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Abstract 
 
Topology optimisation is a process that is becoming 
increasingly reliable and necessary in the pursuit of 
highly efficient components comprising of low mass with 
a high structural performance. These components are 
typically mass-produced on a large-scale in automotive 
sectors for instance, where components are usually 
metallic and pressed. The ability to maximise a 
component’s structural characteristics has yielded many 
variations of computational topological solvers over the 
years. Over time many different methodologies have 
been used to generate suitable manufacturable solutions. 
Despite this, a gap between the generation of topology 
optimisation solutions and the creation of ready-to-
manufacture solutions still exists today. This review paper 
outlines existing methods for computational topology 
optimisation and addresses any refinement methods 
used to generate a manufacturable solution, particularly 
focussing on methodologies used in automotive sheet 
metal forming. These methods are scrutinised in regards 
to the level of manual user input needed to create a 
Computer Aided Design (CAD) model representation of 
the manufacturable solution. Suggestions are also made 
to highlight further work to improve these techniques for 
large-scale industry-standard product development. 
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1 Introduction 
 
Computational topology optimisation is growing to be an 
increasingly reliable and necessary tool to improve 
quality and efficiency for development of a vast range of 
engineering components, for example in the 
manufacturing of sheet metal components in the 
automotive industry. Sheet metal structures for instance 
are typically used to create automotive components that 
provide significant structural support under high loads, 
such as bumpers, seat frames and body in white parts 
(SSAB 2017). Particular focus is consequently placed in 
the optimisation of automotive components to produce 
designs that both perform well and are cost-effective. The 
capability to create numerical models to analyse and 
optimise the designs of components can drastically 
reduce development time and allows for multiple loading 
scenarios to be considered simultaneously. Despite 
substantial advances in recent years, a significant gap 
remains between the creation of optimised designs in 
engineering analysis software and ready-to-manufacture 
components. This gap is usually filled with an empirical 
approach to correct any topological issues in the solution 
model such that the design complies with industry 
standard manufacturing processes. This approach can 
often be detrimental to the efficiency of the optimisation 
procedure and may not necessarily yield the most 
optimum manufacturable design. The post-processing 
step can be particularly time-consuming in comparison to 
the analysis and optimisation steps, and is highly 
dependent on the level of skill of the user as well as the 

complexity of the model. Several commercially available 
(and industrially applied) optimisation solvers utilise the 
Variable Density Method (VDM), and are often combined 
with an interpolation scheme to determine load paths and 
optimum designs. Popular algorithms include the Rational 
Approximation of Material Properties (RAMP) scheme 
(Chen 2012), as well as the more commercially available 
Solid Isotropic Material with Penalisation (SIMP) 
interpolation scheme (Christensen and Bastien 2015), 
which creates solutions that redistribute the component’s 
material densities. Consequently, the optimisation 
solution includes intermediate densities which cannot be 
manufactured, and makes the manual clean-up process 
more complicated. For some optimisation solvers it is 
therefore not possible to avoid variable densities and so 
the “issue” must be addressed in the post-processing 
stage. More recent optimisation processes include Level-
Set topology optimisation (Challis 2009; Kumaravel, M. et 
al. 2012; Liu 2015) which creates a binary model of either 
full densities or no density (1s and 0s only) from variable 
density optimisation results. This effectively cleans up the 
“grey” edges of a model, creating clean lines better 
defining structural boundaries. Some methodologies 
however do not use variable density solutions, such as 
evolutionary optimisation, and therefore require their own 
methodology to refine the structure for manufacturing 
(different to that of a VDM solution). Alternative 
optimisation and refinement  methods include 
Isogeometric Analysis using Non-Uniform Rational Basis 
Spline (NURBS) curves, followed by an optimisation and 
refinement step known as Trimmed Surface Analysis 
(TSA) using CAD geometry only in the solution 
generation (Lee et al. 2017; Kang and Sung-Kie 2016). 

Similar methods to TSA include the use of Bézier curves 
instead of B-splines, which can also be used to define cut 
lines but are formulated with different line properties (Lee 
et al. 2012). These methods are further discussed in 
Sections 2 and 3. 

 
When considering the post-processing task of improving 
the manufacturability of an optimised model, it may prove 
difficult to create a set of parameters that work for both 
variable density solutions and binary solutions. This is 
especially true if an automated “clean-up” program is 
considered, in which some existing tools may work well 
for refining binary models but not necessarily for variable 
density models (and vice versa).This is evident in several 
examples, including Liu and Ma (2015), where only 
binary solutions are refined and Yi and Kim (2016), in 
which only VDM solutions can be refined (see Section 3 

for further detail on these methods). Despite this, it is 
evident from several sources, including Yi and Kim 
(2016) and Nana et al. (2016) that progress in the 
development of an automated post-processor which can 
correct geometry issues is being made. In spite of the 
promising development of these automated post-
processing methods, their contribution into real-life 
situations and their suitability in working environments is 
still very limited. For instance, the majority of these 
programs do not produce suitable Finite Element (FE) 
mesh and CAD model solutions. For the limited number 
of unique methods that do, very few address the 
additional problem of generating CAD/FE solutions that 
represent manufacturable components, especially for 
sheet metal components. Recently, Zhang et al (2016) 
attempted to address these sheet metal considerations, 
but somewhat limited its progress by including its results 



within the topology optimisation solver. The inclusion of 
component refinement within a solver can pose issues 
such as not being able to accommodate the different 
solution files mentioned previously. Integration of 
refinement process into the main solver may also 
generate results that might not be optimal, especially if 
post-processing refinement is considered after the solver 
run. From this, it is identified that a significant gap exists 
for component refinement that is separate from the initial 
solver i.e. in its own post-processor. 
 
This review paper aims to outline existing methods for the 
automated clean-up of topology optimisation results and 
identify any contributions towards closing the gap 
between refined geometry and ready-for-manufacture 
designs. Any gaps in methodology will be identified as 
areas for future development. An overview of the 
methodologies covered includes: 

• Outlining existing topology optimisation refinement 
methods 

• Identifying any automation in the production of refined 
topology solution files 

• Consideration of sheet metal manufacturing 
procedures for structural automotive components and 
their implementation in current topology optimisation 
refinement methods. 

Several assumptions will be made for the identification of 
these methods: it is expected that any material properties 
used within examples will relate to linear isotropic and 
linear-elastic material properties due to their popular use 
within standard optimisation solvers. Other material 
properties not commonly used in the development of 
large-scale automotive body components, such as 
layered composites, will not be directly considered due to 
their different material characteristics (Christensen and 
Bastien 2015). Clean-up methods considered in this 
paper will solely focus on load-bearing components made 
from sheet metal. Some examples include B-pillars and 
crash boxes. Despite the common consideration of 
isotropic materials for optimisation processes, it must be 
mentioned that standard optimisation interpolation 
schemes such as the SIMP method can be adapted for 
use with non-isotropic material properties, as shown in 
recent works by Erik Lund, (2011 and 2009), by using 

SIMP methodology for composite layers. Optimisation 
solutions from any suitable test cases (linear static, 
modal, etc.) will be considered, as a focus will be made to 
identify methods that can refine any type of topology 
solution. 
 
The remainder of this paper is divided into three sections: 
Section 2 includes a Literature Review, highlighting the 

previously discussed existing methods and their 
implementation in topology post-processing. This will also 
consider suitable manufacturing methods used in the 
automotive industry and how these methods may be 
utilised within a post-processor. Section 3 indicates a 

more refined overview of Recent Implementations of 
Topology Optimisation & Manufacturability, 
highlighting specific case studies and showcasing 
emerging implementations of these recent ideas. Section 
4 will draw conclusions from the processes described in 
Sections 2 and 3 and indicate gaps for any Further 
Research needed to close the gap between optimisation 
and manufacturability. 
 
 
 

2 Literature Review 
 
This section contains an overview of leading refinement 
methods used for topology optimisation results. Several 
methodologies will be addressed in relation to their 
relevance towards automated post-processing. These 

methods can conveniently be divided into two types of 
processes: ones that use a mostly mathematical basis for 
their methodology (2.1) and those which use a more 
heuristic (self-learning) methodology (2.2). Most 

mathematical solvers are commonly used within 
commercial optimisation software, such as the Variable 
Density Method (2.1.1) whereas some examples of 

heuristic methods such as the Isogeometric Analysis 
(2.2.2) focus on a more iterative approach, refining a 

solution based on the visual placement of the previous 
iteration. Mathematical processes generally follow a clear 
and systematic structure, allowing it to be implemented 
numerically into suitable Finite Element Analysis (FEA) 
software and, in some cases, even spreadsheets. This 
generally makes it “simpler” to prove that a given solution 
is indeed the global optimum, and not simply an arbitrary 
localised solution. This helps to explain why 
mathematical methods are commonly used in many 
commercial FEA software packages and are used to 
formulate optimisation solutions based on material 
densities or compliance. Whereas mathematical 
optimisation algorithms tend to find the most 
mathematically accurate solution, heuristic methods use 
a more “practical” approach. This means they follow a 
more experience-led methodology, in which the program 
“learns” how to generate optimum solutions through an 
iterative procedure. This allows for more practical designs 
to be generated but may also carry some undesirable 
factors such as lack of repeatability and justification 
(other than the “experience” of the algorithm) that a 
global optimum solution is generated. Several variations 
of standard heuristic solvers are used to alleviate these 
commonly faced issues. Meta-heuristic methods are a 
type of heuristic solver that focus on relating its solving 
techniques to specific “natural phenomena” such as the 
theory of evolution (Christensen and Bastien 2015; 
Christensen 2015) or more recently swarm intelligence 
(Kanarachos et al. 2017). These methods are considered 
“learning-based” rather than “experience-based”, and are 
able to generate solutions for a greater variety of 
problems than general heuristic processes. Other 
methodologies include Neural Networks, which are 
designed in a similar manner to biological nervous 
systems and “trained” to reach an optimal solution. They 
tend to work by example and do not follow set 
methodologies as with heuristic and metaheuristic 
process, in which gaps are filled by making calculated 
assumptions (Stergiou and Siganos 2017). Despite these 
potential problematic areas heuristic algorithms are 
widely used due to their ability to produce stable 
structures and avoid issues such as material 
checkerboarding (Section 2.1.1). It is also possible to 

combine heuristic and mathematical methods (see 
Section 2.1.2) in which an iterative learning approach is 

used alongside fundamental mathematical methodology.  
 
It should be noted that the mathematical and heuristic 
optimisation techniques in this paper relate to the usage 
of the techniques within a given refinement procedure. 
This means that the mathematical and heuristic methods 
identified in Sections 2.1 and 2.2, respectively, are all 

initially recognised as mathematical-based methods but 
in terms of when used in an optimisation solver can be 
further categorised into purely mathematical methods 
(Section 2.1) and heuristic, iteration-based methods 
(Section 2.2).  

 
In order to design a truly manufacturable component, a 
number of different methodologies can be adopted. One 
option is the use of manufacturing constraints applied to 
the optimisation, as demonstrated via several examples 
in Section 3.1. These methods, however, mostly focus 

on castings rather than sheet metal manufacturing. 
Another option is to actively control the optimisation so 
that the developed topology can only utilise certain types 



of geometry. (Zhang, Norato et al 2016) is an example of 
this type of approach. Regardless of which method is 
used, it may be beneficial to utilise optimisation-specific 
data, such as element sensitivity numbers, as opposed to 
only considering the final geometrical result. This may 
provide a better datum point for any refinement 
methodology and can help identify methods useful for 
improving designs that utilise specific manufacturing 
methods including sheet metal forming. 
 
Both mathematical and heuristic variations will be 
critiqued for their ability to create refined solutions that 
closely represent a manufacturable model. The focus will 
then be directed towards automotive industry 
manufacturing methods, specifically sheet metal forming, 
identifying the methodologies used to create a model that 
represents a manufacturable solution.  
 

 
2.1. Mathematical Optimisation Approaches 
 
The following subsections identify existing optimisation 
and refinement methodologies that show significant 
inclusion of mathematical operators and matrices used 
within the basis of its solver operations. The methods 
identified within this section are most commonly seen in 
commercial optimisation solvers, to which variants of the 
formulae mentioned are currently being included in new 
emerging optimisation and refinement codes. 
 
2.1.1 Variable Density Method (VDM) and Solid-

Isotropic Material with Penalisation (SIMP) 
 
The Variable Density Method (VDM) is arguably the most 
widespread topology optimisation solver due to its use in 
many commercial FE software packages. This method 
alters each individual element’s density in order of its 
structural importance. In order to derive an optimisation 
solution, it is necessary to interpret structural response 
data using FEA. The FEA process considers three key 
variables: the applied load, F, the displacement of each 
node, U, and the material stiffness, K, which can be 
represented in matrix form: 
       {F} = [K]{U}              (2.1) 

In which the stiffness matrix, [K], is defined by using 

relevant material data from the structure, i.e. Young’s 
Modulus and Poisson’s ratio and calculated locally for 
each element, allowing for a representation of the load 
distribution to be made. The applied structural load will 
allow for the user to “visualise” the distribution of forces 
along a system, which can in turn be viewed in existing 
post-processing software. By inverting the matrix and 
solving for the material stiffness, [K] (assuming all values 
for {F} and {U} are known), the identification of which 

individual elements are most influential to the structural 
performance, or dynamic response, can be determined. 
This information can then be used in the optimisation 
process in which element densities will be redistributed. 
Redistribution can be calculated through computational 
methods, with the most common of methodologies being 
topology optimisation. This process typically removes 
parts of a structure that are not as “efficient” in resisting 
the external  load as other elements, and aims to improve 
component design without compromising on structural 
performance. Structurally important elements are usually 
determined by their compliance (inverse stiffness) in 
which it is preferred that the stiffest structure is created 
from the least material specified by the user. Topology 
optimisation is firstly defined by identifying an objective 
function, that is, a function that provides the overarching 
aim of the re-design. This objective function generally 
takes consideration of either the Young’s Modulus, E, or 
the mass density, ρ. Once the objective function is 

decided from these two options, the user will then identify 
a single (or multiple) design variables. These variables 

are measurable parameters which are controlled by the 
solver in order to achieve the target stated in the 
objective function. Due to the ease of which it can be 
“visualised” by the user, it is very common within various 
software to consider mass density as a design variable, 
by which it is commonly reduced in order to lightweight 
the structure (and consequently lower the number of 
elements). The initial problem attempts to generate a 
solution in a binary format, either eliminating an element 
(represented as zero density) or to keep the element 
(represented as full, i.e. 1, material density). Equation 
2.2 demonstrates the process taken, by which the 

compliance tensor, “Cijkl”, is reduced (stiffness is 
increased):  

                           𝐶𝑖𝑖𝑖𝑖(𝑦) =  𝜌(𝑦)𝐶𝑖𝑖𝑖𝑖0                           (2.2) 

                           Where:  𝜌(𝑦) ∈⌊0, 1⌋ 
𝜌(𝑦) refers to the density of an individual element, 𝑦, 

which is commonly used as a design variable for 
optimisation processes. Furthermore, the subscript, ijkl, 
represents the individual stress tensor (i, j) and strain 

tensor (k, l), in matrix notation, and 𝐶𝑖𝑖𝑖𝑖0  denotes the 

“original” and constant material properties. The 
constitutive tensor is generally identified as a function 
that equates component stresses and strains. The most 
general representation of a constitutive tensor can be that 
for isotropic linear materials and can be represented in 
matrix form. The basic representation of this tensor and 
its relation to material stresses and strains for isotropic 
material behaviour is shown in Equation 2.3: 

                             [𝜀]  =  [𝐶][𝜎]                           (2.3)  

From Equation 2.3, [𝜀] represents the strain tensor and 

[𝜎] is the stress tensor of the isotropic material. These 

matrices can be expanded to show the variables needed 
for their derivation as follows (Wikiversity 2017): 
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           (2.4) 

From Equation 2.4, 𝐸 denotes the Young’s Modulus of 

the material, 𝜐 is the material’s Poisson’s ratio and G is 

the shear modulus of the material, which can be 
calculated by using the relationship as follows: 

                            𝐺 = 𝐸
2(1+𝑣)

                           (2.5) 

This formulation (for binary solutions) is to be performed 
for each element individually. Additional iteration steps 
may also be needed such that this process is repeated, 
however this is subject to the requirements set by the 
user. Equation 2.2 shows that 𝜌(𝑦) for each element can 

take the value of either 0 or 1, indicating that the element 
in question is either kept (1) within the solution or 
removed (0). Assuming linear elastic material properties, 
the two independent variables representing the material 
properties that define the compliance tensor,𝐶𝑖𝑖𝑖𝑖(𝑦), are 

𝐸 and 𝜐, as previously stated. As 𝐸 is the more influential 

of the two parameters many solvers consider 𝜐 to be 

constant, thereby reducing the number of design 
variables to one (per element). In relation to element 
strain energy, Equation 2.6 can be used to represent the 

optimisation problem as a function of density, f(ρ). 
Solving this will generate a number larger than 0 but less 
than or equal to 1: 

                  𝑓(𝜌) = 𝑈(𝜌) =  1
2 ∫({𝜀}𝑇[𝐸(𝜌)]{𝜀})𝑑𝑑         (2.6) 



The function is integrated along the entire volume of the 
component (i.e. all elements in the model). U(ρ) denotes 
the linear strain energy (compliance), and ε represents 
the strain acting on the component. 
 
After identifying the formulation for the material density 
generation, it is necessary to put this into context of the 
previously mentioned objective function for the 
optimisation problem, as well as defining any suitable 
design variables placed on the problem. The general 
definition of structural optimisation is often described as a 
structure that performs at its best and most efficient 
(Christensen and Bastien 2015). So it can be assumed 
that any design is to have its weight minimised to the best 
of its ability whilst at the same time retaining its best 
structural performance. Therefore, on the most basic of 
understandings, the objective function for a general 
structural optimisation process can be expressed as: 

                                        min (𝑓(𝑥))                            (2.7) 

Where 𝑓(𝑥) represents any function, or more specifically, 

the problem to be optimised. The function  𝑓(𝑥) could be 

equal to any value and would usually represent the 
volume or mass of the system. Solutions can converge to 
a variety of suitable answers, though it can be assumed 
that a zero volume solution is not sufficient when 
performing a structural optimisation. This is simply 
because a zero solution is practically non-existent, thus 
its initial structural function is not achieved. To alleviate 
the issue of non-feasible solutions, it is necessary to 
introduce suitable design variables that can limit the 
number of generated solutions. This can therefore 
change the optimisation problem from an “open-ended” 
or “multimodel optimisation” solution to a more discrete 
solution. For example, if a non-zero solution is required 
and any integer below 0 is not feasible, a design 
constraint can be added to the end of Equation 2.7 to 
create Equation 2.8: 

                               min (𝑓(𝑥))|𝑥 > 0                           (2.8) 

Additionally, the optimisation problem stated in Equation 
2.8 can be further constrained by including more design 

variables. These can be applied indirectly (relating to 
another external variable independent of 𝑥 such as 

stresses or displacements) or directly (as identified by 
constraining 𝑥 as shown in Equation 2.8). 

 
 
As indicated in Equation 2.6, any generated solution 

using this topological optimisation method will produce a 
mesh model that consists of full density elements and 
gaps where lower/negligible density elements were 
removed. This is true if the rounding methodology shown 
in Equation 2.2 is applied. It is however important to 

distinguish the change of individual element densities 
(highlighted in Equation 2.2) to the calculation of the 
density for the overall system (Equation 2.6). For the 

overall system, the optimal density is defined in relation 
to global strains and loads. Whereas this may be an 
easy-to-implement solution, e.g. when maximising the 
structural stiffness, several issues may still arise. The 
most common issue is that certain elements may be 
removed in a manner such that the design is not easy to 
manufacture, consisting of holes or disconnected 
sections that would not be easy to replicate in real-life: 
this is known as the checkerboard effect. In the worst 
case scenario the optimised structure consists of 
elements that are still connected by their nodes but not 
attached to elements on their immediate sides, as 
depicted in Figure 1: 

 
 

 
Fig. 1 – An example of material checkerboarding. The left 

and right sections are not suitable for manufacture as the 
elements are not connected by adjacent elements 
(adapted from Designer.mech.yzu.edu.tw 2017) 

In order to reduce the checkerboard effect the allowable 
values of the individual element density 𝜌(𝑦) as defined 
in Equation 2.2 could be relaxed. Allowing intermediate 

values between 0 and 1 would enable the creation of 
continuous structures, reducing the checkerboard effect. 
This effectively takes the example shown in Figure 1 –

known as a “Binary Solution” – and creates a “Variable 
Density Solution”. This can be achieved through the use 
of the SIMP interpolation scheme. This method allows 
intermediate densities, but attempts to “guide” each 
element towards the desired 0-1 density by penalising 
intermediate density values. This creates a model with 
elements that are not all in a binary format, but instead 
generates elements with intermediate densities that are 
relatively close to the 0-1 representation. This level of 
relaxation can be manually altered and is dependent on 
user preference and experience. In this case, Equation 
2.2, in its relaxed form, will now become Equation 2.9 

                      𝐶𝑖𝑖𝑖𝑖(𝑦) =  𝜌(𝑦)𝑝𝐶𝑖𝑖𝑖𝑖0                       (2.9) 

Where: p ≥ 1 ᴧ 𝜌(𝑦) ∈|0: 1|     …. 

Typically, SIMP interpolation schemes are used to 
minimise mass or minimise compliance (maximise 
stiffness). The latter can be defined by considering the 
following formulation: 

     min 𝑐(𝜌) =  𝑈𝑇𝐾𝐾 =  ∑ 𝐸(𝜌𝑖)𝑢𝑖𝑇𝑘0𝑢𝑖𝑛
𝑖=1       (2.10) 

From which k and u represent local element stiffness and 
displacement matrices, and the notation T refers to the 
transpose of those matrices (Sigmund 2001). This 
formulation is subject to several criteria, such as that the 
material density must be greater than zero and less than 
1 of the initial density. This is further explained through 
the inclusion of an “optimality criteria”, in which material 
densities are defined by conforming to the following: 

𝜌𝑖𝑛𝑛𝑛 �
max(0,𝜌𝑖 − 𝑚)         𝑖𝑖 𝜌𝑖𝐵𝑖

𝜂 ≤ max (0,𝜌𝑖 − 𝑚)   
min(0,𝜌𝑖 + 𝑚)          𝑖𝑖 𝜌𝑖𝐵𝑖

𝜂 ≤ min (1,𝜌𝑖 + 𝑚)
𝜌𝑖𝐵𝑖

𝜂                                          𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒
(2.11) 

In which m is a moving limit set for the change in density, 
η is a damping coefficient (=1/2) and B is an optimality 

condition that is separately formulated. 
 
The penalisation factor p in Equation 2.9 can be 
adjusted for each optimisation task. An example of how p 

influences element stiffness on a scale of 0-1 is illustrated 
in Figure 2. 

 
Fig. 2 - Influence of Penalisation Factor on Density 

Relaxation (Christensen and Bastien 2015) 



As shown, by increasing the penalisation factor, p, the 
more likely the density solution will “force” the solution 
towards either 0 or 1, thus limiting (but not necessarily 
preventing) densities close to 0.5 from being generated. 
By using a penalisation factor of 1 however, the solution 
is not relaxed and will not be directed towards a specific 
extreme. It should be of interest that, as indicated in 
Figure 2, when p increases, the slope defined will 

become much steeper. This could potentially lead to 
model instabilities due to that any slight variation in 
material density, 𝜌(𝑦), can drastically change the 

computed stiffness (Christensen and Bastien 2015). 
 

As previously defined, it is assumed that the general 
relationship between stress and strain for linear elastic 
and isotropic materials is represented by Hooke’s law; i.e. 
the deformation of an element is directly proportional to 
the load applied to it. Based on Equation 2.6 it is also 

assumed that the Young’s Modulus and strain of the 
material are the only variables to be considered in the 
initial topology solution generation. Despite this linear 
relationship of stress and strain, several external factors 
such as component stiffness are not explicitly accounted 
for. Artificial (geometrical) stiffness may be an issue 
which can occur when an element with negligible 
(material) stiffness is still present in the model 
(Christensen and Bastien 2015). As the VDM SIMP 

methodology does not delete elements, the otherwise 
present negligible density element will still impose its own 
constraints on the component, thus generating additional 
structural stiffness on neighbouring elements. This issue 
is not accounted for in the otherwise linear Hooke’s Law 
relationship and may show differing material stress 
recordings from the actual real-life values. This is 
particularly true when additional refinement stages are 
involved that require referring back to stress values, such 
as in optimisation processes that require multiple 
iterations of the VDM solver (see Section 3.3) (Kang and 

Youn 2016). As most of the stiffness influence in the 
element is controlled by its material properties, the 
induced stiffness due to geometry constraints may only 
be small in comparison. Nonetheless it should be aware 
to the user that these discrepancies do exist when using 
this methodology (Christensen and Bastien 2015). 
 
2.1.2 Evolutionary Optimisation Methods 
 
Evolutionary optimisation methods are a group of 
optimisation procedures that draw inspiration from 
nature-inspired methods such as the theory of evolution. 
These methods are often coupled with FEA processes, 
such as those mentioned in Section 2.1.1, and follow a 

more heuristic approach to generating a solution (that 
being a more “practical”, learning-led approach as 
opposed to a purely analytical method). This combination 
of learning-led and analytical approaches can be 
described as a meta-heuristic methodology, with the 
fundamental FEA process being used alongside nature-
inspired methods (Christensen and Bastien 2015). Key 
differences from this and the standard SIMP methodology 
is that evolutionary optimisation does not consider the 
use of variable density element solutions, meaning that a 
binary solution file is created with no intermediate 
densities. A solution is obtained by removing a controlled 
quantity of elements from the FEA model per iteration 
from the design domain, removing elements deemed 
insufficient from the model in stages (Tanskanen 2002). 
Several variations of Evolutionary Structural Optimisation 
(ESO) methods exist, but for the purposes of this 
document the more commonly used and studied 
methods, ESO, Additive ESO (AESO) and Bi-directional 
ESO (BESO) will be discussed in this paper. These 
methods may also be seen as a type of heuristic method, 
with some processes being described as meta-heuristic 
as they are based on the theory of evolution; removing or 

adding elements based on the principle “survival of the 
fittest”. It should be noted that most evolutionary methods 
identify a specific threshold at which elements are 
removed during the iterative process. This is to reduce 
the likelihood of instabilities occurring if too many 
elements are removed in a single iteration. These and 
are generally small ratios such as 1/10

6
 of the initial 

structural volume (Tanskanen 2002). The underlying 
methodology in these solvers, however, still relies on a 
mostly mathematical procedure in the form of an FE 
analysis step, defining structural performance and 
removing elements deemed “unnecessary” for its load 
case. 
 
The general ESO methodology revolves around a similar 
process to that of the Variable Density Method, in which 
optimisation results are informed by FEA results of the 
structure. A key difference would be that the FEA step is 
performed for every iteration. The process firstly consists 
of the declaration of an FE model, followed by the 
definition of a rejection ratio, RR, and a performance 
index, PI. A rejection ratio is a defined criterion for how 
many insufficient elements will be removed per iteration, 
and can be dependent on several criteria such as 
element stresses or strains. As mentioned in Section 
2.1.1, there will be no artificial stiffness generated in any 

solution files as ESO only uses binary solutions. Issues 
may still arise as binary models may encounter 
component checkerboarding as previously discussed 
(Figure 1). Issues that can arise from the use of ESO 

include the uncertainty of model stability once an element 
is deleted. As the model is slowly optimised during the 
iterative process, there is no method of retrieving lost 
elements once they have been removed. This could 
cause some solutions to converge to unusable designs. 
This issue has however been addressed through several 
methods, one of which being BESO. 
 
An alternative methodology to that of ESO is known as 
Additive Evolutionary Structural Optimisation (AESO), 
which follows the same principle to that of standard ESO 
but instead starts with an empty design space and adds 
elements into that space (as opposed to starting with a 
full model and reducing it). Both ESO and AESO follow 
similar procedures and also encounter similar issues 
when forming a structural solution. BESO attempts to 
alleviate the main limitation of ESO and AESO, where the 
process is limited as to what can be changed during 
iterations, due to them working with “non-complete” 
structures. This includes making three main 
considerations to correct this issue, including a filtering 
scheme, an improved sensitivity analysis and, from its 
namesake, a new method that involves either removing 
or adding elements throughout the iterative process. 
BESO utilises the methodologies from both ESO and 
AESO, by both adding and removing elements over the 
iterative process (Xie 1998). Figure 3 illustrates the main 

BESO algorithm, with the inclusion of these new steps: 

 
Fig. 3 – Bidirectional Evolutionary Structural Optimisation 

(BESO) Algorithm (Christensen and Bastien 2015) 



The improved filtering scheme and sensitivity analysis 
aim to determine the influence the individual FE elements 
have on the main objective function. In relation to an 
individual element, 𝑥, the new objective function for the 
sensitivity analysis can be defined as shown in Equation 
2.12: 

      𝛥𝛥(𝑥) =  lim𝑛→𝛥∞ ∑ (𝐸𝑖𝑒 −  𝐸𝑖−1𝑒 ) =  −𝐸𝑛𝑒𝑛
𝑖=1            (2.12) 

From Equation 2.12, 𝐸 represents the strain energy and 

𝑒 identifies that this strain energy is in relation to a 

specific, single element. 𝑖 denotes the interval placed on 

the design displacement and 𝑛 identifies the total number 

of intervals for the design displacement. From this, it can 
be stated that 𝐸𝑛𝑒 is the total strain energy of the removed 
element, 𝑦 - as denoted in Equation 2.2). It can also be 

noted from this equation that the decrease of total 
external work from the removal of one element is equal to 
the total strain energy of the element in its final deformed 
state and is not influenced by the size of displacement 
intervals (Huang and Xie 2008). Furthermore, Huang and 
Xie (2008) also defined the sensitivity of the individual 
element within the structure as: 

                                        𝛼𝑖 =  𝐸𝑛𝑖                           (2.13) 

The process by which element sensitivities are 
considered within the BESO formulation is known as the 
“hill-climb” method or the “steepest descent” algorithm. 
This allows elements to be removed or added in 
accordance to their calculated sensitivity value, with the 
higher numbers causing elements to be added and lower 
values correlating to their removal (Huang and Xie 2008). 
 

The second updated parameter for BESO is that of a new 
filtering scheme. This process can be defined by firstly 
identifying a sensitivity number for the optimised 
component as follows: 

                              𝛼𝑖 =  
∑ 𝜔�𝑟𝑖𝑖�𝛼𝑗𝑁
𝑗=1
∑ 𝜔�𝑟𝑖𝑖�𝑁
𝑗=1

         (2.14) 

From this, N can be described as the total number of 

elements in the entire mesh, and 𝜔(𝑟𝑖𝑖) represents a 

weighting function defined through Equation 2.15: 
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From Equation 2.15, rmn represents the distance 
between the centres of two adjacent elements labelled m 
and n and indicates that there is a degree of 

neighbourhood influence when adding or removing 
individual elements. This procedure acts as a sensitivity 
filter which can serve two main purposes. Firstly, the 
formula will allow for the generation of a global sensitivity 
value, allowing for this data to be extracted from the 
design domain. Secondly, the consideration of 
neighbouring element locations will be correlated to any 
component checkerboarding and attempt to manipulate 
values in order to avoid this (Huang and Xie 2008). 
 

Whereas BESO promises better result quality than that of 
ESO/AESO formulation, several other issues are also 
present. These predominantly consist of the increase in 
computational cost due to the algorithm needing to 
perform an FE analysis for every iteration step. Although 
this is also the case for VDM-SIMP based optimisation, 
the significant difference is that the stiffness matrix needs 
to be recreated for ESO/BESO because elements have 
been removed from and/or added to the structure. 
Assuming implicit FEA this also means that the new 

stiffness matrix needs to be re-inverted for each iteration 
of the optimisation, which is generally a very CPU and 
memory intensive task (Christensen and Bastien 2015) 
(Huang and Xie 2008). Additionally, despite being 
generalised as a mostly mathematical procedure, both 
ESO and BESO can be classed as heuristic solvers. This 
in turn can reduce the accuracy of the optimised solution, 
and is deliberated by some sources that no detailed proof 
of accuracy is established in the “optimised” (Rozvany 
2007). 
 
 

2.2. Heuristic Optimisation Approaches 
 
The following subsections identify existing optimisation 
methodologies that, unlike the previously mentioned 
methods, are more commonly seen used in heuristic-
based optimisation or model refinement solvers. It should 
be noted that all methodologies identified in Sections 2.1 
and 2.2 hold significant mathematical basis, though it can 

be argued that the methods identified in this section show 
greater usage in heuristic-based solvers. This can be 
identified through recent papers such as an example by 
Kang and Youn (2016), to which isogeometric analysis 
techniques are updated using an iterative process to 
achieve a more refined structure. Further details of this 
paper’s methodologies are explained in Section 3.3. 

Therefore, it can be assumed that whereas no direct 
mentions of iterative loops or specific common heuristic 
methodologies may be mentioned within these 
subsections, the mathematical bases described will 
highlight methods commonly used in heuristic solvers 
and refinement post-processing. 
 
2.2.1 Level Set Method for Topology Optimisation 
 
The level set method (LSM) is an image recognition 
technique that is used to track geometries using grids 
and shapes as reference points. It has also been adapted 
for the refinement of optimisation results, in which holes 
and shape features can be identified within a topology 
optimisation program. The process includes the creation 
of a plane (original front) that cuts across a section of a 
component, with geometrical features identified for the 
cut section. The method was originally developed by 
Stanley Osher and James Sethian (1988) as an image 
recognition technique for geometric components but has 
more recently been integrated into topology optimisation 
solvers, such as by Challis (2009). Level set methods are 
designed to solve models that are geometrically mapped 
through several methods, being either traditional FEA 
density meshes, conforming meshes (only the material 
domain being discretised) or boundary based grids (a 
uniform grid with local boundaries enforced around 
edges) (van Dijk et al. 2012). The level set method’s 
ability to identify geometric features of components has 
been used to define edges of variable density FEA 
models, removing any greyscale elements around holes 
and borders. These borders are defined using a level set 
function, φ, with the following properties: 

  φ (x,t) > 0 for x ∈ Ω 

  φ (x,t) < 0 for x ∉ Ω                       (2.16) 

  φ (x,t) = 0 for x ∈ ∂Ω = Γ(t) 

Equation 2.16 identifies the open region, Ω, which is 

defined as the area outside of the physical component 
space, i.e. outside the boundary layer of the component. 
x and t refer to the position and time, respectively, of the 

open region, Ω, when it is subject to a velocity field, 𝑣. 
This means that the values for x and t will change when 
Ω moves up or down the contours of the object in 
question, in which the 2D boundary layer will change due 
to its different position along the object (Osher and 
Fedkiw 2001). The level set function defines a border, 
with locations inside or outside of the border being 



represented as positive or negative values, respectively. 
A border is defined as a set of pixels (elements) that are 
represented by the value 0. This is also known as the 
zero level set of the curve, Γ, which will be updated with 

each iteration of the solver (Osher and Fedkiw 2001). 
The level set equation is represented in Equation 2.17, 

in which it states that the boundaries are re-defined along 

with the velocity field, 𝑣. This velocity field is used to 

describe a variety of functions for the normal motion of 
the level set plane, φ along the surface, including its 
curvature and normal direction. Whereas Equation 2.16 

identifies the requirements of the boundaries in a static 
state, it is desired that this function is manipulated to 
consider the evolution of this plane when it moves along 
the normal of the surface over time (see Figure 4). 
Knowing from Equation 2.16 that φ=0 for all situations on 
the boundary surface, this relation (Equation 2.17) can 
then be integrated using the chain rule (Equation 2.18): 

 
Fig. 4 – Propagating circle (bounding layer) moving 

normal along a cone: (a) and (b) illustrate the level set 
plane and cone, respectively; (c) and (d) illustrate a larger 

bounding layer for motion, 𝑣 over time, t (adapted from 

Sethian (1994)) 

            𝜙(𝑥(𝑡), 𝑡) = 0           (2.17) 

When integrating Equation 2.17 using the chain rule, the 

statement becomes: 

               𝜙𝑡 +  𝛻𝛻(𝑥(𝑡), 𝑡)𝑥′(𝑡) = 0           (2.18) 

As previously mentioned, the normal velocity of the 

moving plane is represented by 𝑣. Knowing that the 

change in distance over time is represented in Equation 
2.18 as 𝑥′(𝑡), derivation of the updated level set evolution 
formulation can be attained as shown in Equation 2.19: 

         
𝛿𝜙
𝛿𝛿

= 𝑣|𝛻𝜙|                            (2.19) 

From Equation 2.19,  
𝛿𝜙
𝛿𝛿

 identifies the change of the 

level set plane over a set time, 𝑣 is the velocity of the 

level set plane in the normal direction and |𝛻𝛻|represents 

the modulus of change in position of the level set plane 
(Sethian 1994). 
 
Recent developments of the level set method can also be 
implemented into topology solvers, such as a process 
known as the Relaxed Level Set which allows for the 
creation of holes instead of only identifying them 
(Sigmund and Maute 2013). The level set method has 
more recently been implemented into topology 
optimisation solvers, acting as an additional mesh 
refinement step at the end of each iteration process. In 
most instances, the solver follows a main iteration loop 
pertaining to the topology optimisation, and is followed by 
a design update stage relating to the level set 
methodology. An example of this implementation can be 
found in the works of Challis, V. J. (2009), in which a 129 
line code is generated for a level set topology 
optimisation solver. This code is based on the 99-line 

Matlab code by Sigmund, with several modifications to 
include the level set refinement step (Sigmund 2001). 
 
Even though level set topology optimisation is proven to 
refine optimisation results by generating more discernible 
component boundaries, its implementation into key 
automotive component generation seems relatively 
ambiguous. For instance, the refinement process may 
create a binary model but does not consider 
manufacturing methods such that an optimised solution 
can be derived with no additional manual corrections. 
This indicates that level set topology optimisation is an 
important tool for removing manual user input in 
component post-processing but does not include all 
requirements to make the system fully autonomous. 
 
2.2.2 Isogeometric Analysis (IGA) with Trimmed 

Surface Analysis (TSA) 
 
Isogeometric Analysis (IGA) is a newly developed 
method used as an alternative to conventional FE 
procedures. It attempts to create an analytical solution 
without the need to create a mesh as with “conventional” 
FE solvers. Instead, NURBS curves are used to 
represent the model in the analysis process. 
 
A NURBS curve (Non-Uniform Rational Basis-Spline) is a 
commonly used computational method to mathematically 
represent a curved line or surface in an environment 
using computer graphics software. These curved lines 
are commonly referred to as splines, and are 
mathematically formulated with definitions of certain 
geometrical characteristics, Splines are generally 
categorised into degrees of 1, 2, 3 or 5, which can 
represent lines, circles, and higher degrees of free-form 
lines, respectively. NURBS curves may also be referred 
to by their order number, which is the value of the degree 
of the curve plus one (rhino3d 2017). NURBS curves 
consist of line components that are controlled using a 
series of pointers, known as control points, which are 
positioned either side of the curve. These control points 
“pull” the curve towards their location, thus creating a 
curved line representation. The user can also manually 
influence desired sections of the curve by simply moving 
any of the control points. This highlights the fact that the 
control points work on a local coordinate basis, allowing 
the user to change single points without greatly 
influencing a change to the entire curve. An example of 
the generation of a NURBS curve is shown in Figure 5. 

 
Fig. 5 – Generation of a NURBS curve line, with points 

representing “control points” (adapted from wikipedia.org 
2017) 

Formulation of the creation of a NURBS curve in 3D 
geometrical space and n number of control points is 
defined in Equation 2.20. Here, it is assumed that the 

control points and corresponding weighting values 
increase by order of 1 in integers up to the nth

 value (P1, 
P2…Pn for control points and w1, w2…wn for 
corresponding weights). 

  𝐶(𝑡) =  ∑ 𝑁𝑖(𝑡)𝑤𝑖𝑃𝑖𝑛
𝑖=1
∑ 𝑁𝑖(𝑡)𝑤𝑖
𝑛
𝑖=1

           (2.20) 

From Equation 2.20, Ni(t) is the b-spline function for the 

ith iteration. The degree of the curve is m, and 
consequently its order is k=m+1. The number of knots in 
the structure is defined as n+k: t1…tn+k. If all of the 
corresponding weighting factors are equal, they can be 
cancelled out of this equation, with the mathematical 



  
                (a)                                                            (b) 
Fig. 6 – Control points and knots (a) before h-refinement and (b) after h-refinement – note the increase in control points and 

knots (adapted from Lovadina et al. (2017)) 
 

  
                 (a)                                                                                                (b) 
Fig. 7 - Control points and knots (a) before p-refinement and (b) after p-refinement – note the increase in control points but 

same number of knots (mesh size) (adapted from Lovadina et al. (2017)) 
 

representation of the NURBS curve simplifying to that in 
Equation 2.21 (Math.stackexchange.com 2017): 

  𝐶(𝑡) =  ∑ 𝑁𝑖(𝑡)𝑃𝑖𝑛
𝑖=1           (2.21) 

After NURBS curves have been used to generate clearly 
defined geometrical lines, they can  be used to generate 
NURBS surfaces, which in turn can be used to define 2 
and 3-dimensional components. These NURBS 
generated components will then be used to accurately 
represent a component or system as a CAD model. This 
model can subsequently be used for IGA to analyse the 
structure. Unlike conventional FE methodology, the CAD 
model will be used for the structural analysis instead of 
generating a mesh to replace the CAD model. A mesh 
will however still be used for the analysis in which a grid 
will be “projected” over the existing CAD, with no 
distortions made to the original geometry. After defining 
an initial mesh to grid the CAD surfaces, a set of three 
refinement methods can be used on the mesh to improve 
the accuracy of the later-to-be-performed analysis. The 
methods are known as the h, p and k-methods and 
involve adjusting several aspects of the NURBS 
geometry, such as the number of control points or the 
number of knots (points that define where a line connects 
with another). These mesh refinement methods aim to 
improve the result approximation by more accurately 
representing geometry. h-refinement focusses on altering 
the “mesh” of the geometrical NURBS spline. This is 
achieved by increasing the number of knots (and 
therefore control points) of each individual curve. This in 
turn allows for greater geometry approximation by 
providing a greater level of freedom to edit and adjust 
knot positions, making the contours more clearly defined. 
p-refinement uses a different technique than that of h-
refinement, in that it does not change the number of 
knots on the NURBS curve, leaving the design with the 
same mesh size. Adjustment is then focussed on 
enlarging the approximation space by increasing the 
number of control points on each individual node. This 
provides the design with a greater ability to adjust the 
geometrical position of the knots but does not increase 
computational cost as much as h-refinement, due to no 
additional knots being created (therefore no increase in 
mesh size). An appreciation of h and p refinement in 
visual terms can be seen in Figures 6 and 7. 

 

k-refinement is another methodology that can improve 
the quality of the geometrical NURBS structure. It utilises 
a relationship between the number of knots in a curve 
and the order of the curve, and ensures that this ratio is 
kept when either variable is altered. It can be assumed 
for all NURBS curves that when there is a curve of order 
p, the derivatives that can be defined from this function 
are of the order p-1. When the order of the curve is 

increased, this ratio is preserved for all situations. For 
instance, if the order is increased by a factor of q and a 
unique knot value is provided, the number of possible 
derivatives will always be treated as q-1 of the order 

number (Hughes et al. 2005). This methodology can 
constitute to the derivation of higher order partial 
differential equations that can be used to create smoother 
curve representations. This leads to the definition of 
collocation methods that can be performed when only 
utilising the IGA process (Auricchio et al. 2010, 2012). 
 
By generating a usable refined CAD surface, the main 
IGA process is then performed. This process runs in a 
very similar manner to the VDM procedure (Section 
2.1.1), in that it runs a finite element analysis on the 

structure to determine stresses, strains, modal 
frequencies and more. The key difference between these 
two methods is that the IGA uses the CAD structure with 
a uniform parametric grid instead of the standard FEA 
mesh used in VDM.  
 
After generating a computational analysis using IGA, an 
optimisation of the geometry can be performed. This may 
for example be achieved using a methodology known as 
Trimmed Surface Analysis (TSA). The method initially 
proposed by Kang and Youn (2016) promotes the idea of 
removing parts of a surface over each iteration, updating 
and removing material based on where the least stressed 
areas of the model are. This is achieved by using the 
data from the IGA stress analysis, in which a NURBS 
surface is generated using the formulae showcased in 
Equations 2.20 and 2.21. This surface is created using 

the stress data from the IGA and creates a “cut” 
line/surface that lies over the original CAD. The new cut 
surface is positioned where the least stressed sections 
are, prompting for these areas to be “cut” and removed. 
These two surfaces are then read together and from this 
both a physical domain (CAD model representation) and 



a parametric domain (flat 2D surface of cut shape with no 
curvatures to the surface) are generated. Using only the 
flat parametric surface, a grid is placed over the flat 
geometry in the same manner to that of the previously 
outlined IGA (Kang and Youn 2016). Visual 
representation of this process is shown in Figure 8: 

 
Fig. 8 – a) IGA NURBS surface b) TSA cut lines added c) 

New cut surface and d) parametric grid representation of 
new surface (adapted from Kang and Youn (2016)) 

 
Initial consideration of a method that does not utilise a 
mesh in a conventional FE sense raises concerns 
relating to the overall accuracy of the method. 
Conventional meshing procedures will require the 
generation of elements with minimal distortion to prevent 
instabilities in relation to the stiffness matrix derivation. 
Additionally, based on the limited amount of published 
material in this field of research it is not known whether or 
not obtaining the analysis results from IGA are 
computationally less expensive than those obtained using 
conventional FEA. The ability for this method to generate 
a solution for specific manufacturing processes is also 
ambiguous, as there is currently no discernible link 
between this new methodology and its ability to improve 
designs in, for instance, the automotive industry. Instead, 
it can be shown that IGA highlights a relationship 
between CAD solution creation and its link to FEA 
solution files. Particularly, it identifies the manipulation of 
CAD geometry such that it can perform in a similar 
manner (potentially with better accuracy) to that of 
standard finite element mesh results. 
 
2.2.3 Bézier Curves 
 
Bézier curves are another variation of geometric curve 
generation that can be used to create CAD models 
suitable for topology optimisation. They can be 
considered as a counterpart to NURBS curves in that 
they both have the same general concept of 
computational line and subsequent surface generation. 
The primary difference between the two types of curves 
is found within the methodology used to create them. 
Bézier curves consider the use of linear interpolation to 
define a curve or surface, meaning that several “lines” 
are generated along two crossing axis which collectively 
represent a curve (see Figure 9 for clarification). It can 

therefore be established that the curve lies inside the 
original set of control points and do not act in the same 
pulling manner as with NURBS curves and surfaces 
(courseware.deadcodersociety.org 2017). 
 
Bézier curves are generally identified by their order 
(degree) number, n, which is defined as a curve that has 
n+1 control points in which to define it, the generation of 

a Bézier curve can be formulated as displayed in 
Equation 2.22: 

              𝑃(𝑢) =  ∑ 𝑃𝑖𝐵𝑖 ,𝑛(𝑢)𝑛
𝑖=0     0 ≤ 𝑢 ≤ 1         (2.22) 

𝑃(𝑢) refers to any point on the curve, with 𝑃𝑖 representing 

a control point. 𝐵𝑖  is known as the Bernstein polynomial 

and is defined as the basis, or blending, function for the 
curve as follows: 

                        𝐵𝑖,𝑛(𝑢) = 𝐶(𝑛, 𝑖)𝑢𝑖(1 − 𝑈)−𝑖           (2.23)  

Where 𝐶(𝑛, 𝑖) is the binomial coefficient: 

                   𝐶(𝑛, 𝑖) =  𝑛!
𝑖!(𝑛−𝑖)!

           (2.24) 

In which 𝑖 is an integer outcome from an 𝑛 degree order 

curve. By using the method of binomial expansion, the 
equation is then defined as an expanded equation as 
shown: 

          𝑃(𝑢) =  𝑃0(1 − 𝑢)𝑛 + 𝑃1𝐶(𝑛, 1)𝑢(1 − 𝑢)𝑛−1  +
          + 𝑃2𝐶(𝑛, 2)𝑢(1 − 𝑢)𝑛−2 +…                              (2.25) 

    … + 𝑃𝑛−1𝐶(𝑛,𝑛 − 1)𝑢𝑛−1(1 − 𝑢) + 𝑃𝑛𝑢𝑛  

where 0 ≤ 𝑢 ≤ 1 

By the definition of the expanded Equation 2.25, it is 

understood that the linear interpolation occurs about the 
two end control points. This can be further proven by 
substituting the limits for u (0 and 1) into the equation. It 
is important to note that only the first and last control 
points lie on the curve itself: the other control points 
“guide” the shape, derivatives and order of the curve. 
Additionally, the curve is always tangent to the first and 
last control points. Because of this, the curve shape 
tends to “follow” this pattern (see Figure 9). Control 

points can be manually adjusted by applying a multiplying 
factor to the control point in question. This value can be 
adjusted by the user manually; when the curve is pulled 
closer towards the updated control point, the greater the 
multiplying factor is (Zeid and Sivasubramanian 2010). 
 
Surfaces can also be generated in a different manner 
than that of NURBS surfaces, with an enclosed Bézier 
curve forming what is known as a “bounding box”, which 
can then be integrated into a suitable programming “loop” 
creating the surface (Deadcodersociety.org 2017). 
 
Despite Bézier curves being widely used within computer 
graphics and modelling for several years, their 
implementation in topology optimisation methods has 
only very recently been considered. Examples of recently 
proposed methodologies work in a similar manner to 
those indicated in the previously mentioned Isogeometric 
Analysis (Section 2.2.2), where the CAD model takes 

priority to any FE mesh used. A paper by (Lee et al. 
2012) proposes a methodology involving simultaneously 
updating the CAD geometry and FE mesh, with 
topological changes applied to the CAD model first and 
foremost. Lee et al. (2012) also follows with a case study 
which utilises the method for optimising the topology of 
an automotive metal casting die. The process of updating 
the CAD and later the FEA mesh is continued throughout 
each iteration process until convergence. The results 
obtained from this indicate an improvement in design 
function, with structures created using the new die having 
a significantly lower “Maximum Damage Value” (stress 
value which is obtained when visible cracks appear in the 
structure). From this, the newly optimised die is able to 
generate extruded designs that do not exceed this 
maximum damage value, unlike its previous non-
optimised solution in which components did not pass this 
criterion. 
 



 
Fig. 9 – Bézier Curve Generation using Linear Interpolation (adapted from Nana et al. (2016)) 

 
Several limitations exist with the use of Bézier curves that 
can limit its usage when compared to the aforementioned 
NURBS curves. This is predominantly due to how the 
curves are generated, in which there is a significant lack 
of freedom to control individual local coordinates in 
comparison to NURBS curves. The use of linear 
interpolation means that the modification of one control 
node will likely influence the surrounding connected 
nodes and curves, thus changing the overall structure 
drastically. By inciting a multiplying factor when changing 
control point positions, the entire curve will be drawn 
towards this point, thus changing the position of the 
interpolated curve. This influence on the entire curve can 
be alleviated by either using higher order curves (see 
Equation 2.22 for reference), or by using alternative 

curve representation methods such as NURBS curves. 
Increasing the number of control nodes used for the 
surface can also be considered, but in turn this would 
make the design more computationally expensive than 
that of an equivalent NURBS curves model 
(Deadcodersociety.org 2017). 
 
 

2.3 Overview of Manufacturing Methods in 
the Automotive Industry 

 
When attempting to bridge the gap between topology 
optimisation results and the creation of a manufacturable 
solution, it is important to consider the effects certain 
manufacturing processes have on component 
performance and topology. This section will outline 
several manufacturing methods commonly used in the 
automotive industry and identify their influence on the 
development and understanding of generating 
manufacturable optimisation solutions. It should also be 
noted that in order to limit the scope of manufacturing 
processes to review, the focus of research, as mentioned 
in Section 1, is to identify methods relatable to load-

bearing components, most of which are sheet metal 
components located in the main Body in White (BiW) 
structure. 
 

2.3.1 Manufacturing Procedures in the Automotive 
Industry 

 

Several manufacturing methods exist for the 
development of automotive components, with several 
processes being commonly used for a variety of 
components. As component optimisation usually holds a 
high focus to the structural performance of a vehicle, the 
development of the main vehicle structure (commonly 
manufactured from steel and aluminium materials (Omar, 
2013)) will be mentioned within this paper. Table 1 

identifies the most common practices used for the 
manufacture of automotive components that are part of 
the structural body. From Table 1, it is identified that only 

two of the identified manufacturing processes relate to 
the development of components that directly relate to an 
automotive vehicle’s structural performance, namely 
metal forming and welding/joining. The former holds a 

variety of sub-processes that are used to create a large 
proportion of the structural composition of a vehicle. A 
focus should initially be taken to the development of 
optimisation post-processing that can work for individual 
components rather than full systems (as is the focus with 
welding methods). It can also be argued that sheet metal 
manufacturing methods are underrepresented in topology 
optimisation post-processing considerations (see Section 
3.1). Due to this, the remainder of this document will 

prioritise focus towards these sheet metal forming 
methods. Table 2 thus presents an overview of common 

sheet metal procedures used to develop external 
automotive parts, with considerations of their possible 
implementation into a post-processor (PP) being 
identified. Table 1 also indicates emerging manufacturing 

methods that could potentially be used for automotive 
components. Additive Layer Manufacturing (ALM), also 
widely known as 3D-printing, is an example of one such 
emerging method, and can be used to generate very 
complex component geometry which would otherwise be 
difficult (or even impossible) to produce using standard 
methods. This process is however very time consuming 
and not currently suited for large-scale automotive 
processes. Nonetheless, despite the initial focus of this 
paper, emerging and transferrable manufacturing 
methods should not be overlooked. 
 
2.3.2 Implementation in Topology Optimisation 

Techniques 
 
Recent journal papers have proposed alternative 
topology methods to that of standard mathematical 
optimisation approaches. These methods, unlike those 
identified in Sections 2.1 and 2.2, focus on improving 

designs for manufacturability, with specific manufacturing 
methods being considered within the topology 
formulation. The following examples outline their 
processes and identify any outlying limitations: 
 
The paper by Zegard (2015), titled, “Bridging topology 
optimisation and additive manufacturing” identifies a new 
method for combining SIMP methodology with post-
processing procedures to generate feasible additively 
manufactured structures. It is stated that a greater variety 
of optimised design structures can be created from 
additive manufacturing and that it initiates a leap forward 
in designing suitable structures for medical and 
automotive sectors. The ability to generate topological 
solutions from a single structure using one main 
manufacturing process proves to be more efficient than 
standard manufacturing methods. Processes other than 
additive manufacturing may involve the use of multiple 
manufacturing tools such as lathes, milling machines etc. 
and would constitute to larger material waste than that of 
a method that only adds the material when necessary. 
Additive structures also allow for the user to generate 
more complex structures that would otherwise be unable 
to be manufactured if produced through other available 
processes. Figure 10 illustrates these differences in the 

formation of a final manufactured product. 



Table 1 – Overview of General Manufacturing Processes used within the Automotive Industry 

Manufacturing 
Process General Process Potential Applications Comments 

Metal Injection 
Moulding (Casting) 

Uses powder metal heated and 
compressed into a mould to create solid 

components 
 (GKN 2013). 

Interior vehicle components 
including the engine block, wheels 

and carburettor  
(The Metal Casting 2017). 

Automotive components created 
using this method are typically not 

structurally-related and do not 
consist of any external body panels. 

Sheet Metal 
Forming 

Bending/shaping of sheet metal to form 
components  

(Groover, 2011). 

Typically used for external 
automotive body panels and 

structural body. 

Used for creating components 
involved with automotive structural 

performance (see Table 2). 

Welding/Joining 

The coalescing of two metal components 
by use of heat, pressure, and in some 

instances a filler material (Groover 
2011). 

Used to weld sheet metal 
components together, such as in 
external automotive body panels  

(Devarasiddappa 2014). 

Used to fuse already manufactured 
sheet metal components. Higher 

importance should be made to the 
generation of individual components, 
especially in an optimisation sense. 

Machining 

Use of high powered tools such as 
drills/lathes to cut and shape metal into 

its desired structure. Designs are 
generally drawn using computer 

software  
(ThomasNet 2017). 

Creation of precisely cut 
components such as valves, 

pistons, headlight housings and 
aluminium wheels  

(Cam-Machine 2015). 

Typically not used for structural 
components or other space 
frame/chassis components. 

Metal Additive 
Manufacturing (3D 

Printing) 

Uses a specially designed printing 
machine that forms layers of heated 

powdered metal to create a 3D 
component  

(Metal-AM 2017). 

Generation of cylinder heads, 
intake manifolds, and air vents 

(Deloitte University Press 2014). 

Process may be suitable for 
developing components that would 
otherwise be casted but shows little 
incentive for creating sheet metal 

components due to practicality when 
compared to traditional methods. 

 
Table 2 – Overview of Sheet Metal Manufacturing Processes for External Automotive Components 

Process Process Overview Practicality of Method Consideration in PP 

Sheet Metal 
Stamping 

Collective term which outlines the process of 
deforming of cold sheet metal using a die. Three 

variations of this process include cutting (Shearing, 
Blanking and Punching), folding (Bending) and 

stretching. 

Most common process of 
automotive part generation. Finish 
quality is generally smooth but can 
invoke thickness changes where 

deformations (bends etc.) are 
present. 

Suitable for sheet components 
with thicknesses ranging from 0.1-

6.5mm  consideration of 
thickness parameters may be 

needed to identify these 
tolerances 

(Omar 2013). 

Shearing, 
Blanking 

and 
Punching 

Shearing - cutting of sheet metal components 
using power (squaring) shears 

 
Blanking and Punching – Cuts a shape by 

removing material from the sheet metal 
(Groover 2011) 

 

Used in large-scale vehicle 
manufacturing. Mostly concerns 
feature fitting (e.g. hole creation) 
to which casting methods will be 

used for the initial shape 
generation. 

Tolerancing is required for all three 
methods to improve geometrical 
accuracy as material shearing 
creates small fractures which 

reshapes sections of components. 
 

Bending 

Working sheet metal to create a curve along a 
neutral axis. Generally performed with punches 
which apply a force to a sheet resting on a die 

(Groover 2011) 

Very common process in 
automotive manufacturing Useful 

method to create bends in a 
component without the need for 

casting. 

The sheet metal used will stretch 
and compress about the bending 

axis, leading to structural 
performance changes. 

Drawing 

Creation of concave/enclosed parts by pressing 
sheet metal into a die cavity. Used for forming 
cup/box shaped parts and is achieved through 

using a concave part (die) to rest the material, a 
blankholder to secure the sheet metal and a punch 

to press and extrude the material 
(Groover 2011). 

Commonly used in automotive 
industry. This process will cause 
the pressed object’s thickness to 

decrease after it is pressed 
(Groover 2011), resulting in 

structural performance changes 

Thickness tolerances should be 
adhered to due to the stretching 

and pressing. Thickness changes 
may also result in changes to 

structural performance. 

 

 
Fig. 10 – a) Additive Layer Manufacturing (ALM) truss 

component formed as one solid piece vs b) Truss 
component manufactured from individual machined parts 

welded together 

Several limitations are still present in this methodology 
despite the gap between topology optimisation and 
manufacturable components being reduced by this 
technique. The first issue to consider is that a manual 
post-processing step is still needed to correct geometry 
before it can be manufactured. Post-processing steps 
would involve the user manually changing the result 
geometry of the FE optimised solution such that it can be 
manufacturable. Issues such as disconnected elements 

will also need to be addressed. Additionally, the efficiency 
of additive manufacturing is still poor when compared to 
other large-scale industrial methods. Until this bottleneck 
is removed, the feasibility to use this process for large-
scale development, especially in automotive sectors, is 
very limited. 
 
Liu and Ma (2015) discuss the inclusion of machine 
feature cutting for level set topology optimisation in the 
paper titled, “3D level-set topology optimisation: a 
machining feature-based approach”. This paper proposes 
the use of heuristic methods in the form of a level set 
optimisation process, whilst also running a shape 
optimisation to refine the design. The initial process 
involves the generation of an FE optimisation solution 
using topology level set optimisation. This utilises a 
SIMP-based approach with level set refinement 
processes performed at the end of every iteration. The 
process uses what is known as a Hamilton-Jacobi 
formulation, which allows for the FE geometry to split and 



combine over the iteration process, thus updating the 
level set function (Sigmund and Maute 2013). In order to 
include the level set function into the optimisation 
procedure, two functions, known as the Heaviside 
function (2.26) and Dirac delta function (2.27), are 

defined as follows: 

                            𝐻(𝜙) = 1,        𝜙 ≥ 0 (2.26) 
                                    𝐻(𝜙) = 0, 𝜙 < 0 

                              𝛿(𝜙) =  𝛿𝛿(𝜙)
𝛿𝛿

                             (2.27) 

Equations 2.26 and 2.27 can then be interpreted in 

relation to the open front, or the area outside of the 
physical component space, 𝛺: 

                           𝛺 =  �𝑋�𝐻�𝜙(𝑋)� = 1�                    (2.28)  
 

                           𝛿𝛿 =  �𝑋��𝛿(𝑋)� > 0�                     (2.29) 
 
Equations 2.28 and 2.29 can then be formulated into a 

Hamilton-Jacobi format such that it can determine the 
propagating speed of the boundary, i.e. the rate at which 
the boundary updates per iteration. The Hamilton-Jacobi 
format is show in Equation 2.30: 

                               𝛿𝛿(𝑋)
𝛿𝛿

=  𝑉𝑛|∇𝜙(𝑋)|                        (2.30) 

𝑉𝑛 references the boundary speed in the normal direction 

to the geometry, to which 𝑛 is defined as follows: 

                                𝑛 =  − ∇𝜙(𝑋)
|∇𝜙(𝑋)|

                         (2.31) 

This boundary speed is calculated within the optimisation 
formulation and is updated for every iteration, thus 
updating the boundary (Liu and Ma 2015). 
 
This process further includes the incorporation of a 
“feature-fitting library”, which identifies specific 
geometrical features in the topological design and 
replaces them with a set of pre-existing CAD designs with 
machining feature finishes. Whereas this method closes 
a significant gap between optimised designs and 
manufacturability, it is significantly limited by the small 
number of feature fitting methods included within the 
library. This would mean that unless the library is 
significantly expanded, the types of solutions will be 
limited to a small variation of machining features. As 
metal forming techniques are more commonly used for 
external vehicle components, it may be more suitable to 
favour these over machining methods. Furthermore, the 
optimisation process considers the use of an integrated 
SIMP solver with a level set heuristic methodology. It may 
be suitable to separate the mathematical topological 
processes from the refinement steps such that they can 
be tailored towards a variety of manufacturing 
methodologies. This understanding is discussed and 
justified further in Section 4. 

2.3.3 Representation of Manufacturing Constraints 
In order to generate manufacturing-ready models from 
optimisation files, it is important to outline suitable 
manufacturing constraints that can be used to refine a 
topological structure. Identification of measurements and 
tolerances that are used in existing processes will provide 
a better understanding into the limitations of model 
predication and in turn aid in the development of future 
post-processing algorithms. As outlined in Section 2.3.2, 

a significant level of focus for this review will be on 
automotive manufacturing methods, to which the 
consideration of metal forming methods will take initial 
priority. As identified in Section 1, the reasoning for the 

emphasis on sheet metal formed components is due to 
this paper’s focus on refining optimised automotive 

components used in crash and load-bearing functions. 
From this, the following information identifies potential 
parameters that could be included within either a 
mathematical or heuristic post-processor: 
 
Material Specifications and Machine Tolerances 
 
The first set of constraints will concern sheet metal 
component manufacturing properties and tolerances. As 
mentioned in Section 2.3.1, metal forming methods for 

automotive sheet metal components are the most 
prominent and favoured manufacturing process used. 
Most external automotive panels are made from steel and 
aluminium due to their low cost and ease to form and 
weld into larger structures (whilst maintaining high 
structural stiffness). Commonly used steel grades include 
J2329 grades 1 to 5, which can be cold or hot-rolled. 
Popular aluminium grades typically come from the 2000, 
5000, 6000 and 7000 series, with the 2000 series 
producing a higher stiffness, thus being more commonly 
used than the other grades (Omar 2013).  
 
When considering the metal forming techniques 
mentioned in Section 2.3.1, certain dimensional 

restrictions will be involved due to the limitations 
presented in standard metal forming dies. Many of the 
necessary parameters are quantifiable and can 
potentially be easily implemented into a post-processor 
that can refine a model for these manufacturing 
considerations. Table 3 outlines a selection of tool and 

die limitations for aluminium components when punching 
and drawing sheet metal (Omar 2013): 
 

Table 3 – Die and Punch Specifications for Aluminium 

Components (adapted from Omar (2013)) 
Drawing design method Quantified Value 

Punch Radius 4 x tpanel – 12 x tpanel 
Die Radius 4 x tpanel – 12 x tpanel 

Draw Bead Depth 6 x tpanel – 8 x tpanel 

Draw Bead Radius 5 x tpanel – 7 x tpanel 

First Draw 1.1 x tpanel 

Second Draw 1.1 x tpanel – 1.5 x tpanel 

Third or Subsequent Draw 1 x tpanel – 1.2 x tpanel 

tpanel defines the thickness of the aluminium sheet before 

the drawing or punching methods are performed. For the 
case of multiple drawing methods (second/third draw) the 
thickness will be that of the material before this additional 
draw is performed. It is assumed that the ratios defined in 
Table 3 are sufficient requirements to prevent issues 

such as large thickness changes or any unwanted 
material distributions (i.e. no structural performance 
changes that are not directly related to the methods 
mentioned). More information related to these defined 
thickness ratios are described into further detail in the 
European Aluminium Automotive Manual (European-
aluminium.eu 2017). 

Considerations to bending angles can include the 
maximum allowable bending angle in the sheet material. 
This can be extracted (and implemented into suitable 
software) by calculating the allowable strain using the 
formula shown in Equation 2.32: 

                𝜀 =  𝑅− 𝑅𝑛𝑛𝑛𝑛
𝑅𝑛𝑛𝑛𝑛

                          (2.32) 

Where 𝑅 is the radius of the bend, and 𝑅𝑛𝑛𝑛𝑛 is the 
radius on the neutral axis (see Figure 11). Further details 

can also highlight suitable machinable thicknesses for 
sheet metal components, with Omar (2013) stating that 
workable thicknesses should range between 0.1-6.5mm. 



 
Fig. 11 – Locations of bending radius, 𝑅, and indication 

of material thickness, 𝑇, for a formed metal component 

(adapted from Kalpakjian and Schmid (2008)) 

Forming Limit Diagram (FLD) and Material Property 
Considerations 
 
A Forming Limit Diagram is a tool used to predict the 
material behaviour and failure criteria for the forming of 
sheet metals and provides a graphical interpretation of 
the stresses and strains that act on the component. The 
FLD allows for the identification of whether a component 
will fail or remain safe by relating to strain data induced 
on the component due to stretching. A typical setup to 
record sheet metal strains due to deformation include 
marking a metal sheet with circles, identifying locations 
for which strain measurements are to be taken. The 
material is then stretched across a die and is subjected to 
a specified load or bend shape. When the metal is 
stretched, the circles are deformed into an elliptical 
shape. The change in length in the major axis (direction 
of stretching) and minor axis (90 degrees to the direction 
of stretching) is then recorded and graphically 
represented in a Keeler-Goodwin diagram (nptel.ac.in 
2017). The basic design of this diagram is illustrated in 
Figure 12, in which major and minor strains are plotted. 

This highlights a relationship between major and minor 
strains, by which a “line” can be drawn to determine a 
typical “safe zone” for deformation and predict its failure: 

 
Fig. 12 – Keeler-Goodwin Forming Limit Diagram for a 

sheet metal component (adapted from Researchgate.net 
2017) 

The “safe zone” for deformations lies below the 
shear/necking/fracture limit line. Visual representations of 
the changes made to the marked circle on the sheet are 
also displayed, highlighting the physical material changes 
in necking and stretching terms. Several aspects are 
used to influence the position of the safe zone along the 
diagram, with material composition, thickness variations 
and strain hardening values all influencing the feasibility 
of a structurally stable component (nptel.ac.in 2017). 
 

The use of FLD should ideally be considered when 
refining topology optimised models in order to ensure the 
feasibility of a given structure. This process could be 
considered within a topology solver itself, but can also be 
utilised within the refinement steps to correct any 
topology in a more localised manner. Currently, this 
process has not been implemented into topology solvers 
or post-processing steps but may be seen as a 
necessary inclusion to improve model accuracy. 

Bending Angles 
 
The overall estimation of the allowable sheet metal radii 
before material thinning occurs can be formulated, and 
identified in Equation 2.33 (european-aluminium.eu 

2017): 

               𝑅 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖  =  ℎ
2𝑛

             (2.33) 

In which ℎ represents the height of the bend section 

above its original position and 𝑛 relates to the material’s 

hardness coefficient, for which the following coefficients 
apply within automotive components: 

Table 4 – Hardness coefficients for common materials 

(adapted from Callister and William (2005)) 

Material Hardness Coefficient, n 
Low-Carbon Steel 0.21 

4340 Steel Alloy 0.12 

304 Stainless Steel 0.43 

2024 Aluminium Alloy 0.17 

 
Springback 
 
Material springback is another process not seen in 
commercial optimisation solvers or post-processors and 
occurs after the bending process, in which the initially 
created bend will “pull” itself towards its original 
undeformed shape, thus reducing the degree of the initial 
angle. Implementation of the springback factor, 𝐾𝑠 is 
shown in Equation 2.34: 

          𝐾𝑆 =  𝛼𝑓
𝛼𝑖

=  
�2𝑅𝑖𝑡 �+1

�
2𝑅𝑓
𝑡 �+1

           (2.34) 

Where 𝛼𝑓 and 𝛼𝑖 represent the current springback angle 

and the original angle, respectively, 𝑅𝑓 and 𝑅𝑖  represent 

the current and original radius of the bend and 𝑡 is the 

unchanged thickness of the metal sheet. When 𝐾𝑆 = 1, it 

is considered that there is no springback acting on the 
material. It is also known that springback is less severe in 
aluminium and austenitic stainless steel, with greater 
springback in steels that have a much greater hardness 
value (Kalpakjian and Schmid 2008). It would therefore 
be an important consideration to record material 
information when measuring this effect. It is shown that 
the main consideration for the determination of both 
springback and bending angles relate to specific 
thickness and radii parameters of the material before 
deformation. As this process is also absent from current 
commercial software, future implementation of this 
process should be considered.  
 
Possible Application in Mathematical and Heuristic 
Methods 

 
The previously mentioned constraints can be included 
within combinations of existing mathematical solvers and 
emerging heuristic solvers. Mathematical attempts to 
constrain geometry can be found within existing solvers 
that utilise SIMP methodology. Several existing software 
tools can, for example, identify and set thickness 
constraints for components, identifying specific 
characteristics such as beam and wall thicknesses. The 
ability to transfer this definition of thickness criteria to a 
post-processor can be seen as very beneficial for 
ensuring thicknesses are attained throughout the clean-
up process. Additional topological features that can 
potentially be implemented to close the gap in 
optimisation and manufacturability can be the use of 
“Minimum Member Size”, MINDIM, and “Maximum 
Member Size”, MAXDIM, functions, which are used within 
programs for certain mesh pre-processors. MINDIM is a 
function that controls the smallest dimension of a 



topological structure and aims to reduce the level of 
checkerboarding present in a VDM topological solution. 
This is achieved by setting suitable parameters that 
penalise the generation of small members of a given 
threshold value and also reduces the number of 
intermediate elements, creating a more “binary” solution. 
MAXDIM, as its namesake, controls the maximum 
dimension size of members within a topological structure. 
This desires to create a structure that has much smaller 
detailed members, to which it is required that the 
MAXDIM value is at least six times the length of the 
average element size. This method thus performs better 
when using a much finer mesh. This consideration can 
potentially be transferred into a proposed post-processor 
to control the number of holes generated within a 
topological structure (Altair University 2015).  
 
Several heuristic methods such as the level-set method 
(Section 2.2.1) can also be considered when defining 

manufacturing considerations. Identification of discernible 
borders and feature shapes can ensure that the definition 
of bend angles and holes becomes more regimented. 
This can then make the process of defining maximum 
bend angles, for instance, much easier.  
 
Furthermore, certain existing software extensions present 
in some pre-processors can be integrated into a 
proposed solution methodology to consider certain 
manufacturing features. For instance, specific 
optimisation solvers can account for design features such 
as extrusions, stampings, mouldings, as well as other 
commonly used manufacturing methods. These 
processes are however not all fully automated, with some 
functions requiring further manual corrections 
(Altairhyperworks.com 2017). These tools are also 
designed to consider only one type of manufacturing 
feature at a time, nonetheless it could be suggested that 
some of these processes can be integrated within a 
combined solver in the future. 
 
 

2.4. Refinement Process Review 
 
The previously described optimisation and refinement 
processes from Section 2.2 outline several current and 

emerging methods seen in optimisation solvers. These 
prominent refinement methods can be classified as 
processes that are currently used within existing 
commercial software and those that utilise new 
algorithms personalised towards solving particular 
manufacturing problems. Table 5 presents an overview 

of these contrasting methods and their feasibility in 
generating a suitable refined optimisation model, whilst 
also considering available compatibility with sheet metal 
forming and thickness detections. It can be deduced that 
even though refinement steps have been vastly improved 
with the creation of these new methods, they do not 
consider specific manufacturing features for sheet metals 
(the exception being the inclusion of certain add-ons for 
specific commercial software for the pre-processing of 
SIMP models). 

 

Other existing and emerging methodologies for topology 

optimisation refinement should be considered for the 

future development and improvement of generating 

manufacturable designs. Recent methods, as indicated in 

Section 2.2, include Isogeometric analysis, which 

considers using CAD geometry in the initial analysis 

stage as opposed to a traditional mesh, thus creating a 

smoother optimised result. More recently, focus has been 

drawn towards the development of unique optimisation 

algorithms suited to solve specific tasks, such as those 

relating to manufacturing considerations, as well as 

considering other areas such as multi-objective 

optimisation (USACM 2017). Automation of optimisation 

processes is also a vastly emerging consideration, with 

many unique solvers being developed that combine 

traditional optimisation methods with refinement 

processes for certain situations. Examples include works 

by Yi and Kim (2016) for defining holes using shape 

optimisation, Zegard and Paulino (2015) who integrate 

optimisation with additive manufacturing and Liu & Ma 

(2015) who remove several post-processing steps by 

replacing results with pre-existing designs (see Table 6, 
Section 3.1, for full list). An appreciation of these solvers 

is shown in Table 5. In accordance to this understanding, 

it can be determined that despite the variety of emerging 

topology methods, significant manual input is still needed 

to generate a manufacturable solution. Emerging 

methodologies are thus aiming to address this issue. 

 

Consideration of Practical Automotive Problems 
 
Defining the most desirable optimisation methodology 
can be highly important when optimising sheet metal 
components. Structurally important components, such as 
those used to construct the body in white (BiW) of a 
vehicle, are mostly made from sheet metals. Examples 
include the construction of an automotive B-pillar or even 
a side impact beam, with aluminium being the choice 
material for most commercial vehicles (see Section 
2.3.1). During manufacturing, these components are 

exposed to stress and strain, e.g. from a stamping 
process as mentioned in Section 2.3.3. The component 

may contain holes or other cut sections, for which a 
detailed set of optimisation constraints are needed. Holes 
and cut features will need to account for bolts and fixture 
placements, ensuring that the refined design can still 
interact with the surrounding components as originally 
intended. These considerations can be made by 
implementing the processes mentioned in Section 2, as 

well as identifying specific geometrical modification 
processes that can aim to generate smoother holes and 
bend angles. Identification of currently available methods 
are shown in detail, within Section 3. 

 

 
3 Recent Implementations of Topology 
Optimisation & Manufacturability 
 
Recent methods have shown an increase in interest for 
optimisation refinement and integrated post-processing 
and topology optimisation solvers. This section highlights 
specific literature and methodologies used in relation to 
automation in post-processing and the refinement of 
topology optimisation results. Key papers will be 
identified to indicate an understanding as to how some of 
the methods identified in Section 2 have been adapted to 

real-world applications:  
 

3.1 Summary of Relevant and Recent Papers 
 
Several journal papers address issues regarding the 
development of a manufacturing-focussed automated 
post-processor. The following identified papers, shown in 
Table 6, were scrutinised based on relevance to key 

considerations. These include the level of automation 
involved in the proposed methods, how they incorporate 
manufacturing considerations, the types of files that are 
able to be refined and whether a separate dedicated 
post-processing step is used after the main optimisation. 

 



Table 5 – Critical Review of Existing Topology Refinement Processes 

Optimisation 
Refinement 

Method 
Description Refinement Strategy Pros Cons 

Possible 
use with 
Forming 

Methods? 

Considers 
Material 

Thickness? 

VDM SIMP 

Redistributes material 
densities in relation to 
the loads applied on 
the structure, forming 

a model with the 
lowest possible 

structural density. 

Calculates the material 
stiffness matrix for each 
element in relation to an 
applied load and constraints if 
applicable. This solution runs 
through an iterative process 
and determines suitable 
material densities based on 
internal material stresses. 

• Used in most 
commercial 
optimisation 
software 

• Variable density 
solution is tailored 
to the user’s own 
preferences. 

• As it generates a 
solution of variable 
density, significant 
manual input is needed 
by the user to make 
any result 
representative of a 
manufacturable 
solution. 

No Yes 

BESO 

Removes or adds 
individual elements of 
a structure in order to 
identify its optimum 

structural shape. 

Following a similar iterative 
process to VDM SIMP, 
elements are evaluated 
depending on their structural 
importance.  Instead of 
creating different densities, 
elements are removed or 
added based on their 
structural importance. 

• Ability to generate 
a binary solution 
model that 
represents a more 
reputable solution 
than that of VDM 
solutions. 

• Evolutionary algorithms 
involve additional 
initialisation steps, 
including running the 
optimisation algorithm 
for each iteration. This 
in turn involves greater 
computational cost. 

No Yes 

Level Set 
Topology 

Optimisation 

Defines a suitable 
solution by removing 
or adding elements 

and ensuring 
discernible borders 

are established 
around the edges of 

the design. 

Follows an iteration loop that 
represents the initial process 
of the topology solver used in 
standard VDM SIMP methods. 
An additional refinement step 
is also included in these 
iterations. 

• Creates more 
refined binary 
solution than that of 
a VDM solution 

• Better 
consideration of 
component border 
definition 

• Whereas solutions are 
more representative 
than other existing 
methods, this process 
still does not generate 
immediately 
“manufacturing-ready” 
solutions. 

No Yes 

 
Consideration into the ability to transfer these methods to 
sheet metal refinement is also identified, with suitable 
weightings made to identify the most relevant studies. 
 
Table 6 clearly indicates that there is currently a small 

focus towards refining topology optimised designs for 
specific manufacturing processes, with only four recent 
papers tailoring their development towards these 
considerations (papers 3 (Liu and Ma 2015), 5 (Chacón 
et al. 2014), 7 (Zegard 2015) and 11 (Lee et al. 2012) in 
Table 6). Furthermore, current research indicates that 

there is no substantial development for the consideration 
of metal forming methods in topology refinement. An 
issue also indicated from Table 6 is that there are few 

examples where the post-processor is separate from the 
topology solver, in which papers 1 (Yi and Kim 2016), 5 
(Chacon et al. 2014), 6 (Lin and Chao 2000), 7 (Zegard 
and Paulino 2015) and 8 (Mandhyan et al. 2016) in 
particular focus on integrating the refinement methods 
within the topology optimisation solver (as opposed to 
separating these steps). It is important to ensure that the 
post-processor is separate from the topology solver such 
that multiple types of topology solutions (Binary and VDM 
– Section 2.1) can be refined. As most examples only 

either consider refining binary or greyscale models, and 
never both, this can be seen as a key important area for 
development. Furthermore, paper 4 (Koguchi and Kikuchi 
2006) and paper 9 (Nana et al. 2016) identify unique 
algorithms which integrate mesh smoothing methods with 
existing topology optimisation processes. This can be 
seen as an important step in developing an automated 
processor to refine structures, but they both sadly fall 
short of including specific manufacturing processes within 
their refinement steps. Paper 10 (Lee et al. 2016) also 
dismisses the use of any specific manufacturing 
considerations, but does, as with papers 4 and 9, identify 
a unique refinement step to generate a smoothed 
geometrical solution. 
The three highlighted papers in Sections 3.2-3.4 

(numbered as papers 1 (Yi and Kim 2016), 2 (Kang and 
Youn 2016) and 3 (Liu and Ma 2015) in Table 6) indicate 

the strongest cases for development of an automated 
post-processor, tailored towards manipulating an 
optimisation solution into a usable manufacturable 
design. Unlike other identified papers in Table 6, papers 

1, 2 and 3 detail post-processing methods that consider 

specific manufacturing processes, such as for beams 
(paper 1), hole generation in 2D sheets (paper 2) or 3D 
machining tool features (paper 3). Understanding how 
manufacturing features are considered within topology 
solvers is highly important as it will provide an 
understanding of the existing methodologies and identify 
any potentially transferrable relation to sheet metal 
forming. Detailed outlines of these papers, bringing 
attention to automation and potential room for 
improvement, are discussed in the following sections. 
 
 

3.2 “Identifying boundaries of topology 
optimization results using basic parametric 
features” (Yi and Kim 2016) 
 
The first identified paper concerns the use of an 
automated post-processor that can bridge a “serious gap” 
between greyscale topology optimisation results and 
manufacturable CAD designs. The paper proposes a 
flowchart to outline the automated post-processing 
program, which consists of a “geometric features 
identification” of the greyscale (VDM) topology model, 
followed by a parameterisation of the elements to create 
a discernible structure with defined borders. This is then 
followed by a shape optimisation step to clearly define 
the new geometry. Figure 13 highlights the overall 

flowchart process of this post-processor. 
 
The post-processor indicates a method of solving an 
issue found when using VDM and SIMP-based 
topological solvers. This involves attempting to create a 
suitable manufacturable shape whilst accounting for the 
variable material densities in the solution mesh. The use 
of active contours (also known as snakes), defined as 
splines that identify edges, are utilised within this 
algorithm. The snakes are used to determine edge 
boundaries and holes for a 2D topology mesh, in which a 
computational code is created to define the snakes that 
fully enclose a hole or edge. By identifying clear, smooth 
boundaries within the optimised structure, issues 
previously present in existing optimisation solvers, such 
as the checkerboard effect and variable density solutions 
(Section 2.1) will be alleviated.  

 
 



Table 6 – Overview of Papers Relating to the Development of Automated Post-Processing and Refinement of Models 

 
 

Topology Optimisation Results File 
Extracted

Component/Assembly Ready for 
Manufacture

Run Geometric Features Identification using 
Library

Creation of a Parametric CAD Model

Perform Shape Optimisation on Component 
with Library-Replaced Parts 

Generation of Optimal Design

 

Fig. 13 – Flowchart overview of process for combined 

optimisation solver and post-processor. (adapted from Yi 
and Kim (2016)) 

The identification of various geometrical features involves 
the incorporation of multiple formulae within the 
generated code. These formulae relate to specific 
geometrical features for 2D structures, including hole 
detection, identifying straight lines and determining 
closed outer boundaries. Equation 3.1 highlights one of 

these proposed formulae, which outlines the location of a 
snake for a circle about an origin (𝑥0,𝑦0): 

               (𝑥0,𝑦0) =  �1
𝑛
∑ 𝑥𝑖𝑛
𝑖=1 , 1

𝑛
∑ 𝑦𝑖𝑛
𝑖=1 �                  (3.1) 

In which 𝑛 refers to the number of snake points 

generated in the closed boundary, and 𝑥𝑖 and 𝑦𝑖 refer to 

the coordinates on the 𝑖th snake point After identifying the 

origin node location, the distance from this point to two 
adjacent snake points can then be triangulated and 
subsequently measured. To clarify, Figure 14 shows the 

information currently available to the user and the 
positions to be identified, 𝑑𝑖 and ℎ𝑖. 

 
Fig. 14 – Set of defined boundary points (adapted from Yi 

and Kim (2016)) 

These points are then triangulated with the origin node to 

calculate the distances 𝑑𝑖 and ℎ𝑖: 
 

                    𝑑𝑖 =  �(𝑥𝑖 − 𝑥𝑖+1)2 + (𝑦𝑖 − 𝑦𝑖+1)2           (3.2) 

                           ℎ𝑖 =  |𝑘𝑖𝑥0−𝑦0+ 𝑦𝑖−𝑘𝑖𝑥𝑖|

�1+ 𝑘𝑖
2

                (3.3) 
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No. Journal Paper 6 7 9 8 4 2 1 5 3 Total

1 Identifying boundaries in topology optmisation results using 

basic parametric features (Yi & Kim 2016)
  --  -- --    30

2 Isogeometric topology optimisation of shell structures using 

trimmed NURBS surfaces (Kang & Youn 2016)
 -- --  -- --  --  18

Key:

3 3D level-set topology optimization: a machining feature-

based approach (Liu & Ma 2015)
  --  --   --  27

 Included

4 A surface reconstruction algorithm for topology optimisation 

(Koguchi & Kikuchi 2006)
 -- -- -- -- --  --  10

-- Not-Included

5 Integration of topology optimized designs into CAD/CAM via 

an IGES translator (Chacon et al. 2014)
 -- -- -- -- --    15

6 Automated image interpretation for integrated topology and 

shape optimization (Lin & Chao 2000)
 -- -- -- --  --   16

7 Bridging topology optimisation and additive manufacturing 

(Zegard & Paulino 2015)
--  -- -- -- --    16

8 A novel method for prediction of truss geometry from 

topology optimisation (Mandhyan et al. 2016)
 -- -- -- -- --    15

9 Towards adaptive topology optimisation (Nana et al. 2016)  -- -- -- --  -- -- -- 8

10
Isogeometric topological shape optimisation using dual 

evolution with boundary integral equation and level sets (Lee 

et al. 2017)

 -- -- -- -- --  --  10

11 Die shape design of tube drawing process using FE analysis 

and optimisation method (Lee et al. 2012)
  -- -- -- --  --  17



where 𝑘𝑖 =  (𝑦𝑖+1 − 𝑦𝑖)/(𝑥𝑖+1 − 𝑥𝑖). After identifying the 

triangulated distances, the perimeter, 𝑃, and area, 𝐴, of 

the triangle can be deduced as follows: 

                                                      𝑃 =  ∑ 𝑑𝑖𝑛−1
𝑖=1                            (3.4) 

                               𝐴 =  ∑ 1
2
𝑑𝑖ℎ𝑖𝑛−1

𝑖=1                      (3.5) 

Using the perimeter and area it can then be determined 
whether these two points lay on a circle section or not. 
This is defined by calculating the roundness of the loop 
that lies around the origin (𝑥0,𝑦0), and is formulated as 

follows: 

                         𝑚 =  4𝜋𝜋
𝑃2

                             (3.6) 

If the calculated value for m is close to 1, it is assumed 
that the enclosed section of points about the origin node 
are in the shape of a circle. Similar methodologies also 
exist for the determination of straight lines and enclosed, 
non-round surfaces, which will not be further mentioned 
in this literature. By identifying finite closed lines from the 
mesh, a geometry clean-up is performed by either 
replacing some uneven edges with straight lines or by 
identifying the locations of beams within the structure and 
replacing the original geometry with these. 
 
The work of Yi and Kim indicates arguably the farthest 
development for the creation of an automated post-
processor, involving no significant user input aside from 
referencing the input optimisation file. It should be noted 
that there are, however, several aspects of this 
automated post-processor that can be improved upon for 
a more convenient transition to a manufacturable 
component. Firstly, there should be consideration that the 
solution generated only consists of a line model, with the 
2D component solution not consisting of any CAD 
surfaces. It is therefore expected that the user generates 
any 2D CAD surface manually based on the lines 
generated by the post-processor. The algorithm itself, 
where useful in improving the quality of greyscale 
elements, is solely limited to improving only this type of 
optimisation model. For instance, it is not known whether 
this method will work with optimised mesh files generated 
using evolutionary optimisation, which creates a binary 
material density solution. Additionally, despite this 
refinement process aiding in the creation of more 
manufacturing-friendly designs, it does not consider 
specific manufacturing methods, nor does it consider the 
changing stress distributions that occur on the 
component over the optimisation process (see Section 
2.3.3). The ability to accurately record stress values is an 

important consideration to make as it will provide the user 
with an understanding as to how performance is altered 
over the optimisation process and identifying if the 
product would underperform in its required function. 
 
 

3.3 “Isogeometric topology optimisation of 
shell structures using trimmed NURBS 
surfaces” (Kang and Youn 2016) 
 
This paper presents a novel topology optimisation solver 
that combines the level set method for image recognition 
with shape optimisation techniques. Shape optimisation 
uses a different technique to topology optimisation, in 
which the shape of the structure is changed (but mass 
and other topological properties are not necessarily 
changed) in accordance to certain loading parameters 
(Christensen and Bastien 2015). The optimisation and 
refinement processes are both carried out within the 
solver, with no post-processing steps considered. In a 
similar manner to that indicated in Section 2.2.2, NURBS 

surfaces are used for determining the edges of a 
greyscale 2D topology optimised mesh model. In this 
case, as well as generating refined CAD lines for the new 

geometry, a NURBS surface has been created. This 
involves “projecting” the refinement lines and using them 
as cut lines for a new 2D surface. Formulation of the IGA 
process is highlighted in Section 2.2.2. This surface will 

then be cut according to the projected lines generated 
from the NURBS curves, thus creating the new surface. 
After the meshless surface is generated, further analysis 
and refinement is performed using Isogeometric Analysis.  
 
Isogeometric Analysis (IGA) is an emerging method 
which utilises the CAD geometry (instead of an FE mesh) 
for the recording of structural analysis data, such as von 
Mises stress. TSA optimises the CAD surface by “cutting” 
the NURBS surface (see Section 2.2.2). This follows a 

different methodology than that of standard topology 
optimisation methods, which considers the material 
density as the main variable. When optimisation iterations 
are performed, NURBS curves projected onto the cut 
surface will be continuously updated, re-adjusting the 
topology of the surface. Conversely, additional holes may 
be added to the surface over several iteration processes 
to increase the number of openings on the surface 
wherever necessary. The proposed methodology then 
follows with a shape optimisation to update the stress 
distributions acting on the component. As with paper 1 
mentioned in Section 3.2, the use of this alternative 

method will alleviate certain geometrical issues that 
would occur in existing optimisation algorithms, such as 
element checkerboarding and variable material densities. 
 
Whereas the methodology presented by Kang and Youn 
indicate a novel idea, several limitations arise when 
applying this process to component manufacturability. It 
should be noted that no particular manufacturing 
examples were used within the case studies in this paper, 
indicating that the methodology has not yet been 
extended to consider specific metal forming processes, 
especially those common to the automotive industry. 
Also, it should be mentioned that as the proposed 
algorithm does not perform an analysis or optimisation on 
a finite element mesh, it can be assumed that several 
discrepancies may exist between the initial input and final 
CAD model. It should therefore be recognised that the 
structural analysis results obtained directly from the CAD 
geometry are most likely not as accurate as those 
obtained via FEA. The generation of a density-based 
mesh is currently a widely used methodology, especially 
within the automotive industry, and will be needed to 
determine reliable and replicable results. From this it is 
not clear whether any discrepancies are present or if 
using different optimisation files (Binary or VDM) will 
affect the refinement process. It is desired that any 
automated post-processor should be able to generate 
results for a variety of optimisation file types. Creation of 
only a CAD solution can limit the usability of the results 
and will prove difficult to evaluate its validity if not further 
manually tested. 
 
 

3.4 “3D level-set topology optimization: a 
machining feature-based approach” (Liu and Ma 
2015) 
 
This paper by Liu and Ma considers the use of level-set 
topology optimisation methods for the development of 3D 
components created using 2.5D (2D models with an 
extruded height) machining methods. The proposed 
algorithm constitutes of running, in parallel, a feature 
fitting level-set topology optimisation and shape 
optimisation. Use of the level-set formulation allows for 
the boundaries to combine and split whenever the 
topology needs to be updated, thus providing flexibility 
when combined with topology optimisation methodology. 
When defining the desired geometrical features to be 
used in an optimised solution, a “Polyline-arc Profiling 



machining feature library” was used. This feature library 
contains a series of pre-set component section designs, 
which will be used in the final optimised model wherever 
there is a match to the original topology. To be able to 
include these additional features, a modified version of 
the level-set topology optimisation algorithm is used. 
Several angles and shapes are to be recorded after a 
structural analysis is performed, and will be replaced with 
the pre-existing designs from the feature library. Unlike 
the previous journal examples, the proposed algorithm 
reads a 3D finite element model (2D features with an 
extruded surface) as the input and produces an optimised 
3D mesh design as the output file. This paper also 
includes methods not seen in other papers in that it 
considers model preparation and optimisation specifically 
for machining features. It is also necessary for the user to 
define the desired draw angle for the 2.5D shape, as the 
machine cutting feature can only be applied in certain 
directions.  
 
The proposed model, where suitable for certain 
machining methods, may not necessarily be for other 
manufacturing methods, especially those used in the 
automotive industry. As the solver includes several pre-
set feature designs for the optimised component, it may 
be considered that the solutions generated can be very 
limited, due to the fact that they are tailored towards 
producing a solution based on a specific manufacturing 
method. Another factor contributing to the solver’s lack of 
customisability can be that the refinement stages are 
integrated into the optimisation steps, leaving no 
dedicated involvement of a post-processor. It is stated in 
Sections 2.1 and 2.2 that a separate post-processor will 

improve upon the tool’s customisability of results and 
allow for a greater variety of input files to be considered. 
However, despite these criticisms, the implementation of 
a database of pre-existing designs should not be ruled 
out, as this feature may help with the manufacturing of 
standardised designs commonly seen in mass-produced 
components. This can be highly relevant towards 
improving production costs for products, especially those 
in the automotive industry. 
 
 

4    Conclusions & Further Research 
 
Several methodologies exist for optimising the topology 
of components, including the Variable Density Method, 
which re-distributes element densities, and evolutionary 
optimisation which removes or adds elements from the 
structure using the full material density. Recently 
emerging heuristic (iterative) processes such as Level 
Set topology optimisation (Challis 2009) have been used 
to identify discernible borders within a structure, refining 
FEA meshes during the optimisation process. 
 
These optimisation techniques have proven their 
relevance in defining robust structures but still hold their 
own imperfections, with their ability to generate CAD/FEA 
solutions that can be directly manufactured being 
questionable. Mathematic and heuristic solutions both 
require a significant level of interpretation and manual 
post-processing to translate topology results into 
manufacturable representations of components, which 
consequently is a significantly long and time-expensive 
process. Methods such as level set optimisation may help 
reduce post-processing time by creating a more refined 
model, but as with other existing methods consideration 
to specific manufacturing processes is absent. Recent 
works highlight the need and implementation of 
automated post-processors but either fall short of 
generating full CAD or FEA solution files or they do not 
consider implementing multiple automotive-specific 
manufacturing processes. Recent algorithms attempt to 
address specific processes within its post-processing, 

with focusses specifically limited to machining features 
and beam representation. Because of this, there is, at 
time of writing, no significant consideration for 
representing sheet metal formed products within any 
post-processing steps. This can be seen as a significant 
shortfall due to the widespread use of sheet metal 
manufacturing, for example, within automotive sectors. 
Further development to optimisation processes that can 
improve representation of different manufacturing 
methods could be to separate the main optimisation 
solver from the refinement post-processor. This would 
allow the post-processor to identify multiple types of 
topology solutions (binary and variable density models) 
instead of limiting its use to just one methodology, and 
allow for both of these solution types to be refined for 
specific manufacturing considerations. Inclusion of 
multiple optimisation solution types within one post-
processor is also not currently supported by existing 
literature. If this were to be considered in the future, it 
may encourage FEA users involved in large-scale 
product development to utilise software-driven processes, 
instead of the manual methods currently used in most 
modern automotive industries. 
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