS are also shown. In-
deed, it is interesting to note that the stabilized material obtained is a
glass-ceramics powder which can be used in several applications
(Ponsot et al., 2015; Benassi et al. 2015), namely as a filler of polymeric
matrix (Besco et al., 2013). Actually, COSMOS also contain soluble salts
(mainly NaCl and KCl), originally present in APCr. Therefore, direct
reuse in cement manufacturing is not possible without removal of the
salts in an additional step in filler preparation. Washing of the filler is
possible (Bontempi et al. 2010) and it allows the recovery of almost
pure salts. However, it results in an additional step in the APCr stabiliza-
tion, with a consequent increase in the cost of technology. Polypropyl-
ene composites were synthesized by the addition of different amounts
of COSMOS stabilized material and by making use of different sources
of amorphous silica as a stabilizing agent (colloidal silica, rice husk
ash, and silica fume). The mechanical properties of the composites
were evaluated. The mechanical characteristics of the composites ob-
tained, produced with the same amount of COSMOS stabilized material,
were comparable, suggesting that a slight variation of the COSMOS
composition does not affect the composite mechanical performances.
In addition, the mechanical characteristics of the composites obtained
are very similar to corresponding polypropylene composites produced
by using calcite (a natural resource) as filler.

In Europe, the critical raw material initiative has highlighted the
high European dependence on some raw materials that are imported
from other countries. The possibility to develop new materials, for ex-
ample those obtained from wastes, is a fundamental aspect for
European competitiveness and growth. The use of COSMOS material
in plastics has been proposed also in view of the sustainability of the
silica and calcium hydroxide). This Figure also shows some compositesmaterials that have
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composite obtained when compared to a similar composite produced
with commercial fillers. Indeed, in a very recent work (Bontempi,
2017a) it was demonstrated that if energies and emissions involved in
the synthesis of fillers used for polypropylene manufacturing are con-
sidered and compared, the COSMOS filler can be considered an alterna-
tive to calcite. In addition, this new material is more sustainable than
talc, which is another natural filler often used for synthesis of plastic
composites. Furthermore, Bontempi (2017b) showed that COSMOSma-
terial increases the thermal stability of the polypropylene composite. It
was subsequently proposed to investigate the possibility to employ this
material as a substitute of Sb, a critical raw material used as a fire-
retardant in plastic composites.

3.3. Cement

Cement is themost widely used buildingmaterial in theworld, with
nearly 450 kg of cement being consumed yearly per capita and a growth
rate in consumption of N100% between 2004 and 2014 (Edwards, 2015;
Van Oss, 2015; WBCSD, 2014). Ordinary Portland cement (OPC) and
blended cement as defined in the European Standard EN 197-1 (CEN,
2000) are the most commonly types of cement used. The production
of OPC involves the following main steps: 1) preparation of a material
mixture consisting of mainly limestone, clay, sand, and iron oxides;
2) pre-calcining in the pre-heating system to initiate the dissociation
of calcium carbonate to calcium oxide and carbon dioxide and subse-
quent burning of the material mixture in the cement kiln at a tempera-
ture of up to 1450 °C to produce Portland cement clinker; 3) grinding
and mixing of the cooled Portland cement clinker with small amounts
of calcium sulfate like gypsum or anhydrite, resulting in OPC that con-
tains N95% Portland cement clinker (WBCSD, 2014; Parlikar et al.,
2016). Blended cements are mixtures of Portland cement clinker and
major constituents like coal fly ash, pozzolanic materials, or granulated
blast-furnace slag. Other cement types not covered in the EN 197-1, like
supersulfated or pozzolan-lime cements, contain lower if any amounts
of Portland cement clinker, but therefore other constituents. However,
their relevance in terms of market share is negligible compared to OPC
and cement blends (Müller, 2012). The main environmental issues in
the cement industry are: 1) the large contribution of about 5–8% to
the global man-made CO2 emissions, of which 50% comes from calcina-
tion, 40% from the burning fuel and 10% from electricity consumption
and transportation (WBCSD, 2005; Kim et al., 2016); 2) the consump-
tion of enormous amounts of natural resources like clay and limestone
as well as energy (Madlool et al., 2011; Stafford et al., 2015); and
3) other gaseous emissions from cement production like NOX, organic
compounds, or toxic metals (EIPPCB, 2010).

The presence of Ca-, Si-, Al-, and Fe-bearing phases in APCr/FA
(Astrup, 2008; Quina et al., 2008a; Bogush et al., 2015) shows the
Fig. 4. The main options for APCr/FA u
potential to use these wastes as raw materials in the cement industry,
thereby replacing natural raw materials like limestone, clay, shale, etc.
Lederer et al. (2017a) showed that the scientific interest in the utiliza-
tion of APCr/FA in the cement industry has vastly increased in recent
years. The main options for APCr/FA utilization in the cement industry
are presented in the article at hand, namely 1) production of blended
cement and 2) co-processing of residues in the cement kiln to produce
cement clinker (Fig. 4).

Several researchers have studied the possibility of recycling raw and
untreated APCr/FA as a major constituent to produce blended cement
since some of their properties may positively influence the hydration
behavior of the cement (Rémond et al., 2002; Goh et al., 2003; Shih
et al., 2003; Shi and Kan, 2009; Keppert et al., 2012; Chen et al., 2013;
Kim et al., 2016). Goh et al. (2003) showed that up to 10% of Portland
cement clinker could be replaced by FA from a Singapore MSWI plant
to produce blended cementwith highermortar strength being achieved
than for OPC. Keppert et al. (2012) analyzed the physical and chemical
properties (composition, morphology, hydration behavior) of boiler
FA, electrostatic precipitator FA and bottom ash in comparison to coal
FA, concluding that the MSWI FAs are a suitable major constituent for
blended cements if applied in untreated and raw form. Kim et al.
(2016) used MSWI FA to replace 10%, 20%, and 30% of cement, finding
that all of these blended cements reached the limit values for compres-
sive strength. However, they indicated that FA contained a considerable
amount of metallic aluminium that generated the hydrogen gas causing
volume expansion of cement paste. In order to remove chlorides pres-
ent in the APCr/FA to an acceptable limit, many studies suggest water-
washing or acidic leaching of APCr/FA. Keppert and Polozhiy (2014)
showed that washed FA can be used as 10% Portland cement substitute
with appropriate mechanical properties. Gao et al. (2008) tested differ-
ent cement mortars with a cement substitution by washed MSWI FA
(liquid to solid ratio L/S = 5, residence time t = 30 min) of 10, 20,
and 30%, finding the acceptable substitution rate up to 20% in order to
maintain the strength of the mortars. However, the authors judge the
chlorine content of 1.3% after washing (reduced from 10% before
washing) as too high, particularly if compared to the limit value of
0.1% chloride applied to coal fly ash according to EN 450–1 (DIN,
2012). Hartmann et al. (2015) used washed FA (L/S = 10, t = 24 h)
to replace cement and showed the following removal rates of chlorides:
82% after 1 h, 98% after 2 h, and 99.6% after 24 h. Authors concluded that
30% substitution is appropriate to make mortar reach the compressive
strength limit. However, water-washing pre-treatment can cause a
loss of pozzolanic activity (Keppert et al., 2012) and decreases the
compactive strength (Rémond et al., 2002) of mortars containing
washed MSWI fly ashes. Therefore, mechanochemical treatment
(e.g., dry or wetmilling process) canmodify the APCr/FA characteristics
and induce the pozzolanic reaction in blended cement paste (Chen et al.,
tilization in the cement industry.



532 M.J. Quina et al. / Science of the Total Environment 635 (2018) 526–542
2013). With respect to reducing the content or mobility of toxic ele-
ments and organic pollutants present in APCr/FA, the Danish Environ-
mental Protection Agency DEPA proposed using electrodialytic (ED)
treatment of APCr on a pilot scale in order to reduce the mobility of
toxic elements and salts. The agency further proposed using treated res-
idues as a secondarymaterial for substitution of cement or fillers in con-
crete (DEPA, 2016). Moreover, wet milling of APCr/FA with different
additives (e.g., CaO, ethanol, H3PO4) may lead to the decomposition of
organic pollutants (e.g., PCDD/F) and to the stabilization of metals
(Nomura et al., 2005, 2008; Li et al., 2010; Chen et al., 2013). Moreover,
Gao et al. (2008) proposed addingdithiocarbamic chelate to themortars
in order to avoid the long-term leachability of potentially toxic metals.
Most studies, however, show that the leaching values of contaminants
from blended cement pastes and mortars containing APCr/FA complied
with appropriate standards, but more investigation in the long-term
leaching behavior of potential pollutants is required (Goh et al., 2003;
Shi and Kan, 2009). The Danish EPA is currently conducting a compre-
hensive study of the content, leaching and environmental impact of po-
tentially problematic substances from recycled concrete aggregates
used in construction applications.

Co-processing of wastes such as APCr/FA in cement kilns to substi-
tute parts of the raw meal, which is situated in the waste hierarchy in
between recycling and energy recovery (CEMBUREAU, 2009; WBCSD,
2014), has been suggested as an alternative to landfill disposal for
wastes containing high amounts of Ca-bearing phases, such as Ca(OH)
2, CaO, CaCO3, and CaOHCl present in APCr/FA (Chandler et al., 1997;
Astrup et al., 2005; Quina et al., 2008a, 2008b; Amutha Rani et al.,
2008; Bogush et al., 2015). APCr/FA contain lower carbon-bearing
phases compared to limestone, thus it decreases CO2 emissions, which
is one of the main issues for the cement industry (Guo et al., 2016;
Bogush et al., 2017). At the same time, co-processing of MSWI residues
in the cement kiln leads to the complete destruction of toxic organic
compounds present in these wastes, but only if cement kilns are
adapted to this type of waste co-processing (Lorber et al., 2015). Co-
processing of MSWI FA has been investigated on a laboratory scale in
a number of studies (Shih et al., 2003; Saikia et al., 2007; Pan et al.,
2008; Lam et al., 2010b; Wu et al., 2011). Shih et al. (2003) showed
that using the pre-treated (e.g., magnet-repelled) MSWI ashes of up to
5% of the raw meal is applicable for co-processing. Saikia et al. (2007)
used untreated and washed (L/S = 20) MSWI FA (40–50%) to produce
a cement clinker under 1300–1400 °C, showing that N85% of Cd and
Pb was volatilized during the process. In practice, however, these ele-
ments are incorporated into the cement again by recycling of the ce-
ment kiln filter dust (Lederer et al., 2017b). Lam et al. (2010b)
showed that the addition of up to 8% FA may lead to insufficient CaO
for alite formation.Wu et al. (2011) used untreated FA (15–44%) to pro-
duce clinker at 1150–1300 °C for sulfoaluminate cement, which is a spe-
cial cement type not included in the EN 197-1. Even though amaximum
additional share of 30% of FA is possible, the authors recommend in their
conclusion further investigation of the impact of chloride present in the
FA on the operation of the cement kiln. Guo et al. (2016) used 30%of un-
treated FA to produce non- EN 197-1 conform but CO2-reduced alinate
cement with high strength and durability (shrinking, carbonation,
water permeation, and reinforcement steel corrosion). Most of the
above-mentioned researchers concluded that a proper pre-treatment
would be required to use APCr/FA in co-processing in order to remove
soluble Cl- and S-bearing phases and prevent cement kiln operation
problems (Saikia et al., 2007; Pan et al., 2008; Lam et al., 2010b; Guo
et al., 2016; Bogush et al., 2017). However, most investigations suggest
that the short-term leaching rates of pollutants (e.g., toxic metals) from
the co-processed cement pastes were very low (Lam et al., 2010b; Wu
et al., 2011; Guo et al., 2016). Contrary to that, gaseous emissions during
co-processing are a subject that should receive more attention by re-
searchers (Saikia et al., 2007; Bogush et al., 2017; Lederer et al., 2017).
Since the composition of MSWI ash may not be stable over time (due
to diverse sources of MSW, incineration technologies and gas cleaning
systems), some influence on the cement quality or the emissions from
the cement kiln stack may occur. Therefore, a systematic monitoring
of the APCr/FA composition is required before its application in the ce-
ment industry. The metabolism of toxic elements (e.g., Pb and Zn) pre-
sented in APCr/FA in co-processing is still poorly understood and needs
detailed investigation. The presence of high chloride content in APCr/FA
may affect the product quality and cause technical problems in the ce-
ment kiln (e.g., rapid clogging, corrosion inside the heat exchangers, in-
creasing metals emission, etc.). Therefore, pre-treatment (e.g., water-
washing) is recommended before further application. The quantity of
APCr/FA added should be carefully controlled in order to ensure the pro-
cess safety as well as product quality.

3.4. Recovery of Zn, Cu, Cd, Pb

Volatile toxic metals such as Zn, Pb, Cd and organic substances (e.g.
PCDD/F) are accumulated in FA from MSWI. In Switzerland, acidic fly
ash leaching (FLUWA process depicted in Fig. 5) has been established
since 1997 and offers an effective method for metals separation and re-
covery, as described in detail by Bühler and Schlumberger (2010). The
depleted residue (filter cake) has less impact on the environment and
can be deposited together with BA on a landfill type C or D according
to the Swiss Waste Ordinance (Swiss Confederation, 2016). Alterna-
tively, organic substances remaining in the low-metal content filter
cake (predominantly PCDD/F) can be returned to the incineration pro-
cess for complete thermal destruction.

Nowadays, N60% of FA in Switzerland is treated according to the
FLUWA process, which represents a state-of-the-art technology. Scrub
waters from the wet flue gas cleaning process for extraction of metals
in FA was first used in the 3R process by Vehlow et al. (1990). Within
the FLUWAprocess, FA is most often leached using both acidic and neu-
tral scrub water in a multistage cascade (Fig. 5). Prior to FA leaching,
mercury dissolved in the acidic and neutral scrub water is separated
by a selective ion exchanger. The extractability of metals such as Zn,
Pb, Cu and Cd ismainly dependent on the characteristics of the FA, acid-
ity of the scrub water, L/S ratio, redox potential, temperature and
leaching time. Depending on these parameters, 60–80% Zn, 80–95% Cd
and 50–85% Pb and Cu can be extracted by the FLUWA process
(AWEL, 2013; Weibel 2017). By adding hydrogen peroxide to the
FLUWA process, the redox-sensitive metals (mainly Pb, Cu and Cd) re-
main in solution. In addition, Fe2+ is converted into Fe3+, which precip-
itates as Fe-hydroxide and is accumulated in the remaining filter cake.
After sufficient extraction time, the suspension is separated by vacuum
belt filtration into a metal depleted filter cake and a metalliferous fil-
trate. The FLUWA process provides the basis for extended methods
such as the FLUREC process. This process allows the recovery of high-
purity zinc (Zn N99.995%) from the heavy-metal enriched filtrate, as
described in detail by Schlumberger et al. (2007) and Bühler and
Schlumberger (2010). The FLUREC process was implemented at MSWI
plant Zuchwil, Switzerland in 2012, where about 300 tons of Zn can
be recovered annually (Fig. 6). Thereby Cd, Pb and Cu from the filtrate
of the FLUWA process are separated by reductive separation (cementa-
tion). For this purpose, Zn powder is added to the filtrate as a reducing
agent whereas metals comparatively more noble than Zn are separated
as metallic cement. This cement, with a high Pb load of 50–70%, can be
sent directly to a lead smelterwheremetals are recovered in the Pb pro-
duction process.

A solvent extraction step separates and purifies the remaining Zn se-
lectively from the filtrate by extracting it in a water-insoluble organic
phase. The complexation of Zn is strongly pH dependent and at low
pH (pH 2.7–3), 99.5% of the Zn is extracted by the organic phase. To re-
duce interference in the subsequent Zn electrowinning, other metals
and impurities present in the organic phase are removed in a washing
step. The Zn-loaded organic phase is regenerated using sulfuric acid ob-
tained as by-product from the electrowinning section. There, direct cur-
rent is applied to the resulting high-purity zinc sulfate solution, and



Fig. 5. Basic concept of acidic fly ash leaching (FLUWA).
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special high-grade Zn is recovered on aluminium cathodes. The recycled
Znmetal is sold on themarket. If a directmetal recovery is not possible –
as in the case of the FLUWA process – themetalliferous filtrate has to be
fed to a wastewater treatment plant where metal hydroxide sludge
precipitation is performed. The resulting zinc hydroxide sludge with a
dry mass of 17–35%, depending on the filtration system, is then
exported abroad and metals are recovered in smelting plants.

Until the year 2021, all FA produced in Switzerland must be treated
and metals have to be recovered according to state-of-the-art proce-
dures as prescribed in the Swiss Waste Ordinance. Therefore, the
construction of a central hydroxide sludge treatment plant with
integrated metal recovery – similar to the FLUREC process – is planned
in Switzerland (SwissZinc). A decision on the implementation of a
central processing plant under the leadership of the Association of
Swiss Operators of ThermalWaste Processing Plants (VBSA) is expected
by mid-2018.

3.5. Recovery of rare earth elements and other rare metals

The rare earth elements (REE) represent key-components in many
industrial applications (Hatch, 2012) and their supply, as oxide or
pure metal, derives from the mining and processing of geogenic de-
posits. Nearly 40% of the total world reserves of REE are in China,
which is also the largest producer, with N80% of the globalmine produc-
tion (USGS, 2017). Ore processing and REE production usually imply
strong acid leaching followed by metallothermic refining and requires
a large quantity of water, acids and electricity, thus implying high
costs and production of harmful by-products. The REE demand coupled
with the supply risk associated with China's predominance as REE
producer has pushed the interest in exploring the REE potential from al-
ternative sources. The recent availability of concentration data (at
mg/kg level) on solid residues produced after the treatment of different
types of waste (Morf et al. 2013; Funari et al., 2015 and references
therein) reveals that MSWI solid residues have total REE contents at
100–102 mg/kg level. Despite the low absolute concentrations, sub-
stance flow analysis on selected Italian MSWI plants showed that FA
and BA can be regarded as a low-grade stream of high-tech metals,
with calculated annualflows of tens of kg (Funari et al. 2015) of valuable
metals. The low concentrations in the starting materials make any ex-
traction process borrowed from primary ore mining uneconomic
(Binnemans et al., 2013). However, there are potentially extractable
resources with a total content comparable to low-grade active mines
(Funari et al., 2015).

The bioleaching is a mature hydrometallurgical technology which
relies on microorganisms to solubilize metals. This method has only re-
cently been investigated as a potential route for the valorization of
waste streams, as a pre-treatment method or a means of removing cer-
tain metals. Bioleaching is widely employed commercially for process-
ing low-grade ores as it exploits microorganisms that can produce
mineral or organic acid (as metabolites) and enhances metal solubility
through enzymatic reactions (e.g., pyrite oxidation). An excellent over-
view of suitable microorganisms for metals recovery is provided by
Rawlings (2002). The approach benefits from low energy input, low
capital cost and improvement in the general healthiness of the work-
place compared to classic leaching methods. The bioleaching of Al, Cu,
and Zn from MSWI ashes can be suitable for economic recovery using
fungi, mixed acidophilic bacteria (Lee and Pandey, 2012) and mixed
alkaline bacteria (Ramanathan and Ting, 2016), but there are no



Fig. 6. Process diagram of waste incineration, fly ash leaching (FLUWA) and recovery of recyclable materials (FLUREC).
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bioleaching processes applied on a full-scale. Although data from fungal
and alkaline bioleaching are less encouraging due to substantial
disequilibrium between metal removals, biomass produced, and dura-
tion of the experiment, acid bioleaching using mixtures of acidophile/
extremophile bacteria, seems to be a scalable process. In all these lab
studies, one-step and two-step bioleaching were tested. The one-step
bioleaching is performed where the microorganism is inoculated to-
gether with the ash to be treated in the medium, and microbial growth
and metal leaching occur simultaneously. In two-step bioleaching (or
spentmedium leaching), after themaximumgrowth of themicroorgan-
ism and consequent maximum production of metabolites has occurred,
the suspension is filtered and only the supernatant is used for leaching
(Pandey and Natarajan, 2015). In a recent work (Funari et al., 2017),
the bioleaching behavior of MSWI FA of a wide range of metals was in-
vestigated on the bench scale. The one-step bioleaching process in-
volved a mixed acidophilic culture, where sulfur and iron oxidizing
bacteria are the dominant strains. The procedure employed (acidic cul-
ture medium, 10% pulp density, 150 rpm, 30 °C) yielded in the leachate
solution ~90% Al, Mg, Mn, Zn; ~80% Cu, P, Nd; ~60% Cr, Ga, Ni, Pb; ~50%
Ce, Co; 30% La. Compared to a traditional leaching procedure (H2SO4,
10% pulp density, 150 rpm, 30 °C), this bioleaching process resulted in
satisfactory removals, suggesting a greener alternative to other solvents.
Moreover, the results revealed a low mobility of unvalued elements
such as Ca, Si, Fe, and Ti, selective removals of Co, Cr, Pb and REE, and
low capital costs. While unvalued elements displayed the tendency to
remain (or re-precipitate) in the solid phase as hydroxides and sulfates,
the solubilization of Co, Pb and REE (probably associated to S-Fe-rich
minerals in FA), might be enhanced by Fe3+ produced by iron-
oxidizing bacteria. Alternatively, lanthanides can accumulate on cell
wall or bacteriogenic oxides (Moriwaki and Yamamoto, 2013) and the
selectivity difference to REEmight be explainedby thedirect contact be-
tween microbial biomass and ash sample.

Funari et al. (2016) showed via magnetic methods and chemical
analysis that iron-rich FA and APCr contain the highest REE total
concentration. World-class REE primary deposits indeed occur in sulfur
and iron rich minerals (Kynicky et al., 2012). The application of (high-
field) magnetic separation to obtain a REE-rich separately, which facili-
tates further valorization, can be implemented as a pre-treatment in a
project on an increased scale.

Fig. 7 suggests a strategy to recover REE and other metals from
MSWI FA. The culture supernatant generated in a separate bioreactor
mobilizes metals from FA. After filtration, an improved solid material
is sent to landfill or reused (Funari et al., 2017) and the metal-rich
leaching liquor is further processed for metal recovery by conventional
methods such as fractional crystallization, elution, ion-exchange and
electrowinning. Reusable ion-exchange resins or commercially avail-
able extractants can be successfully applied to extract REE from sulfuric
acid leach solution (Xie et al., 2014). The performance of each method
may vary depending on the chemical composition of the starting FA
and could be limited by the presence of interfering ions. So, further re-
search is needed to minimize interference and maximize metal
recovery.

Two-step bioleaching can be optimized to quickly generate higher
amounts of supernatant prior to the addition of materials to be treated
and the poisoning of microbial biomass, which may occur in a one-
step bioleaching during the adaptation of microorganisms to the
waste substrate. This, in turn, would imply i) acceptable reaction time;
ii) higher waste processing capacity when compared with the one-
step process; iii) the potential increase of temperature in reactor 2
(Fig. 7) that can be different from the microbial growth phase (reactor
1). Moreover, as the bacteria are not in direct contact with the metal-
containing waste, the latter can be more easily recycled or reused as it
is not contaminated by microbial biomass. However, obtaining enough
supernatant to process high waste quantities requires large volumes
and the generation of considerable amounts of (harmless) microbial
biomass. The excess of biomass goes either to the combustion chamber
for complete thermal destruction or in reactor 3 for further bioleaching
(one-step) of the solid residue from reactor 2. A magnetic separation
would provide a better material for bioleaching and subsequent recov-
ery of REE from FA, although further testing is required.



Fig. 7. Basic concept of a bioleaching process for enhanced REE removal and subsequent recovery.
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3.6. Salt recovery

Despite significant amounts of readily soluble salts (Cl, Na, K, and Ca)
in FA and/or APCr, historically, the major objective of the washing pro-
cess has been the removal of the salts prior to further treatment and/
or landfilling rather than its actual recovery (e.g. Chandler et al., 1997;
Hjelmar, 2013). In general, further treatment of the washed residue
such as chemical stabilization using e.g. phosphoric acid and/or carbon
dioxide (Hjelmar et al., 2001; Hjelmar et al., 2006; Gunning et al.,
2012), different complexing additives (e.g. GEODUR additive) or iron
sulfate (Lundtorp et al., 2003) may be necessary to obtain a product
which meets the requirements for acceptance at landfills within the
European Union (EC, 2003).

The wastewater resulting from thewashing of APCr/FA has typically
a high content of salts and low to moderate amounts of toxic metals.
Nevertheless, the wastewater can be treated to reduce the concentra-
tion of metals to an acceptable level by conventional methods (pH
adjustment, TMT-15 addition and filtration). Then, it is possible to
recover predominantly CaCl2 and/or to discharge the salty effluent to a
wastewater treatment plant (WWTP) or a water body (Hjelmar, 2013
and references therein).

HALOSEP® (by Stena Recycling A/S) is a process developed to re-
move/recover chlorine from APCr/FA generated at MSWI equipped
with a “wet” and/or “semi-dry” flue gas cleaning (FGC) system (cf.
Chandler et al. (1997) for additional information), while the leaching
properties of the treated solids comply with the EU landfill acceptance
criteria. Besides the recovery of chlorine, the process allows for up-
concentrating of, especially Zn in the form of a filter cake which can
be processed at Zn-smelters. Finally, since a large part of APCr/FA trans-
forms into recyclable products, the landfilled quantity decreases. More
specifically, HALOSEP® is based on washing/neutralization of the alka-
line APCr/FA (pH N11.5) using acidic scrubber liquid (pH b1) generated
during the FGC at MSWI equipped with a “wet” FGC system. Typically,
the residues from a “wet” system consist of dry FA collected in electro-
static precipitator(s), whichmay sometimes bemixedwith ametal con-
taining sludge from the neutralization of scrubber liquid. In addition,
gypsum is produced as a separate stream from a SOx-removal, while
process wastewater is treated at a WWTP.

Fig. 8 depicts the HALOSEP® process, where FA reacts with the hot
scrubber liquid coming directly from the HCl-scrubber, thereby forming
a salt brine, water, CO2(g) (not shown in figure) and neutralised/
washed FA.

The salt brine is purified by a two-stage precipitation, yielding a salt
product and a metal filter cake. In the end, the treated FA has signifi-
cantly improved leaching properties owing to the removal of salts and
lowered pH, while its mass is reduced compared with the incoming
FA amount (discussed later). APCr generated from a “semi-dry” system
(mixture of FA, neutralization products from scrubber and baghouse fil-
ter ash) can also be treated with HALOSEP®. However, an external sup-
ply of the acidic scrubber liquidmust be ensured since it is not produced
in the “semi-dry” system. Similar to the treatment of FA, the APCr react
with the acidic scrubber liquid while both FA and the surplus lime pres-
ent in the APCr are utilized in the neutralization reaction; outputs from
the process are the same.



Fig. 8. Outline of the HALOSEP® (Stena Recycling A/S) showing main inputs/reactants (indicated bold) and outputs (bold; underlined).
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As shown in Fig. 8, there are four output streams (excluding water
and CO2(g)): treated APCr/FA; salt products; metal filter cake; and an
oversize (N1 mm) fraction. Note that water and CO2(g) generated in
the neutralization reaction account for 5–12% of the overall mass
balance (Table 3).

HALOSEP® treatment reduces the amount of residueswhich need to
be landfilled by ≤40% (FA) and by ≤60% (APCr). Currently, the leaching
of As, Ba, Cd, Cr-tot, Cu, Hg, Mo, Ni, Pb, Sb, Se, Zn, chloride, fluoride,
sulfate, and dissolved organic carbon (DOC) from treated APCr/FA
complies with the European leaching limit values for acceptance at
landfills for hazardous waste while Stena Recycling A/S is working on
improving the leaching of Sb, which would allow for the treated FA to
be accepted at landfills receiving stable, non-reactive hazardous waste
(EC, 2003).

Salt products generated by treatment of FA and APCr correspond to
respectively 25–30% and 42–50% by weight of the incoming solid
(Table 3). Higher amounts of salt product generated during the treat-
ment of the latter residue reflect higher chlorine content (Chandler
et al., 1997). Different salt products can be generated by HALOSEP®
based on available management options: brine (10–15%) – currently
intended for road de-icing (Option A) - and salt-water (Option B). It is
possible to switch between Option A/B without modifying the process
based on the actual demand. In winter periods Option A is better,
while in summer periods Option B (discharge to a WWTP) may be pre-
ferred. Approximately 99% of the dry matter content of the salt product
is composed of a mixture of CaCl2, NaCl, and KCl. In addition, 0.5–1% of
the dry matter content is composed of CaSO4 and MgSO4. The content
Table 3
Theweight distribution of different output/process streams inHALOSEP® achieved during
treatment of FA and/or APCr, respectively.

Outputs (FA) Outputs (APCr)

Treated FA or treated APCr 60–61% 40–48%
Salt product(s) 25–30% 42–50%
Metal filter cake ~3% ~2%
Oversize (N1 mm) fraction ~1% b1%
H2O and CO2(g) 5–8% 8–12%
of toxic metals in the brine for de-icing is significantly below the limit
values for de-icing agents set by CEN TC 337 WG1.

The amount of the metal filter cake generated by HALOSEP® corre-
sponds to approximately 2–3% by dry weight of the incoming APCr/
FA. It is possible (both technically and economically) to wash and dry
the filter cake obtained from the treatment of FA in order to reach a
Zn content of 38–40%, which makes it feasible to send the material for
recovery at zinc smelters. On the other hand, the filter cake generated
by treatment of APCr shows a much lower Zn content (7–10%) and,
consequently, the recycling potential of this fraction is limited from an
economic point of view.

The oversize fraction, corresponding to b1% byweight of the incom-
ing APCr/FA, has a total organic carbon (TOC) N5% and is sent back for
incineration.

Based on a recent report by Stena Recycling A/S for Danish EPA
(Rasmussen, 2015), themost economical solution seems to be a central-
ized HALOSEP® plant built within (or near) an existingMSWI equipped
with a “wet” FGC system that can accept and treat residues from several
MSW incinerators, including those equipped with a “semi-dry” system.
Currently, a demonstration HALOSEP® plant is being built in Copenha-
gen, Denmark. The plant should be operational from 2019.

3.7. Summary

Besides the six case studies mentioned, a number of other processes
to recover secondary raw materials from APCr/FA have been designed
and tested, most of them on a laboratory scale. The six case studies pre-
sented give an overview of current activities in this direction at the
European level. Table 4 summarizes some aspects, properties, require-
ments, but also challenges towards full implementation of the technol-
ogies presented in the case study.

4. Future perspectives of APCr/FA as an anthropogenic resource for
secondary raw materials

The development of alternative APCr/FA treatment technologies is a
response to the discontentedness of contemporary European societies



Table 4
Overview of the characteristics of six case studies for the recovery of secondary raw material from APCr/FA from MSWI.

Case study Inputs Products/raw materials Process wastes Requirements/beneficial
prop.

Technology
readiness

Open questions and
challenges (selection)

Lightweight
aggregates

APCr Lightweight aggregates Off-gas Low content of
pollutants

Lab scale Air pollution, lea-ching
from product, economic
viability

Glass ceramics APCr/FGD Silica and Ca(OH)2 – Low content of
pollutants

Lab scale Leaching from product,
economic viability

Cement APCr/FA Cement Off-gas Low content of
pollutants

Industrial
scale

Air emissions, leaching
from product

Recovery. of Zn,
Cu, Cd, Pb

FA High quality products: SHG Zinc
(99.995%)/metal concentrate
(Pb/Cu/Cd)

Leached FA-residue to landfill
(non-hazardous waste), purified
waste water

Wet flue gas cleaning,
high metal content

Industrial
scale

Economic viability

Recovery of REE FA Metal concentrate Residues to landfill, waste water Wet flue gas cleaning,
high REE content

Lab scale Economic viability

Salt recovery APCr/FA Salt/metal filter cake Residues to land-filling Wet flue gas cleaning,
high metal content

Industrial
scale⁎

Energy demand, economic
viability

⁎ A demonstration plant is under construction in Denmark.
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with the current practice of landfilling. Thus, the technologies presented
in Section 3 not only aim to reduce the hazardousness of APCr/FA, but
also to extract different types of secondary raw materials from this an-
thropogenic resource. This shift in objectives of APCr/FA management
from solely safe disposal towards resource recovery also calls for a revi-
sion of approaches to evaluate APCr/FA management technologies. One
option for evaluating and classifying anthropogenic resources like APCr/
FA and the corresponding technologies for secondary rawmaterial pro-
duction is to follow the procedures as applied in mining primary raw
material deposits from natural resources, which generally follows a
step-wise approach of prospection, exploration, evaluation and classifi-
cation of anthropogenic resources (Lederer et al., 2014). For the evalua-
tion and classification of anthropogenic flow resources like APCr/FA,
first attempts were made by Fellner et al. (2015) by applying the so-
calledMcKelvey box of the USGS. Amore promising approach in this di-
rection, however, is the United Nations Framework Classification for
Fossil Energy and Mineral Reserves and Resources 2009 (UNFC-2009)
Fig. 9. Resource classification accordin
by theUNECE (2010), shown in Fig. 9.Winterstetter et al. (2016), for in-
stance, applied this approach to anthropogenic resources such as old
landfills, obsolete computers andwind turbines. In an upcoming article,
Huber and Fellner (2018) use UNFC-2009 to evaluate and classify the
recovery of metals by means of FLUREC and the utilization in cement
clinker production, both also combined with salt recovery, of a typical
FA from a grate incinerator in Vienna. UNFC-2009 basically consists of
three evaluation and classification criteria, namely geological knowl-
edge (x-axis), project feasibility (y-axis), and socio-economic viability
(z-axis).

4.1. Geological knowledge (x-axis)

Applied to the anthropogenic resource APCr/FA, geological knowl-
edge (x-axis) refers to its physical properties for secondary rawmaterial
production, typically substance contents and mineralogy. The corre-
sponding database, however, has not yet been completely established
g to UNFC-2009 (UNECE, 2010).
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(Fellner et al., 2015). One reason for this is that substance related data
on APCr/FA tends to be collected for the purpose of landfilling (e.g.
leaching contents) rather than for resource recovery (e.g. total con-
tents), thus a lot of data already collected is of little use for the latter
(Lederer et al., 2017c). Another reason is that substance concentrations
and the mineralogy of APCr/FA are not only determined by the compo-
sition of the inputmaterial (MSW), but also by the incineration and APC
technology (Fellner et al., 2015).

4.2. Project feasibility (y-axis)

Project feasibility (y-axis) encompasses a number of factors. An
important factor for APCr/FA is the legal situation. According to present
regulations, raw APCr/FA in cement clinker production would, for
instance, be possible in Austria (where it is not practiced), but to a lesser
extent in Switzerland, where environmental requirements are stricter
(Lederer et al., 2017c). Another important factor is the stage of mining,
which would be the equivalent of the technological readiness
level (TRL) for APCr/FA secondary raw material recovery technologies.
Of the technologies presented, only the utilization of APCr/FA in
cement production (Section 3.3) and the FLUWA/FLUREC processes
(Section 3.4) are practiced on a large scale, the former only in China
and Taiwan, the latter in plants in Switzerland (FLUWA/FLUREC),
Germany and the Czech Republic (FLUWA). All other technologies pre-
sented – apart from the HALOSEP® plant being built in Denmark – only
exist on a pilot or even a laboratory scale.

4.3. Socio-economic viability (z-axis)

Socio-economic viability also consists of many factors, and the most
important are the economic and ecological costs of secondary raw ma-
terial production as both influence the decision making and acceptance
by societies. Notmany studies exist for the first one. Fellner et al. (2015)
investigated the economic viability of the FLUREC process in Europe and
showed that depending on the incineration and APC technology, on the
one hand, and the metal contents in waste, on the other, its application
can be economically viable. The avoidance of landfill tax is another large
driver, whichmeans that policymakers can have great influence on the
economic viability of recovery of secondary raw materials from APCr/
FA. Huang et al. (2017) showed for the case of Taiwan that APCr/FA in
cement production is associatedwith the lowest economic costs if com-
pared to other APCr/FA disposal and recovery techniques, including
landfilling, use in bricks and Zn-recovery in the Waelz process. Despite
these relatively clear results, Huber and Fellner (2018) point out that
an economic evaluation must always be seen from at least two view-
points, namely the private companies' as well as the societies' perspec-
tives. Initial estimations for the HALOSEP process, which will be
published soon, suggest that the costs of this process will be 15–20%
lower than conventional APCr/FA disposal in Denmark. For the other
technologies, no data on the economic viability was found. While the
main reason for that is their comparatively low to medium TRL, it can
also be seen as a call to carry out more research on pilot and larger
scale in this direction. Environmental impacts have been determined
Table 5
Examples of information required for a UNFC-2009 evaluation and classification of APCr/FA an
indirectly relevant, and “-“means not relevant).

Information Relevant for

Waste incinerated Grade/species of raw material, pollutants content
Incinerator technology Grade/species of raw material, pollutants content
APC system Grade/species of raw material, pollutants content, leaching
Environmental laws Use of secondary raw materials prohibited or not; legal req

raw materials; landfilling/export ban of untreated APCr/FA
Raw material markets Market for secondary raw material present or not (e.g. deic

metal concentrate need metal smelters available; presence
Energy availability/costs Processing of APCr/FA (e.g. evaporation of water from salt e
for the utilization of APCr/FA in cement (Huang et al., 2017; Huber
et al., 2017), the metal recovery by FLUREC and FLUWA (Boesch et al.,
2014; Huber et al., 2018) and salt recycling (Johansson, 2017). Except
for the utilization in cement in the case of Taiwan (Huang et al., 2017),
all of these studies find the recovery technologies investigated to be of
lower environmental impact than the disposal options currently prac-
ticed (Boesch et al., 2014; Huber et al., 2018; Johansson, 2017). It is
now difficult to use the results of these studies for a comparison be-
tween the different APCr/FA technologies presented in Section 3 of
this paper. However, another study by Huber et al. (2017) found that
the FLUREC process performs much better in terms of environmental
impact than its utilization in cement clinkers, mainly due to the emis-
sions of Hg during clinker production. In addition to economic and envi-
ronmental considerations, the role of APCr/FA as an anthropogenic
resource can be included as an evaluation criterion in UNFC-2009 as
not all secondary rawmaterials produced have the same strategic rele-
vance for Europe (European Commission, 2017). One example that can
be used to determine the strategic relevance is the contribution of a
given secondary raw material produced from APCr/FA to the overall-
demand of this same raw material; another involves examining to
what extent the secondary rawmaterial production reduces the import
dependency on the primary raw material substituted. Since in the EU-
28, for instance, this import dependency is currently 55% for metals
(Cd, Cu, Pb, Zn) and 3% for minerals (salts; calcites, silicates and clays),
a recovery of metals seems to be of higher relevance than a recovery
of minerals to meet a hypothetical objective of import independency
(EUROSTAT, 2017).

4.4. Information requirements for the evaluation of APCr/FA as anthropo-
genic resource

The discussion of applying UNFC-2009 as an alternative to conven-
tional evaluation and classification approaches in connection with the
production of secondary raw materials from APCr/FA also highlights
one of the weaknesses of this approach, namely the large amount of in-
formation required to perform such evaluation. However, this complex-
ity better reflects the real-world situation beyond solely considering
environmental impacts or the economic cost-benefits of a technology
to produce a secondary raw material from APCr/FA. Table 5 gives
some examples of what information might be required to thoroughly
apply UNFC-2009 to the six case studies presented in Section 3.

From Table 5 it not only becomes clear that the information require-
ments for UNFC-2009 are high, but also that some of the information
very much depends on national or even local contexts. One example is
the utilization of APCr/FA in cement clinker production. Even though
Huber and Fellner (2018) classify this resource use as highly viable
and feasible, their evaluation results would be much different if carried
out in a country-specific evaluation for the case of Austria and neighbor-
ing Switzerland. There are several reasons for this assumption. Themost
important one is probably the fact that the legal requirements for the
use of APCr/FA in cement are higher in Switzerland than in Austria,
resulting in lower project feasibility (y-axis) for cement use in
Switzerland than in Austria. This underlines that the application of
d their relevance for the different evaluation axis (“X”means directly relevant, “O”means

x-axis y-axis z-axis

X O O
X O O

agent available (FLUWA/FLUREC, Halosep) X O O
uirements for production and use of secondary – X O

ing salts only in colder climates; FLUWA/Halosep
of a cement clinker plant)

– O X

xtraction) – O X
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UNFC-2009 requires not only adequate economic, legal and technolog-
ical knowledge, but context-specific local knowledge as well. For this
reason, Lederer et al. (2017b) suggested that the whole process of
evaluation and classification of anthropogenic resources such as APCr/
FA related to the production of secondary raw materials should
preferably be carried out by country experts rather than by external
researchers or consultants.

5. Conclusions

European societies desire better management of APCr/FA, care that
not only provides safe final disposal of this hazardouswaste, but also re-
covers secondary raw materials from this anthropogenic resource. The
article at hand presented six case studies to meet this additional objec-
tive of resource conservation. The first three of them are associatedwith
the manufacturing of products, while the other three are related to the
recovery of metals and salts. For contemporary European societies and
their decision makers, the important question is now how to decide
which management and recovery/recycling technology should be se-
lected for its further development and application. The UNFC-2009
might be a useful evaluation and classification approach that can sup-
port this decision as it provides a multidimensional analysis of wastes
as resources. However, to apply this approach, a lot of information,
some of it highly context-specific, must be collected and processed. As
in the case of the McKelvey-Box of the USGS or UNFC-2009, both of
which were “borrowed” from natural resource extraction, the mining
industry once again provides a good example of how to overcome this
challenge. For theMinerals Yearbook andMinerals Commodity Summa-
ries, the USGS Mineral Resources Program compiles information on
natural resource deposits of metals and minerals all over the world
(USGS, 2017). The information is provided by competent persons who
are country experts that not only have good economic and technical
expertise, but also context-specific knowledge of the legal, socio-
economic and socio-cultural situation in the countries they report
from. Building-up such a network of competent persons or institutes
for the recovery of secondary raw materials from APCr/FA would be
beneficial to make much better use of these anthropogenic resources
and thereby achieving a more circular economy.
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