
 

 

Analysis of three independent real-
world driving studies: A data driven 
and expert analysis approach to 
determining parameters affecting fuel 
economy 
 
S Birrell, J Taylor, A McGordon, J Son and P Jennings 
 
Author post-print (accepted) deposited by Coventry University’s Repository 
 
Original citation & hyperlink:  
Birrell, Stewart, et al. "Analysis of three independent real-world driving studies: A data driven 
and expert analysis approach to determining parameters affecting fuel 
economy." Transportation research part D: transport and environment 33 (2014): 74-86. 

https://dx.doi.org/10.1016/j.trd.2014.08.021     
 

ISSN 1361-9209 
 
Publisher: Elsevier 
 
NOTICE: this is the author’s version of a work that was accepted for publication in 
Transportation research part D: transport and environment.  Changes resulting from 
the publishing process, such as peer review, editing, corrections, structural 
formatting, and other quality control mechanisms may not be reflected in this 
document. Changes may have been made to this work since it was submitted for 
publication. A definitive version was subsequently published in Transportation 

research part D: transport and environment, Vol 33 (2014)  
DOI: 10.1016/j.trd.2014.08.021 
 
© 2014, Elsevier. Licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders.  
 
This document is the author’s post-print version, incorporating any revisions agreed during 
the peer-review process. Some differences between the published version and this version 
may remain and you are advised to consult the published version if you wish to cite from 
it.  

https://dx.doi.org/10.1016/j.trd.2014.08.021
http://creativecommons.org/licenses/by-nc-nd/4.0/


ANALYSIS OF THREE INDEPENDENT REAL-WORLD DRIVING STUDIES:                         

A DATA DRIVEN AND EXPERT ANALYSIS APPROACH TO DETERMINING 

PARAMETERS AFFECTING FUEL ECONOMY 

 

Stewart Birrell1*, James Taylor1, Andrew McGordon1, Joonwoo Son2, Paul Jennings1 

1WMG, University of Warwick, Coventry. CV4 7AL, United Kingdom 

2HumanLAB, DGIST (Daegu Gyeongbuk Institute of Science & Technology), Daegu, South Korea 

*Corresponding Author: S.Birrell@Warwick.ac.uk; +44 (0) 24 7657 3752 

 

Abstract 

It is well established that individual variations in driving style have a significant impact on vehicle 

energy efficiency. The literature shows certain parameters have been linked to good fuel economy, 

specifically acceleration, throttle use, number of stop/starts and gear change behaviours. The primary 

aim of this study was to examine what driving parameters are specifically related to good fuel 

economy using a non-homogeneous extended data set of vehicles and drivers over real-world driving 

scenarios spanning two countries. The analysis presented in this paper shows how three completely 

independent studies looking at the same factor (i.e. the influence of driver behaviour on fuel 

efficiency) can be evaluated, and, despite their notable differences in location, environment, route, 

vehicle and drivers, can be compared on broadly similar terms. The data from the three studies were 

analysed in two ways; firstly, using expert analysis and the second a purely data driven approach. The 

various models and experts concurred that a combination of at least one factor from the each of the 

categories of vehicle speed, engine speed, acceleration and throttle position were required to 

accurately predict the impact on fuel economy. The identification of standard deviation of speed as 

the primary contributing factor to fuel economy, as identified by both the expert and data driven 

analysis, is also an important finding. Finally, this study has illustrated how various seemingly 

independent studies can be brought together, analysed as a whole and meaningful conclusions 

extracted from the combined data set. 

Highlights 

 Analysis of three independent real-world driving studies, from two different countries, using 

three different vehicles and driving scenarios with 112 participants 

 Combined approach to use expert analysis and purely data driven approach to identify driving 

parameters which relate to good fuel economy 

 Standard deviation of speed was the primary contributing factor to fuel economy 

 Illustrated how various three independent studies can be brought together, analysed as a 

whole and meaningful conclusions extracted from the combined data set 
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1. Introduction 

It is well established that individual variations in driving style have a significant impact on vehicle 

energy efficiency, whether this is the fuel economy of an internal combustion engine vehicle (ICEV) 

or the allowable range of a hybrid or full battery electric vehicle (xEV). Regardless of the powertrain 

type it will always be of value to use the energy of the vehicle more efficiently. This may even be 

more crucial for an electric vehicle due to the limited energy of the battery (EC, 2009). One way 

energy efficiency can be improved is by adopting an eco-driving style; it has been suggested that fuel 

savings in an ICEV from adopting eco-driving techniques are between 5-15% (see Young et al, 2011 

for a discussion). Reviewing the research presented in numerous papers discussing eco-driving 

techniques (for example IEA, 2005; Rutty et al, 2013; Young et al, 2011; Birrell et al, 2014) and 

advice offered by relevant organisations (including the AA, RAC, Institute of Advanced Motorists, 

Energy Saving Trust, US Department of Energy), and also the references cited within this paper, has 

identified several key factors which contribute to an eco-driving style, and include: 

 Plan ahead, anticipate traffic flow and keep a suitable following distance to help maintain a 

constant speed, while avoiding sharp braking and stops 

 Use smooth but positive acceleration to reach high gears and desired cruising speeds sooner. 

 Use engine braking (without changing down through the gears) for smooth deceleration, 

minimising the use of the foot brake where appropriate 

 Change gear up as soon as possible (between 2000 and 2500 revolution per minute (rpm)) and 

consider the use of block gear changes (i.e. 3rd-5th) where appropriate 

 Use uniform throttle positions with no more than half throttle used 

 Obey speed limits. 

In contrast to eco-driving, fuel economy has been shown to decrease by between 20 and 40% when 

driving in real-world rural or urban environment when a self-selected ‘aggressive’ driving style is 

adopted (i.e., heavy accelerations and braking, greater throttle use, higher engine speeds, later gear 

changes and faster driving speeds). However, aggressive driving on higher speed motorways resulted 

in a non-significant increase in fuel consumption of between 7 and 12%. In addition, for all conditions 

in spite of the aggressive driving style adopted journey times were unaffected (De Vlieger, 1997; De 

Vlieger et al., 2000). Further research conducted by El-Shawarby et al., (2005) showed that exploiting 

the vehicle’s maximum acceleration capabilities can use up to 60% more fuel than mild or normal 

acceleration. More specifically, Waters and Laker (1980) demonstrated that the optimal acceleration 

rate in a highly controlled test track scenario was 0.07 g (0.69 m/s2), with fuel consumption increasing 

by 20% as acceleration increased up to 0.18 g (1.765 m/s2) – which would equate to a 0-60 mph time 

of approximately 15 seconds. Speed oscillations during cruising of 5 km/h also increased fuel use, by 

30% at 40 km/h and by 20% at 120 km/h (Waters and Laker, 1980). 

A limited number of studies presented in the literature have examined the relationship between 

driving parameters (speed, acceleration etc.) which were significantly correlated with improved fuel 

economy in eco-driving verses baseline driving experimental groups, i.e. the aspects of eco-driving 

which related to improved fuel economy. Johansson et al (2003) found certain characteristics of 

driving behaviour that were significantly correlated with good fuel economy, such as avoiding 

unnecessary stops, low deceleration levels, minimising the use of 1st and 2nd gears, increased use of 

top gear, and block changing gears where possible. Gonder et al (2011) report that higher than 

average acceleration values among city trips corresponded with higher fuel consumption, and for 

highway journeys a higher average speed was the strongest indicator for poor fuel consumption. They 

also suggest that reducing acceleration rates results in some fuel savings, but reducing acceleration 



and decelerations altogether (i.e. stop/start cycles) saves a larger amount of fuel (Gonder et al, 2011). 

Evans (1979) shown that minimizing stops led to fuel efficiency improvements twice that of simply 

reducing speed (13.9% verses 6.4%), which was achieved at no cost to journey time. This suggests 

that driving style improvements should focus on reducing the number of stops and not just the rate of 

acceleration out of a stop. This can be facilitated by planning ahead to anticipate traffic flow and 

could also be referred to as reducing the standard deviation (SD) of speed of a specific journey or 

sector. 

Other eco-driving recommendations concern limiting throttle (or accelerator pedal) use to 50% of 

travel, while still being ‘positive’ to minimise engine inefficiencies (Johansson et al, 1999; van de 

Burgwal and Gense 2002), and changing gear before the engine speed reaches the point at which 

engine torque is at its highest (normally around 3,000 rpm for a gasoline fuelled engine – engine size 

dependent), thereby avoiding driving at excessively high engine speeds (Johansson et al, 1999). 

Birrell et al (2014) showed that eco driving advice offered via a Smartphone application in the vehicle 

resulted in a 4.1% improvement in real-world fuel economy, primarily due to a decrease in the use of 

1st and increase in 5th gear usage. Johansson and colleagues (1999) concluded that those who adhered 

to the above two recommendations relating to throttle and engine speed, to a ‘greater extent’ exhibited 

significantly improved fuel consumption and lower emissions on average than those who followed the 

rules to a ‘lesser extent’ when driving one of three fixed experimental driving routes in a 1998 VW 

Golf 1.6 l petrol. 

Specifically relevant to this current paper was the work by Ericsson (2001) who in a two-week 

instrumented vehicle study with 45 participants derived 16 independent driving factors from over 

19000 driving patterns in real-traffic urban driving. When considering their effects on fuel 

consumption and emissions it was found that nine driving parameters were rated as having an 

important effect (Table 1). 

Table1: Factors (or parameters) which Ericsson (2001) found to have the most significant impact on 

fuel economy, and their categories within. ‘Estimated Order Effect’ is the current authors’ 

assumptions on which parameters have the greatest impact based data presented in their paper. 

Category Factor 

Effect on Fuel 

Economy and 

Emissions 

Estimated 

Order 

Effect 

Acceleration 

Acceleration with strong 

power demand 
↓ 1 

Extreme acceleration ↓ 2 

Acceleration with 

moderate power demand 
↓ 6 

Engine Speed 

Late gear changing from 

2nd and 3rd 
↓ 4 

Engine speed > 3500 rpm ↓ 6 

Moderate engine speeds 

in 2nd and 3rd 
↑ 5 

Vehicle Speed 

Speed oscillation ↓ 6 

Stop factor ↓ 3 

Speed 50-70 km/h ↑ 6 

 



The literature above has shown certain parameters have been linked to good fuel economy, 

specifically acceleration, throttle use, number of stop/starts and gear change behaviours. During the 

literature search for this paper the authors could not find any studies which defined driving 

characteristics which were correlated to good fuel economy using data collected from numerous 

initially independent studies. Johansson et al (1999) did compare the effects of eco-driving tuition on 

different students driving three different routes in Sweden; however, these routes were specifically 

developed to be similar in nature and used the same vehicle. Limited research has been conducted 

when investigated cross-cultural comparisons regarding driver’s hazard perceptions (Lim et al, 2013) 

and driving skill (Ozkan et al, 2006) to name a few, but not driving behaviours relating to fuel 

economy. 

The primary aim of this study was to examine what driving parameters are specifically related to good 

fuel economy using a non-homogeneous extended data set of vehicles and drivers over entirely 

different real-world driving scenarios. The data will be analysed in two ways; firstly, using expert 

analysis and the second a purely data driven approach. The fact that the data set comprises three 

entirely different studies with three initially different aims, using different vehicles and participants, in 

three geographically different locations (two in the UK and one in Daegu, South Korea), presents a 

unique methodology. Results from which could be considered to be more applicable to cross-cultural 

comparisons; however the challenges of post-hoc analysis on non-uniform methodologies will also be 

discussed. 

 

2. Methodology 

2.1. The Three Studies 

As mentioned above data from three separate studies were used for the analysis, table 2 presents a 

summary of the scenario driven, vehicle used and participants involved. The WMG study was 

conducted in Warwickshire in the UK, with the principle aim of collecting data for the verification of 

a driver model generated for the SAVE project. The MIRA study was conducted in conjunction with 

the TeleFOT EU project and investigated the effects of using in-vehicle information systems (IVIS), 

with the baseline (or no-feedback) condition providing the data. The DIGST study was conducted in 

Daegu in South Korea and again evaluated the use of IVIS, with data from the baseline condition 

being used. Whilst the three different institutions collected data for different purposes there were 

certain similarities, specifically a project goal to evaluate the effect of driving behaviour on fuel 

economy. Other similarities were a mixed route, real-world driving scenario; an instrumented vehicle 

collecting many driving performance and behaviour; and a tightly controlled and rigorous 

methodology being adopted. 

Table 2: Overview of study parameters 

  
WMG MIRA DGIST 

Scenario Length (miles) 27.3 28.3 13.0 

  Avg Time (mins) 65.8 50.1 31.7 

  > 60 mph 17.9% 40.6% 45.7% 

  >30mph<60mph 47.0% 50.3% 54.3% 

  <30mph 35.1% 9.2% 0.0% 

Vehicle Make Land Rover Ford Hyundai 

  Model Freelander Focus Genesis 



  Fuel Type Diesel Diesel Petrol 

  Engine Size (l) 2.2 1.6 3.3 

  Transmission Manual Manual Auto 

 Stop Start Y N N 

Participants Total 20 40 52 

  Male / Female 14 / 6 30 / 10 26/26 

  Average Age  35.8 41.9 43.9 

 

2.2. Data Reduction and Normalisation 

A total of 75 different driving and vehicle parameters were collected over the three studies. A limited 

number of which were specific to each individual study, for example headway data with the MIRA 

study and standard deviation of steering wheel angle with DGIST. Many parameters were present in 

two of the three studies; however, a total of 14 parameters (19% of the total) were present in all three. 

Fuel economy was selected as the predictor variable, and time was considered too unique to each test 

to include. The 12 selected parameters are shown in table 3: 

Table 3: Twelve parameters common to all three studies. 

Category Driving Parameter 

Acceleration 

Maximum acceleration (m/s²) 

Maximum deceleration (m/s²) 

Maximum lateral acceleration (left) (m/s²) 

Maximum lateral deceleration (right) (m/s²) 

Engine Speed 
Average engine speed (rpm) 

Maximum engine speed (rpm) 

Vehicle Speed 

Average speed (mph) 

Maximum speed (mph) 

Standard deviation of speed 

Throttle 

Average throttle position (%) 

Maximum throttle position (%) 

Standard deviation of throttle position 

 

As the data were collected from several different studies, they need to be normalised so that 

comparisons between the data can be made. A naïve approach to normalisation was chosen, to assume 

no underlying knowledge about the distribution of the test parameters. This normalisation would scale 

all the values so that they have a range of 0-1; this is done by dividing each value by an accepted 

maximum for the parameter. For parameters where vehicle specifications were available, this was 

used for the normalisation maximum, and other parameters were normalised using the maximum 

value observed in that study group independently of the other studies (values expressed as a 

percentage were not normalised). This allows the studies to be compared in relative terms, and applies 

no weighting to the parameters under study. 

2.3. Expert Verses Statistical Analysis 

Two independent methods of analysis were used. The first is termed expert assessment where two of 

the authors with ‘expert’ knowledge in driver behaviour reviewed the collected data using limited 

statistical techniques (i.e. only raw data and raw data plots), and ‘eye-balled’ the data to identify 

trends and possible relationships. The second is a purely data driven approach, using advanced 



statistical methods involving no knowledge of what is being processed. Both methods were conducted 

independently, and only when the analyses were completed were the results compared. 

 

3. Results 

3.1. Analysis with Expert Knowledge 

The 12 parameters that were common to the three studies (table 3) were analysed by the authors with 

the benefit of expert knowledge. It should be noted here that the data is noisy as befitting a 

combination of three real world driving studies that were planned and executed independently. The 12 

parameters were plotted in raw and normalised forms against fuel economy. 

It was clear from the expert analysis that there were certain parameters that had a stronger effect on 

fuel economy. These relationships were complicated by the fact that there may appear to be 

observable correlations within the individual study data sets, but when these are plotted as a combined 

data set there is no relationship. Average vehicle speed is a good example of this as shown in Figure 1 

below. When the raw data are plotted together on the same graph (figure 1a) there is a clear tendency 

for a higher average speed to yield a greater fuel economy, as indicated positive trend when 

considering the three discrete studies as one data set on the graph. In this instance, since each study 

has different vehicles and driving routes this may simply illustrate the relative fuel economy of the 

vehicles in question, a fact that is revealed when the normalised data is considered as shown in Figure 

1b. In this case, the relationship of fuel economy to average speed is all but lost.  

 

Figure 1: Example of raw (a) and normalised (b) data for average speed 

 

The 12 common parameters identified within the three studies (table 3) can be categorised into four 

distinct parameter groups related to driver behaviour, once the dependent parameter, fuel economy, 

and the study-specific time to complete route have been removed: 

 Acceleration 

 Engine Speed 

 Vehicle Speed 

 Throttle 

 

a b 



The first three categories of acceleration, engine speed and vehicle speed were also identified by 

Ericsson (2001) and are vehicle outputs. A throttle category was also identified within the parameters 

which are directly related to driver inputs. 

The authors reviewed the raw and normalised data and identified meaningful relationships for each of 

the parameters against fuel economy, and these relationships are shown in table 4. With the benefit of 

expert knowledge, some of the parameters that appear to show a relationship to fuel economy could 

be removed. For example the graphical plots relating to maximum lateral acceleration (right) revealed 

an observable trend for a possible correlation to fuel economy. However, this could simply indicate 

the direction of the route (whether clockwise or anti-clockwise), or it could also be dominated by a 

particular cornering event on the route. For this reason maximum lateral acceleration was not 

considered one of the driving parameters selected from the expert analysis but maximum acceleration 

was. 

Table 4: Results of the expert analysis.  = Trend observable within the data which is supported by 

expert knowledge to have a likely effect on fuel economy; ? = Trend observable within the data but 

expert knowledge suggest may have limited impact on fuel economy;   = No trend observable within 

the data. 

Category Driving Parameter Raw Data Normalised Order Effect 

Acceleration 

Max acceleration  ? 

Max deceleration ?    

Max lateral accel (L) ?    

Max lateral accel (R) ? ?   

Engine Speed 
Ave engine speed ?    

Max engine speed   

Vehicle Speed 

Ave speed ? ?   

Max speed   

SD of speed   

Throttle 

Ave throttle position   

Max throttle position     

SD of throttle position ? ?   
 

For three of the categories, a single parameter that depends on fuel economy can be straightforwardly 

deduced from the data relationships. For the speed category, both maximum speed and standard 

deviation of speed show a relationship to fuel economy as shown in Figure 2. 

  

a b 



Figure 2: Fuel economy dependence on maximum vehicle speed (a) and standard deviation of speed 

(b). 

With expert knowledge the authors were able to select standard deviation of speed as having a 

potentially richer description of the effect of driver behaviour on fuel economy. This was both based 

on the literature – which identified reducing the number of stop/starts as having a positive effect on 

fuel economy – but also other research conducted by the authors that identified standard deviation of 

speed as playing an important role in simulated fuel efficiency (McGordon et al, 2014). In addition, 

the maximum vehicle speed is a number representing a single occurrence during a journey, whereas 

the standard deviation of speed parameter captures behaviour from the whole journey. Of the 

parameters selected as shown in Table 4, two of them represent average values of the whole journey. 

Two parameters are maximum values; maximum acceleration is selected as average acceleration was 

not available, and may not be a useful parameter. For the engine speed parameter set, the average 

engine speed did not show any relationship with fuel economy and therefore the maximum value was 

selected, which did show a relationship. Table 5 lists the parameters chosen using the expert 

knowledge method and Figure 3 shows the resultant dependencies of fuel economy on these 

parameters. Given the scatter of the points the lines should be treated as a guide to the eye. 

Table 5: Parameters selected using the expert knowledge method 

Maximum acceleration 

Maximum engine speed 

Standard deviation of speed 

Average throttle 

 

 

 

Figure 3: Fuel economy dependence on the four parameters selected through expert knowledge (a) 

maximum acceleration; b) Standard deviation of speed; c) Average throttle position; d) Maximum 

engine speed). 

a b 

c d 



The relationships in figure 3 are broadly linear apart from the relationship between maximum engine 

speed and fuel economy which favours a quadratic fit. The graphs indicate that fuel economy can be 

increased by: 

 Reducing maximum acceleration 

 Reducing standard deviation of speed 

 Reducing average throttle pedal position 

 Reducing maximum engine speed 

This analysis above has been performed using high level analysis methods, with the addition of expert 

knowledge. It has shown that relationships exist between certain parameters and fuel economy. The 

focus of the next part of this paper is on the ability of the data driven methods to provide an 

alternative, more robust, method of categorising the relationships. 

 

4. Data Driven Analysis 

4.1. Multiple Linear Regression 

In order to illustrate the data-driven approach of analysis, prior knowledge of the data was limited to 

the details of the studies (i.e. vehicles used, number of participants etc.), but no insight into how 

parameters relate to each other. 

When approaching a large data set from multiple sources, the first step is to construct a first pass 

predictor model to see if any immediate trends become apparent (Azzalini and Scarpa, 2012). With a 

large number of parameters for a predictor variable (fuel economy), the ultimate aim is to reduce the 

number of significant parameters to remove noise. A multiple linear regression (MLR) allows to data 

to be inspected, a prediction model to be constructed and the contribution from each parameter judged 

(Montgomery, 2013). 

 

Figure 4: Raw data for maximum engine speed (a) and standard deviation of speed (b) again un-

normalised trip fuel economy. 

From applying MLR to the whole parameter set, the data from the three studies quickly become 

apparent, and it is clear that normalisation was required to make the data more directly comparable, as 

indicated in Figure 4. The R2 value for the MLR predictor model for fuel economy in this case is 

0.968, suggesting a high goodness-of-fit (where a value of 1 would indicate a perfect fit between the 

raw and predicted data). However, the inspection of the data reveals that this is a clear case of the 

model over-fitting the data; the predicted values generated by the model closely match the original 

a b 



data instead of aligning themselves to any kind of model. Also, the data are visually arranged in 3 

groupings instead of lying on some kind of trend line or curve, showing that the model generated is 

acting as a classifier, not a predictor. 

Normalisation was carried out as described in Section 2.2 and the MLR performed on the normalised 

data set; example results are shown in Figure 5. 

   

Figure 5: Normalised fuel economy for maximum acceleration (a) and average throttle position (b). 

The R2 value for MLR performed on the normalised data set is reduced to 0.518, but inspection shows 

the model is now being applied less as a classifier and more as a predictor; the predicted data points 

no longer directly match the raw data, and the data is visually moving towards a linear trend instead of 

data groups. The correlation co-efficients (P-value) give a measure of the contribution of each 

parameter to the model as shown in Table 6. 

Table 6: Correlation co-efficients (P-value) determined from the MLR analysis. 

Parameter P-Value 

Standard deviation of speed 0.865 

Average engine speed (rpm) 0.768 

Maximum deceleration (m/s2) 0.762 

Maximum throttle position (%) 0.335 

Maximum lateral deceleration (m/s2) 0.216 

Maximum engine speed (rpm) 0.210 

Maximum speed (mph) 0.155 

Maximum lateral acceleration (m/s2) 0.086 

Maximum acceleration (m/s2) 0.066 

Standard deviation of throttle 0.047 

Average speed (mph) 0.005 

Average throttle position (%) 0.001 

 

Three factors have significantly higher P-values, indicating them as the major contributing factors to 

the model: 

 Standard deviation of speed 

 Average engine speed 

 Maximum deceleration 

 

a b 



4.1 General Linear Regression 

At least one parameter (maximum engine speed – figure 3d) was identified as possibly having an 

exponential or polynomial response, suggesting the assumption of linear response of fuel economy to 

the changes in parameters, required for MLR, may not apply to all parameters. An alternative 

approach to regression analysis, general linear regression (GLR), removes this dependency from the 

regression model, removing any underlying assumptions in regard to the data, such as a normally 

disturbed or linear response of the prediction variable to a change in any of the parameters 

(Montgomery, 2013). This model also more readily reduces to a combined parameter matrix solution, 

allowing a single combined prediction variable from the model instead of a series of regression 

equations as used in MLR. 

The model using the combined prediction variable has a correlation of 0.714. This value is a measure 

of how well the predicted data represents the raw data. 

Table 7: Correlation co-efficients (P-value) determined from the GLR analysis. 

Parameter P-Value 

Standard deviation of speed 0.896 

Average engine speed (rpm) 0.773 

Maximum deceleration (m/s2) 0.605 

Maximum throttle position (%) 0.388 

Maximum lateral deceleration (m/s2) 0.296 

Maximum speed (mph) 0.169 

Standard deviation of throttle position 0.102 

Maximum engine speed (rpm) 0.088 

Maximum lateral acceleration (m/s2) 0.060 

Maximum acceleration (m/s2) 0.053 

Average throttle position (%) 0.001 

Average speed (mph) 0.001 

 

The R2 value for this GLR is 0.509, utilising 12 parameters, removing time to complete from the 

variable set. The top three parameters, having produced significantly higher P-values, selected here 

are:  

 Standard deviation of speed 

 Average engine speed 

 Maximum deceleration.  

Whilst a linear model is suggested by inspecting the data, the noisy nature of the available data makes 

goodness-of-fit less than desired, and possibly may not be the optimal model for this data. The 

correlation value is sufficient for the model to be representative of the data, however the R2 value is 

low (values of 0.9 or greater indicate a good fit to the linear model). Other common models for 

prediction were considered for comparison. 

4.2.3 Neural Network 

Neural networks are a non-parametric method of analysing data, inspired by biological processing 

carried out in nature’s nervous systems (Haykin, 2009). Parameter data is input in a weighted manner 

to processing ‘neurons’ (known as the hidden layer), which process the data and combine their 



outputs to produce a result. Multiple output neurones can be used to construct a classifier, while a 

single output neuron is used for prediction. The weightings of the data paths within the neural network 

are defined through training the network using test data, and using the error of the result as feedback 

to adjust the weights. 

 

Figure 6: An example of a simple multi-layer perceptron neural network with 3 input neurons, 2 

neurons in the hidden layer and a single output neuron 

A neural network was constructed, using a multi-layer perceptron (structurally illustrated in Figure 6) 

with 5 neurons in the hidden layer, 10 parameters as input neurons and one output neuron. Due to the 

limited availability of data for each study, the neural network was trained using a bootstrap training 

approach (Ananda Rao and Srinivas, 2003), splitting the data into randomised subgroups, and training 

the network using each of the subgroups as the testing group in turn, and resetting the network 

between each group. The MLP was able to achieve a prediction accuracy of 65% (the per cent of test 

data points that have 90% confidence at a 5% level of matching the source data) on these testing 

groups, and a model correlation of 0.775. The performance of this non-parametric approach is roughly 

comparable to the MLR and GLR approaches, with the noise affecting the accuracy, and a model with 

similar correlation strength. 

Table 8: Predictor importance as determined from the Neural Network analysis. 

Parameter Predictor Importance 

Average Throttle Position 0.24 

Maximum Acceleration 0.13 

Standard Deviation of Speed 0.13 

Maximum Engine Speed 0.08 

Maximum Lateral Acceleration 0.07 

Maximum Throttle Position 0.07 

Average Engine Speed 0.07 

Maximum Speed 0.05 

Standard Deviation of Throttle Position 0.05 

Minimum Lateral Deceleration 0.04 

Maximum Deceleration 0.04 

Average Speed 0.03 

 

Output

f(n)

f(n)

Input 1

Input 2

Input 3

Bias

Weight
(o1)

Weight
(o2)

Weight
(1,1)

Weight
(1,2)

Weight
(2,1)

Weight
(2,2)

Weight
(3,1)

Weight
(3,2)



Three parameters have a clear significance in the predictor: 

 Average throttle position 

 Maximum acceleration 

 Standard deviation of speed 

4.2.4 CHAID Tree 

A CHAID (Chi-squared Automatic Interaction Detector) tree (Tuffery, 2011) differs from the other 

approaches presented here, as it builds up the parameter set by the addition of effective parameters, 

rather than starting with the entire parameter set and removing ineffective parameters. At each step of 

the tree, a parameter is added and the accuracy calculated using an F-test (due to the continuous 

nature of the data, this is used over the definition chi-squared test), retaining the parameter with the 

best accuracy. The data are split into accuracy groups, and the process repeated across available 

groups. This is repeated until all parameters are applied or the accuracy is no longer improved. 

 

Figure 7: The CHAID tree output from the three independent studies, with the most important 

parameters located at the top of the tree. 

The tree starts with all the data points and performs the F-test against each parameter. The parameter 

that produces the most distinction is chosen, and the data points split into statistically significant 

groups. The F-test is repeated across each of the groups at this level using the remaining parameters, 



choosing the parameters with best distinction. If a threshold level of distinction is not reached, that 

branch is closed and no more tests will be performed on it. This process repeats until single 

classifications are reached, no more groups reach the distinction threshold or all parameters have been 

used within the tree. 

The complete CHAID tree (figure 7) uses 9 parameters, omitting maximum deceleration, maximum 

lateral deceleration and standard deviation of throttle position, and achieves a model correlation of 

0.808, and the first three parameters applied were:  

 Average throttle 

 Standard deviation of speed 

 Maximum engine speed 

 

5. Discussion 

The expert knowledge analysis performed by the authors identified high level, visual, relationships to 

be determined from normalised data. By pairing this information with their expert knowledge, they 

were able to sort the parameters into groups. The combination of analysis and knowledge made it 

possible to select a parameter from each of the main parameter categories (table 4) to represent the 

dependence of fuel economy on these parameters. However, the trends and data observed at this level 

gave no ability to judge whether one factor exerted more influence on the fuel economy than another. 

The MLR and GLR approaches selected identified linear trends when comparing several parameters 

to fuel economy. Even though MLR considered the relationship on a parameter-by-parameter basis 

and GLR considered the data as a whole, both selected the same variables; standard deviation of speed 

was chosen as the most important parameter, with average engine speed and maximum deceleration 

being second and third parameter.  

The non-parametric models (neural network and CHAID) approaches identified different parameters 

which ranked highly in terms of their influence on fuel economy. Both of these methods identified 

average throttle as the factor with the most influence on fuel economy, and both placed standard 

deviation of speed in the top three factors. However, the neural net chose maximum acceleration for 

its third factor while the CHAID tree selected maximum engine speed. Table 9 summarises the results 

of the analysis for the five methods employed. 

Table 9: Comparison of parameters for the different analytical methods 

Category Driving Parameter Expert MLR GLR NN CHAID 

Acceleration 

(m/s²) 

Max acceleration      2   

Max deceleration 
 

3 3     

Max lateral accel (L) 
 

        

Max lateral accel (R)           

Engine Speed 

(rpm) 

Ave engine speed 
 

2 2     

Max engine speed        3 

Vehicle Speed 

(mph) 

Ave speed       

 

  

Max speed 


        

SD of speed  1 1  3 2 



Throttle              

(%) 

Ave throttle position      1 1 

Max throttle position 


        

SD of throttle position           

 

It is clear from the above table that in particular the data driven approach supports the expert 

knowledge of the researchers for selection of the Standard Deviation of Speed and Average Throttle 

parameters. With respect to engine speed the stats could be interpreted to support the selection of 

average engine speed over maximum engine speed, wither either maximum acceleration or 

deceleration being an appropriate parameter to be selected. 

When the data driven approach is used, interestingly the top three parameters for each approach all 

come from different parameter categories. This indicates the importance of considering a range of 

parameters for analysis of the effect of driver behaviour on fuel economy. These parameters match the 

groupings as identified by expert analysis. It should be noted the fourth ranked parameter in each of 

the statistical analyses, while not as strong as the three chosen factors, was still significantly stronger 

than the rest of the parameters and belonged to the remaining grouping. Ranked 4th for the regression 

models were max throttle, and for the non-parametric tests was maximum engine speed (neural 

network) and maximum speed (CHAID tree). 

Another important finding from this study is that the parameters identified by both analyses are 

relatively easy to record in real-world driving. Standard deviation of speed and maximum acceleration 

can be defined by GPS data loggers fitted to the vehicle, or via Smartphones or Satnav systems with 

GPS modules. Engine speed and throttle position are standard parameters outputted from the vehicles 

On-Board Diagnostic port (OBDII), which are standard fit to all passenger vehicles sold in the EU 

since 2003. A cheap OBD scanner tool can record this data with ease and convenience. The 

accessibility of this data reduces the need for expensive instrumented vehicles in order to assess the 

effects of driver behaviour on fuel economy, and also will enable data to be assessed retrospectively. 

By traditional quantifiable measures, the models did not perform well, although certain levels of 

acceptable linear trends could be generalised from them. However, the data comes from three real-

world studies carried out independently, in a non-standardised manner to investigate the same 

dependent factor, fuel economy. The levels of noise and uncertainty in the data are very high, so high 

goodness-of-fit should not be expected (and require further investigation when they do occur, such as 

during the first stage of analysis). In light of this, the analysis performed acceptably, drawing 

conclusions from the data by means of linearity and the relative importance of factors, even if a solid 

predictor model could not be established. 

One danger that needs to be considered during the regression analysis is producing a model which 

over-fits the data, as seen during the non-normalised analysis. The model fits the data, but acting in a 

classification mode instead of the desired predictor mode. For the purpose of predicting fuel economy 

based on vehicle factors, this was undesirable. However, remembering that the same technique can act 

as both as predictor and classifier may lead to additional observations. Figure 4 shows the data 

forming clusters, showing that another distinct factor may be at work (for instance, driver 

aggressiveness). 

The ease of visual analysis of regression was important to determining the properties of the model, as 

well as offsetting the issue of over-fitting models. While the abstract non-parametric models (neural 

network and CHAID tree) performed marginally better in quantifiably ranking the variables, this was 



at the expense of identifying the underlying trend within the data, in addition to the more complex 

approach to analysis. While the MLR showed the individual contribution of each parameter, the GLR 

allows a more unified appreciation of the data, giving an overall picture of a linear, if noisy, 

relationship between the parameters and fuel economy existing across all the data sets. 

The outcomes from this study have demonstrated that there are two principal parameters which were 

identified by both the expert and data driven approach to have a significant impact on fuel economy 

during real-world driving; these were standard deviation of speed and average throttle position. Both 

methods of analysis also identified two further parameters of importance from the two remaining 

categories of engine speed and acceleration. These relationships indicate that it might be possible for 

fuel economy of vehicles to be positively impacted by driver behaviour through reducing maximum 

engine speed and average throttle position, but also by reducing acceleration and deceleration rates 

and standard deviation of speed. These findings are supported by the literature presented at the 

beginning of this paper. 

Of particular interest was the impact that standard deviation of speed had on real-world fuel economy. 

McGordon and colleagues (2014) have shown that over different simulated drive cycles with the same 

average speed, fuel economy can differ by a factor of two, and they suggest that the addition of 

standard deviation of speed could improve the accuracy of traffic emissions models. In addition, 

within the eco driving literature it is commonly stated that planning ahead to maintain a consistent 

speed profile is beneficial for fuel economy, however finding a measure to represent this has proved a 

challenge. Ericsson (2001) identified speed oscillations and stop factor, whereas Gonder et al (2011) 

categorised stop/start cycles. This paper suggests that standard deviation of speed could also be used 

as a reliable factor for categorising fuel economy in real-world driving scenarios. 

 

6. Conclusions 

The expert analysis of the data made observations of the data to arrive at a set of conclusions, based 

on visual analysis of the data and interpreting observed features through expert knowledge, 

categorising the variables into groups and selecting the most favourable feature from each groups as 

the best indicator of fuel efficiency. The data-driven analysis applied regression to the data, reducing 

the data set to a number of most significant variables based on their contribution to the regression. 

The data-driven analysis supports the expert’s opinions, and, importantly, provides a means to 

quantitatively classify their observations. 

The analysis presented also shows how three differing independent studies looking at the same factor 

can be brought together for analysis, and, despite their notable differences in environment, route, 

vehicle and drivers, compared on broadly similar terms. While standardised methodologies will 

provide a better quality of analysis, this considerably limits the scale and scope of the analysis that 

can be performed, and what historic data can be used to support a study. The different factors present 

permit the construction of a more generalised model that can be built on for more specific 

circumstances, allowing future work be targeted more easily at an early stage of planning. 

The various models and experts agreed that a combination of at least one factor from the each of the 

categories of vehicle speed, engine speed, acceleration and throttle position were required to predict 

the impact on fuel economy. While the model could not generate a clear predictor model, enough 

evidence is available to show the trends that arise from the impact factors, and the general effect of 

changing a parameter could be predicted. 



With this diverse non-standardised data, the most informative approach to analysis is to use a multiple 

linear regression model or general linear regression model. While other models were able to produce 

slightly more statistically accurate models from the data, the visual analysis of the regression model 

provides a more easily presented connection between factors and fuel efficiency, and more clarity for 

identifying trends within the data. 

Finally, this study has illustrated how various seemingly independent studies can be brought together, 

analysed as a whole and meaningful conclusions extracted from the combined data set. The 

identification of standard deviation of speed as the primary contributing factor to fuel economy is also 

an important finding. 

 

7. References 

Ananda Rao M and Srinivas J, 2003, Neural Networks: Algorithms and applications, Alpha Science 

International 

Azzalini A and Scarpa B, 2012, Data analysis and data mining: an Introduction, Oxford University 

Press 

Birrell SA, Fowkes M and Jennings P. 2014. The effect of using an in-vehicle smart driving aid on 

real-world driver performance. IEEE Transaction of Intelligent Transportation Systems, 15, 1801-

1810. 

De Vlieger, I., 1997. On-board emission and fuel consumption measurement campaign on petrol-

driven passenger cars. Atmospheric Environment, 31(22), 3753-3761. 

De Vlieger, I., De Keukeleere, D. and Kretzschmar, J., 2000. Environmental effects of driving 

behaviour and congestion related to passenger cars. Atmospheric Environment, 34, 4649-4655. 

EC, 2009. Impact of Information and Communication Technologies on Energy Efficiency in Road 

Transport. TNO report for the EC (pp. 1-126). Available at: 

http://ec.europa.eu/information_society/activities/esafety/doc/studies/energy/energy_eff_study_final.p

df 

El-Shawarby, I., Ahn, K., Rakha, H., 2005. Comparative field evaluation of vehicle cruise speed and 

acceleration level impacts on hot stabilized emissions. Transportation Research Part D 10, 13-30. 

Ericsson, E., 2001. Independent driving pattern factors and their influence on fuel use and exhaust 

emission factor. Transportation Research Part D 6, 325-345. 

Evans L, 1979, Driver behaviour effects on fuel consumption in urban driving, Human Factors, vol. 

21, no. 4, pp. 389-398. 

Gonder, J., Earleywine, M. and Sparks, W., 2011. Final report on the fuel saving effectiveness of 

various driver feedback approaches. National Renewable Energy Laboratory, U.S. Department of 

Energy, March 2011, 1-31. 

Haykin S, 2009, Neural Networks and Learning Machines, Pearson 

http://ec.europa.eu/information_society/activities/esafety/doc/studies/energy/energy_eff_study_final.pdf
http://ec.europa.eu/information_society/activities/esafety/doc/studies/energy/energy_eff_study_final.pdf


International Energy Agency (IEA), 2005. Saving Oil in a Hurry. International Energy Agency 

Publications, Paris, France. 

Johansson, H., Färnlund, J., Engström, C., 1999, “Impact of Ecodriving on emissions and fuel 

consumption, a pre-study”, Swedish National Road Administration Report 1999:165E 

Johansson H, Gustafsson P, Henke M, and Rosengren M, 2003, “Impact of EcoDriving on 

emissions,” Int. Scientific Symposium on Transp. and Air Pollution, Avignon, France. 

Lim PC, Shepard E, Crundal, D. 2013. Cross-cultural effects on drivers’ hazard perception. 

Transportation Research Part F, 21, 194-206 

McGordon A, Birrell S, Poxon J, Jennings P. 2014. Comparison of Fuel Economy over Different 

Drive Cycles Each Having the Same Average Speed. Proceedings of the 5th International Conference 

on Applied Human Factors and Ergonomics AHFE 2014, Kraków, Poland 19-23 July 2014. 

Montgomery DC, 2013, Introduction to Linear Regression Analysis, Wiley 

Ozkan T, Lajunen T, Chiliaoutakis JE, Parker D, Summala H. 2006. Cross-cultural differences in 

driving skill: A comparison of six countries. Accident Analysis and Prevention, 38 1011-1018. 

Rutty M, Matthews L, Andrey J, Del Matto T, 2013, Eco-driver training within the City of Calgary’s 

municipal fleet: Monitoring the impact, Transportation Research Part D: Transport and Environment, 

24, 44-51. 

Tuffery S, 2011, Data mining and statistics for decision making, Wiley 

van de Burgwal, H., and N. Gense. 2002. Application of ‘New Style Driving’ and Effects on 

Passenger Car Fuel and Emissions, TNO Automotive, TNO Report 02.OR.VM.004.1/HVDB, 1–59. 

Waters, M. and Laker, I., 1980. Research on fuel conservation for cars. Crowthorne: Transport and 

Road Research Laboratory (pp. 1-38). 

Young MS, Birrell SA and Stanton NA., 2011. Safe driving in a green world: A review of driver 

performance benchmarks and technologies to support 'smart' driving. Applied Ergonomics, 42, 533-

539. 

 

Acknowledgements 

The authors acknowledge the support given for this research. The ‘WMG’ trials were supported by 

the EPSRC through Warwick Innovative Manufacturing Research Centre. The TeleFOT project, for 

which the ‘MIRA’ trials were conducted is an EU sponsored project under the Seventh Framework 

Programme. Analysis of the data for this paper from the ‘WMG’ and ‘MIRA’ trials were supported by 

the Technology Strategy Board through the WMG centre High Value Manufacturing Catapult. The 

‘DIGST’ trials and analysis were supported in part by the DGIST Research Program of the Ministry 

of Science, ICT and Future Planning, and Establishment Program of Industrial Original Technological 

Base of the Ministry of Trade, Industry and Energy (MOTIE). 


	Birrell_Elsevier_coversheet
	Three_Real_World_Studies_R2 (1)

