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Abstract
Estimating the density of states (DOS) of systemswith rugged free energy landscapes is a notoriously
difficult task of the utmost importance inmany areas of physics ranging from spin glasses to
biopolymers. DOS estimation has also recently become an indispensable tool for the benchmarking of
quantumannealers when these function as samplers. Some of the standard approaches suffer from a
spurious convergence of the estimates tometastableminima, and these cases are particularly hard to
detect. Here, we introduce a sampling technique based on population annealing enhancedwith a
multi-histogram analysis and report on its performance for spin glasses.We demonstrate its ability to
overcome the pitfalls of other entropic samplers, resulting in some cases in large scaling advantages
that can lead to the uncovering of newphysics. The new technique avoids some inherent difficulties in
established approaches and can be applied to awide range of systemswithout relevant tailoring
requirements. Benchmarking of the studied techniques is facilitated by the introduction of several
schemes that allow us to achieve exact counts of the degeneracies of the tested instances.

1. Introduction

In statistical and condensedmatter physics, the density of states (DOS) of a systemdescribes the number of states
at each energy level. TheDOS, which is independent of temperature, represents a deep characterization of the
system. In terms of thermodynamics, knowledge of theDOS allows one to calculate the partition function and
hence all expectation values that can be derived from it, including the free and internal energies as well as the
specific heat, as a function of temperature [1]. Alternatively, theDOS itself and closely related quantities are the
center of interest in an analysis of the thermodynamics of phase transitions in themicrocanonical ensemble [2].
DOS calculations can also determine the spacing between energy bands in semiconductors [3].

Whilst knowledgeof theDOS,Ω(E), is extremely valuable, it cannot in general be easily acquired. Exact
calculations areonlypossible in a few special cases such as Isingmodels on two-dimensional lattices [4, 5]. In general,
the problem is exponentially hard as the systemsize increases (in computational complexity terms it is a#P-hard
problem) [6, 7]. This difficulty notwithstanding, there exist anumberof approximation techniques,mostly basedon
MonteCarlomethods, that allowone to estimateΩ(E). Themostwidelyused approachof this type is theWang–
Landau (WL) algorithm [8, 9] and its variants [10–12],which is basedon themulticanonicalmethod [13].

As stochastic approximation techniques, these approaches are affected by statistical errors aswell as
systematic deviations (bias). Estimating statistical error is not easily possible from a singleWL simulation alone
and normally requires statistics over independent runs. Themost relevant formof bias inWL simulations is that
of a false convergence, where theDOS estimate settles downon a deceptively smooth shape that is however not a
faithful representation of the actual DOS [14]. Naturally, such problems are notoriously hard to detect if no
independent information about the actual DOS is available.
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Suchdifficulties apply in particular to systemswith complex free-energy landscapes that are typically
accompanied by frustration in the interactions such as in the protein-folding problem [15] and in the spin-glass
systems that result froma combinationof frustration andquencheddisorder [16]. The lattermaybe viewed as
prototypical classically-hard optimizationproblems, and they are so challenging that specializedhardware has been
built to simulate them [17]. Recently,DOS estimation,whichprovides the relative degeneracies of the energy levels
of spin glasses, has becomean indispensable tool in the context of the benchmarking of experimental quantum
annealers [18, 19] and the attempts to demonstrate speedups over classical devices. The currently available
commercial realizationof this paradigm [20] effectively samples low-lying energy configurations of spin-glass
samples that are coded into the couplers connecting an array of superconductingfluxqubits. Theproperties of the
resulting samples and the questionofwhether suchdevices indeedprovide superior performance as compared to
classical algorithms for someproblemclasses has been the subject ofmuch recent debate [21–30]. Thequestions of
reliable Boltzmann sampling aidedbyquantumannealers formachine learning applications [24–26] aswell as the
advantages that quantumannealing devices potentially holdwhen taskedwith fairly sampling the ground-state
manifolds of spin glasseswithmultipleminimizing configurations [27–29] arenowa topic of considerable interest.

Our goal in this work is threefold. (i)Wedevise techniques for verifiably benchmarking algorithms for
sampling theDOS, designed to overcome the pitfalls ofmisinterpreting false convergences of entropic samplers.
(ii)Employing the above techniques, we demonstrate the difficulties in applying traditional algorithms for
sampling theDOS to spin-glass instances. (iii)We introduce a population annealing (PA) algorithm for
estimating theDOS that allows for the intrinsic control of statistical and systematical errors and demonstrate
how it can outperform the standard approachwithout the associated problems of choosing energywindows and
related parameters that occur for the latter.

2. Verifiable benchmarking of entropic samplers

Asmentioned above, approximation algorithms for theDOS are not always reliable in converging to the correct
answer, especially for the frustrated systems considered here.While there are some general results regarding the
convergence of suitablymodifiedWL type algorithms [11], convergence times can become astronomically large
and convergence hard to assess from intrinsic indicators [31]. Aswe shall see below, for disordered systems
convergence times can alsofluctuate wildly between different realizations of the couplings. It is hence highly
desirable for benchmarking purposes to have at hand sets of samples that are sufficiently challenging for the
tested algorithms, but for which nevertheless the (exact)DOS is known fromother considerations. In general,
such samples are not readily available, butwe present here two groups of examples that are extremely useful in
this respect: locally planar lattices and samples with planted solutions.

For concreteness, we shall consider spinmodels of the Ising type, whose cost function (orHamiltonian) is of
the form

H J s s h s , 1
i j

ij i j
i

i i
,
å å= - -
á ñ

( )

where i j,á ñdenotes the set of edgesof theunderlying graph.Here, si=±1are the Ising spin variables and the
quenchedparameters Jij andhidenote the exchange couplings and randomfields, respectively. In the following,wewill
focuson the zero-field casehi=0.While theproblemsof computing theDOS (orpartition function) andoffinding a
ground state for this problem inat least threedimensions areNPhard [32], both tasks canbe completed inpolynomial
timeonany set of graphsof a genusboundedbya constant,which includesplanar and toroidal two-dimensional
lattices [5]. For suchcases there exist efficient algorithms to solve the aboveproblems. For ground states, these include
minimum-weightperfectmatching [33–35],while for thepartition functionorDOS theusual approaches arebased
on the countingof dimer coveringswhich canbe achievedvia an evaluationofPfaffians [5, 36, 37].

Unfortunately, such techniques are restricted to locally planar graphs and so theydonot apply, for example, to the
Chimera graphsused in current implementationsof quantumannealers,whichhave agenus that grows linearly in the
numberof sites. For suchmore general problemsweproposehere an approach that is basedongeneratingproblem
instances forwhich the values anddegeneracies of the ground- andfirst excited-states,Ω(E0) andΩ(E1), are exactly
computable. Since the states of lowest energies areusually themostdifficult to sample, thedegeneracies of these two
energy levels are themost difficult to ascertain, anda correct estimationof these serves as a good indicatorof true
convergence.Wecreate such samples by consideringproblem instanceswithplanted solutions [21, 38, 39]—an idea
borrowed fromconstraint satisfaction (SAT)problems [40, 41]where theplanted solution represents a ground-state
configurationof equation (1) thatminimizes the energy and is known in advance. Following [21], theHamiltonianof a
planted-solution spinglass is a sumof terms, eachofwhich consists of a small numberof connected spins, namely,
H Hj j= å . Each termHj is chosen such that oneof its ground states is theplanted solution. It follows then that the
planted solution is also a ground state of the totalHamiltonian.This class of instanceshas twoattractiveproperties:
(i) the ground-state energies of the generatedproblemsare known inadvance, and (ii) the exactdegeneracies of the
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groundandfirst excited states are computable [27, 30]. These in turn allowus to checkhowclose entropic samplers
come to these exact values.The computationofΩ(E0) andΩ(E1) is basedon the fact that our generated instances
consist of a sumof terms, eachofwhichhas allminimizing configurationsofH as its ground state.Toenumerate all
ground states,we implement a formof the ‘bucket’ algorithm [42]designed to eliminate variables one at a time to
performanexhaustive search efficiently (for adetaileddescriptionof the algorithm, see the supplementary information
of [27]). Bynoting that the lowest energy excited states are those configurations that violate precisely one clause, their
degeneracymay alsobe calculated.Weperformthe sameexhaustive search as above, butwherenow the configurations
testedwill correspond tofirst excited states of oneof theHj (andare stillminimizing for Hi j¹ ). This gives thenumber
of configurationswhich are ground states of Hi j¹ andfirst excited states ofHj; byperforming this calculation for each
of theHj,we get the total numberoffirst excited states ofH.

While this approach inprincipleworks for arbitrary graphs,we focushereonChimera lattices, i.e. two-
dimensional arrays of unit cells of eight spinswith aK4,4 bipartite connectivity [43, 44], see for example [30].Our
choice ismotivatedby the attention these graphshave gained in recent years in the context of optimization aswell as
sampling via quantumannealing as the quantumannealers currently commercially available feature qubits
connectedwith this topology [45–47].While theChimera graph is two-dimensional innature [48], it is alsonon-
planar and as such gives rise todifficult spin-glass problems [49].Wegenerated 625planted-solution instances of 501
spins each7, following a techniquedescribed indetail in [21]wherein the clausesHj are chosen tobe ‘frustrated loops’
along theChimera graph. For each samplewe employed thebucket algorithm inorder toobtainΩ(E0) andΩ(E1).

The combination of full exact DOS for samples on the square lattice and toroidal boundary conditions and
of exact values forΩ(E0) andΩ(E1) for theChimera samples allows us to carefully examine the reliability and
performance of sampling schemes for estimating theDOS, avoiding the pitfalls provided by badly converged
estimates of stochastic approximation schemes.

3. Sampling theDOS

The common approximation algorithms for theDOS are based onMarkov chainMonte Carlo [8, 13]. In the
following, wewill use themost popular of these, theWL algorithm [8, 9], in a variant dubbed theWL-1/t
method [10] that in principle can be shown to converge to the correct answer if given infinite run time [11], as a
reference and contender of themethod introduced here, entropic population annealing (EPA).

3.1.WL sampling
InWL sampling as introduced in [8, 9] a running estimate EŴ( ) of theDOS (initialized as E 1W =ˆ ( ) E" ) is updated
in a randomwalk throughenergy space bymultiplying EŴ( ) at the current energyEby amodification factor f
(initially chosen to equal Eulerʼs number e) at each step.Anewconfigurationof energy E¢ is proposed according to
the chosenmove scheme (for a spinmodel typically through single spinflips) and acceptedwith probability

p
E

E
min 1, . 2acc =

W
W ¢

⎡
⎣⎢

⎤
⎦⎥

ˆ ( )
ˆ ( )

( )

If, after some time, the histogram H Eˆ ( ) of all possible energies is found to be ‘sufficientlyflat’ (typically
interpreted as no histogrambin having less than 80%of the average number of entries [8], but see also [50] for a
related discussion), themodification factor is reduced as f f , and the histogram H Eˆ ( ) is reset to an empty
state. The algorithm stops if f is ‘sufficiently small’, for example f f exp 10final

8= = -( ).While the approachwas
invented as a variant ofMarkov chainMonte Carlo, the fact that the transition probabilities according to
equation (2) change constantlymeans that neither detailed nor global balance are satisfied, and it ismore useful
to think of themethod as a ‘stochastic approximation algorithm’ [11].

It iswell known that the original schemeof [8, 9]doesnot converge to the trueDOS, but the error asymptotically
saturates at a valuedeterminedby theprotocol used for reducing f [51]. This shortcoming is remediedby choosing a
differentmodificationprotocol for f, leading to a slowerdecay of f at late times. The so-called 1/t algorithmproposed
in [10]uses twophases. In thefirst phase the standardWLalgorithm isused,with the only difference that the energy
histograms are considered tobe sufficientlyflat already if H E 0¹ˆ ( ) for allE.Once fln falls below themoving
thresholdNE/t,where t is the simulation timemeasured in spin-flip attempts andNE is thenumber of energy levels,
the simulation enters the secondphase. There, themodification factor is adaptedquasi continuously according to

f t N tln E=( ) andhistogramflatness is no longer tested. The simulation stops once f t ffinal( ) .
While no saturation of error occurs in the 1/t algorithm [10, 14], it is still necessary to know the permissible

energy levels (including the ground state) beforehand to judge histogram flatness, which is amajor drawback of
themethod for disordered systems. In practice, we therefore employ pre-runs of theWL typewithout any

7
The 501 spins correspond to the graph considered in [30].
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reduction of themodification factorwith the goal of discovering the available energy levels8. For large systems
and problemswith complex free-energy landscapes, it is usually necessary to divide the total energy range into
several windows forwhich the algorithm is run separately to achieve convergence on realistic time scales for
interesting system sizes [9]. The right choice of window sizes in such schemes is a difficult problem especially for
disordered and frustrated systems [52], andwe are not aware of any reliable systematic approach to solve it. As a
consequence, we had to spend considerable timewith trial and error to arrive at suitable setups for the problems
studied below. A number of further generalizations of themethod have been proposed, for instance a
combinationwith parallel tempering [12]which uses progressively smaller windows at lower energies, but here
again there is no general algorithm for determining the appropriate window sizes automatically.

3.2. Entropic population annealing
The new algorithm introduced here, whichwe call EPA, is not based onMarkov chains but on the sequential
Monte Carlomethod. PAwas first studied in [53, 54] andmore recently developed further in [55–61]. It is based
on the initialization of a population of replicas drawn from the equilibriumdistribution at high temperatures,
which is then subsequently cooled to lower and lower temperatures. During this process, a combination of
population control and spinflips is used to ensure that the ensemble remains in equilibrium. The simulation
entails the following steps [55, 58].

(i) Set up an equilibrium ensemble of R0=R independent copies (replicas) of the system at inverse
temperatureβ0=1/kBT0.

(ii) Take a step to inverse temperature βi>βi−1 by resampling the configurations j=1, K, Ri−1 with their
relative Boltzmannweight Ei jt̂ ( ), leading to R Ri i 1¹ - replicas, in general.

(iii) Update each replica by θ rounds of anMCMCalgorithm at inverse temperatureβi.

(iv) Goto step 2 unless the inverse target temperatureβf has been reached.

During resampling, the expected number of copies is

E
R

R Q

e

,
, 3i j

i

E

i i1 1

i i j1

t
b b

=
b b

-

- -

-

-

ˆ ( )
( )

( )
( )

with a normalizing factor

Q
R

,
1

e . 4i i
i j

R
E

1
1 1

i

i i j

1

1åb b = b b
-

- =
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-

-( ) ( )( )

The actual number of copies is taken to be the integer part Ei jt⎢⎣ ⎥⎦ˆ ( ) plus an additional copy addedwith a

probability corresponding to the fractional part, E Ei j i jt t- ⎢⎣ ⎥⎦ˆ ( ) ˆ ( ) .While initially constant (inverse)
temperature steps were used on increasingβi>βi−1 [55], it turns out that a better, parameter-freemethod
consists of choosingβi to ensure a certain overlap of the energy distributions between the two temperatures [58].
This overlap can be computed from the resampling factors,

R

R E

R Q
,

1
min 1,

exp

,
,i i

i j

R
i i j

i i i
1

1 1

1

1 1

i 1
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( )

andβi is adapted using a bisection search such as to ensure an overlapα
* of energy histograms. Themethod is

not very sensitive to the precise value ofα*, andwe chooseα*=0.86 in the runs below.
While the algorithmdescribed above is just PA [55] improved by adaptive temperature steps [58, 60], the

possibility of sampling the entropy arises from a combination of themethodwithmulti-histogram techniques
[62]. An estimator of the free energy follows directly from the resampling factors [55],

F Z Qln ln , 5i i
k

i

k
1

0 åb b- = +b
=

ˆ ( ) ( )

where Z
0b is the partition function at the initial temperatureβ0. In the following, we always chooseβ0=0, such

that simply Z 2N
0
=b , whereN is the number of spins.We can then estimate theDOS by combining the

histograms at all temperature steps. Aswe show in appendix A, a variance-optimized estimator is given by

8
We generally choose the length of pre-runs so as tomake sure that all levels are discovered, but in a few cases the actual ground state is only

found in themain run.
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Here,Nβ is the total number of temperatures, and the energy histogram H E
ib

ˆ ( ) at inverse temperatureβi is

normalized such that H E RE iiå =bˆ ( ) . In equation (6), the free-energy estimate F ibˆ ( ) is taken fromequation (5).
More sophisticated estimators that can lead to improved results in some cases are discussed in appendix A.

This approach is naturally suited for (moderately ormassively)parallel calculations as theR replicas are simulated
independently of eachother and theonly interactionoccurs during resampling.An efficientGPU implementation
wasdiscussed in [58]. Importantly for our application, EPAdoesnot require anyprior knowledgeof the rangeof
realized energies. Additionally, aswe shall see below, EPAperformsbetter at estimatingΩ(E) for hard spin-glass
samples than theWL-1/t algorithm.Adetailed analysis of systematic and statistical errors ofPAcanbe found in [63].
Here it isworthwhile tonote that statistical errors canbe estimated froma single runby a jackknife blocking analysis
over thepopulation that is introduced in [63]. This is furtherdiscussed in appendixB.Also, note that it is possible to
includehistograms from independent runs in theoverall estimate provided through equation (6)by extending the
sumsover iover the temperature steps of all runs.The relativeweight of these contributions is automatically taken
into account through the free-energy factors deduced fromequation (5) and thepopulation sizesRi. This is a natural
generalizationof theweighted averagesfirst proposed formorebasic observables in [55]. This schememakes it
possible todetermine theDOSwith arbitrary accuracy in afixed time given sufficient parallel resources.

It should be noted that, as it stands, EPA only visits energies in the physical region E0, which is in contrast
toWL that naturally also explores energies E>0. Should one be interested in this unphysical regime, however,
it is possible to derive its DOS fromEPA, too. For systems on bipartite graphs theDOS is always symmetric,
Ω(−E)=Ω(E), so it is easy to construct the full DOSwhile just actually sampling energies E 0 . This is the case
for all examples discussed below. Formore general situations, it is also possible to construct the full DOS by
running EPA twice, once for theHamiltonianH and once for−H and combining the results.

4. Results

In order to test the efficiency of EPA against theWL-1/t algorithm in an objective way that is unaffected by
problems of false convergence, we applied the two algorithms to the planted solutions onChimera graphs aswell
as to the stochastic±Jmodel on the square lattice with periodic boundaries, for both of whichwe have exact
results. As a baseline for the comparison, we tested bothmethods for the case of the Ising ferromagnet on a
square lattice for which extensive exact results are available. There, wefind similar performance of the two
techniques, see the discussion in appendix C.

4.1. Ising spin glasses onChimera graphs
Wefirst considered theChimera spin-glass instances with planted solutions andN=501 spins. In order to be
able to compare the two algorithms on an equal footing, we could have directly considered them to be allowed
the same runtime. Thismeasure, however, is implementation and platform specific. Since both algorithms
spendmost of their time flipping spins, we compare them for simulations employing the same number 2×1012

of spin-flip attempts. For the used (serial) code forWL-1/t this corresponded to awallclock time of 37h (on an
Intel Xeon 2.4 GHzCPU), while for EPAwe used amassively parallel GPUprogram [58] that took
approximately 1.2h (on anNvidia Tesla K40GPU) per realization.

Asmentioned above, forWL it is required to know the allowed energy levels todecide about theflatness of
histograms.This knowledgewashere acquired by apre-runof theWL type employing 2×1011 spin-flip attempts
andwith afixedmodification factor fln 1= to explore the energy landscape (the corresponding run-time is
included in the time estimate given above). This knowledge is not required for theEPAruns.With a singlewindow
covering the full energy range,WL-1/tdidnot complete phase 1 for the vastmajority of samples.We therefore used
twowindowswith energy ranges [E0,E0+1200] and [E0+1100, 50] in dimensionless units, respectively. The spin-
flipswere divided evenly between the two energywindows.Here, the disorder average of the ground state energyE0
was found tobe−3635.The energy levelswere determinedduring thepre-run,which found the ground state in the
vastmajority of cases. It is clear that for larger systemswhere it ismuchharder tofind the ground state the
determinationof suitablewindows forWL-1/tbecomesmuchharder.The simulationwas started in a random
configurationwithin the energy rangeof thewindow.With that restriction, 567out of 625 samples completedphase 1
in thefirstwindowwithin the remaining8×1011flip attempts after the pre-run.No range restrictionwas required
forEPA, andweused apopulationof sizeR=3992 000withθ=10 roundsof spinflips per resampling step and a
histogramoverlapα*=0.86, resulting in typically 100 temperature steps down to9βf=5×104.

9
The unusual population size results from the attempt ofmatching the average number of spin-flip attempts between the twomethods.
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Wenote that both EPA andWL-1/t intrinsically estimate entropy differences, i.e. ratios of degeneracies for
neighboring energy values, and the absolute scale is only achieved through an additional normalization such as
that given by Z 0b in equation (5). It is therefore reasonable to study their performance in estimating

r
E

E
,10

1

0

=
W
W

( )
( )

the ratio of degeneracies offirst excited and ground states. Infigure 1we show the relative deviations of the ratios
r10 from the exact values known through the planting, as estimated fromWL- t1 and EPA.WL-1/t found the
correct ground-state energy for 622 of the 625 samples. For some samples the relative deviations are so large that
they exceed the scale of the plot offigure 1, some bymany orders ofmagnitude10. These samples are shown at the
boundary of the box and in a different color. It is clear that formost samples the deviations are substantially
smaller for EPA than forWL-1/t. In total, EPAoutperformsWL-1/t in 80%of the instances. The error of
WL-1/t is larger than 7% for 25%of samples and it is difficult to distinguish between the accurate and inaccurate
WL results. In contrast, the EPA results are accurate towithin 7% for all of the 625 samples.

4.2. Ising spin glasses on toroidal graphs
Forplanarorotherwise two-dimensional lattices of afixed genus, a countingof dimer coverings and the
corresponding evaluationofPfaffians canbeused todetermine the fullDOS inpolynomial time [5, 36, 37].We studied
toroidal graphs, i.e.L×Lpatchesof the square latticewithperiodic boundary conditionsusing the implementation
proposed in [5]whichhas an asymptotic run-time scalingofO(L5).Using this approach,we evaluated1000 samples
with a standard±J couplingdistribution and32×32 spins, andalso 500 samples of size 48×48.Anexampleof

ElnW( ) as estimated for a single sampleof sizeL=48 fromEPA is shown in the toppanel offigure2.At this scale, the
data are completely indistinguishable from the exact result also shown for comparison.Asone readsoff from the
graph, the actualDOSΩ(E) spans about 700orders ofmagnitude, and it is quite remarkable that it canbe estimated so
accurately from the simulations.To systematically assess the accuracyof the sampling fordifferent disorder
realizations,we considered the total deviationΔof the simulation results from the exactDOS,where

N

E E

E

1 ln ln

ln
. 7

E i

N
i i

i1
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exact

E
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W=

( ) ( )
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( )

While for PA an absolute normalization ofΩ(E) [64] follows from the free-energy estimator equation (5) in
combinationwith equation (6),WL-1/t as described above only yields theDOSup to an overall factor. Tofix the

Figure 1. Scatter plot of the relative error of theWL-1/t and the EPA algorithms in estimating the ratio r10=Ω(E1)/Ω(E0) of
degeneracies forN=501Chimera spin-glass samples with planted solutions. Both algorithms applied a total of 2×1012 spin-flip
attempts per sample, including an additional pre-run forWL-1/t to determine the allowed energy values. For 54 out of 625 samples
the deviation forWL-1/t falls outside the range of the plot, and these are shown at the right edge of the plot in red.

10
This includes the three samples forwhichWL-1/t does notfind the ground state, which effectively implies that r10 and the relative

deviation are infinite.
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latter we used the fact that the sum EåW( ) over all energy levelsmust equal the total number 2N of states. Note
that different ways of normalization ofWL-1/t lead to quite different fluctuations of the finalDOS estimates,
and the normalization via the total number of states used here leads to the best results, see the discussion in
appendixD. Since EPAonly samples states with energies E 0, we restricted the energy range forWL-1/t to
E 50 to ensure a fair comparison11.

For 32×32 samples, we used 1.8×1012 spin-flip attempts in themain run ofWL-1/t employing a single
energywindowwith E 50 . Just as for theChimera samples, a pre-runwas required to determine the range of
possible energies, for which an additional 2×1011 updates were used. For the EPA algorithm, we used a
population sizeR=2340 000, and performed θ=19 rounds of spin-flips between two resampling steps. The
imposed histogramoverlap ofα*=0.55 resulted inNβ=44 temperature steps formost disorder realizations
down toβf=5×104. The total number of spin flips in these EPA runs is hence also approximately 2×1012.
For system size 48×48,WL-1/t required two energy windows to converge; thesewere chosen as [E0,E0+64]
and [E0+36, 50]. After the pre-run of length 6×1011 across bothwindows, we used 3.1×1012 spin-flip
attempts in themain run of the first window and 1.0×1012 updates in the secondwindow. The twoDOS
segments obtained byWL-1/twere sewn together bymatching the estimates at a point in the intersection of the
twowindows. For the EPA algorithm, we usedR=1019 965, θ=10 andα*=0.86, which resulted in
Nβ=200 (βf=3) and hence the total number of spin flips is 4.7×1012 as for theWL-1/t runs.

The resulting values for the average relative deviation of the level entropies according to equation (7) are
shown in the scatter plots provided infigure 3. The top panel corresponds to 1000 samples of size 32×32. In
some cases the ground states were not found or the first phase ofWL-1/t did not complete, leading to extremely
large or infinite deviations; the corresponding samples are shown in red at the boundary of the plot. In this case
we only find amoderate advantage for EPA,which outperformsWL-1/t on 516 of the 1000 samples.
Considering the larger system size L=48, the advantage of EPA increases, leading to a smaller value ofΔ for 291
samples out of the 451 samples where bothmethods found all energy levels. This observation is in linewith a

Figure 2.Examples of theDOS for the Edwards–Anderson spin glass. Top: results fromEPA runs for a single L=48 toroidal lattice
sample (points) as compared to the exactDOS calculated from the Pfaffianmethod. Bottom:DOS estimated fromEPA runs for 20
L=14 3D±J samples.

11
For the normalization of theDOSwe hence completedΩ(E)=Ω(−E) for the positive energies. For consistency, we additionally applied

the same normalization in EPA.
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general trend of EPA faring relatively better for harder problems as compared toWL that we shall see confirmed
for other examples below.

4.3. Three-dimensional Ising spin glasses
Concerning the trendof improving relative performanceofEPA forharder problems, it is interesting to see how the
two samplers performon spin-glass instances in three dimensions,where the spin-glass problem is known tobeNP-
hard [32]. To this end,we studied samples of the±JEdwards–AndersonmodelwithL=8 andL=14. ForL=8we
were able to employ a single energywindow forWL, and theparameters forEPAwereR=1992 984, θ=10,
α*=0.86, andβf=3, using 1012 spin-flip attempts in both cases. ForL=14, 5.5×1012 spinflipswere applied in
each run. For theWL-1/tmethodweused twowindows, [E0,E0+64] and [E0+36, 50], with 3.9×1012 and
1.0×1012 in themain run, respectively.The remaining 6×1011 spin-flip attemptswereused in thepre-run.The
parameters forEPAwereR=867 694,θ=10,α*=0.86, andβf=10. In the bottompanel offigure 2we show

ElnW( ) for theL=14 samples. The sample-to-samplefluctuations in theDOSare in fact rather small and canonly
be seen in the very low-energy part of the spectrum (aswell as itsmirror image for large positive energies).

Figure 3. Scatter plots of the average relative deviationof level entropies fromthe exact result according to equation (7) for toroidal±J spin-
glass samples of sizeL×L spins as estimatedby theWL-1/t andEPAmethods. Toppanel:L=32.Both algorithmswere run for a total of
2×1012 attempted spinflips per sample. EPAoutperformsWL-1/t for 52%of instances (516out of 1000). For 79 samples thedeviations
forWL-1/t fall outside the scale of theplot and these samples are drawnat the right edge, in red.Bottompanel:L=48. Both algorithms
were run for a total of 4.7×1012 attempted spinflips per sample. EPAoutperformsWL-1/t for 62%of instances (312out of 500).
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As the samples considered are neither planar nor planted, we do not have access to the exactDOS, andwe
hence quantify the success of the two algorithms in estimating theDOS by determining the level offluctuation in
the estimates of ElnW( ) between independent runs, both for theWL-1/t and EPAmethods. Specifically, we
estimated the relative standard deviation E Eln lns W W[ ( )] ( ) from200 independent runs for each disorder
sample. Infigure 4we show this quantity, averaged over all energy levels, for 20±J 3D spin-glass samples of the
two system sizes considered.While for L=8 theWL runs yield slightly smaller error bars, for L=14 the
situation is reversed, with EPA resulting in 5 times smaller error bars, on average, corresponding to saving a
factor of 25 in run-time.

4.4. Entropic sampling of problems of varying hardness
Having ascertained that the EPAmethod can yield significantly better approximations to theDOS of somehard
problems in a given number of steps than theWL approach, it is interesting to analyzemore closely the actual
distribution of performances of these algorithms over the space of disorder realizations. The results above in
figures 1 and 3 indicate the presence of largerfluctuations in the quality of approximation forWL-1/t as
compared to EPA across disorder realizations. To study this effect quantitatively, we used a set of disorder
samples classified according to their thermal hardness. Awell establishedmeasure of such hardness is the
exponential autocorrelation or relaxation time in parallel tempering simulations [65, 66]. As very long
simulations are required to determine these time scales accurately, a number of proxy quantities such as the so-
called ‘tunneling time’ are frequently used in practical applications [67, 68]. Here, we rely on amethod
developed in the context of spin-glass simulations that analyses the dynamics of the randomwalk of replicas in
temperature space [69] and extracts the corresponding relaxation times τ.

Tobenchmark theEPAalgorithmagainstWL-1/t,we generated about 106 randominstances onanN=512-spin
Chimera graph (ofwhichonly476 spinswereused) andmeasured the relaxation timesτof each instancewithparallel
tempering12.Next,we grouped together instanceswith similar classical hardness, i.e. similar relaxation timesτ,
10 3 10k k t ´ for k=3, 4, 5, 6 and7. For each such ‘generation’ofτ,we randomlypicked100 representative

Figure 4.Average relative standard deviations of level entropies, E Eln lns W W[ ( ( ))] ( ), resulting fromWL (red dots) and EPA (blue
diamonds) simulations for 20 3D±J Ising spin-glass samples of sizes L=8 (top) and L=14 (bottom), respectively. Here, the average
is over energy levels. Note that for theWL result, we only included the 170 out of 200 runswhere thefirst phase completed successfully
for all samples.

12
Specifically, we chose a temperature grid of the PT simulations consisting ofNT=30 temperatures. Temperatures with indices

i=1, 2,K, 12 were uniformly distributed in the rangeTmin=0.045�Ti�0.2, while the temperaturesTiwith i=13, 14, K, NTwere
spread evenly in the range 0.21�Ti�Tmax=1.632 [70].
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instances for thebenchmarkingof the algorithm (only 14 instanceswith k=7were found).We thenperformed
WL-1/t simulationswith a total of 1012 spin-flip attempts for all samples, evenly split betweenone simulationeach
restricted to the energywindows [−900,−500] and [−550, 50], respectively (the ground-state energy for these samples
is roughlyE0≈−800). Apre-runof 2×1011 spin-flip attemptswas againused todiscover the rangeof possible
energies for each sample.All runs completed thefirst phaseof the simulationhere, owing to theuseof twoenergy
windows. For thePArunsweusedR=2.1×106,θ=10,α*=0.86, corresponding toNβ≈100 temperature steps
(βf=5) and10

12 spinflip attempts.TheDOSestimates frombothmethods areonly considered for E 0 and
Ω(E)=Ω(−E) is used forE>0.The resultingDOSestimate is normalizedusing theknown total numberof states 2N.

As for the 3D samples, we compared the two algorithms by considering the relative standard deviations
E Eln lns W W[ ( )] ( ), averaged over all energies. The resulting estimates are shown infigure 5 for the samples of

the different hardness classes k=3,K, 7. It is clear that EPA is less affected by sample hardness thanWL-1/t,
with the growth influctuationwith sample hardness beingmuch steeper forWL-1/t than for EPA.Note that this
quantity only covers the effect of statistical errors, whereas the data infigures 1 and 3 considered the total
deviation from the exact results that also includes bias effects. Note also that the sample-to-sample fluctuations,
represented in the error bars of the data points infigure 5, are significantly larger forWL-1/t than for EPA.We
find thatWL-1/t and EPAhave rather different behavior in sampling theDOS in different energy ranges, with
WL-1/t beingmore focused on higher energies, for details see appendix E.

While in the present demonstrationwe used relaxation times fromparallel tempering for classifying sample
hardness, it is worthwhile to note that EPA can itself provide a hardnessmeasure and thereby differentiate easy
and hard samples. A few such quantities have been previously proposed for PA [56].We consider here in
particular the (temperature dependent)mean-square family size ρt, defined as [56]

R , 8t
i

i
2år = ( )n

where in is the fraction of the current population that descends from the ithmember of the initial population at
β0=0, whileR corresponds to the initial population size. The quantityR/ρt can be understood as an effective
population size, corresponding to the number of statistically independent replicas, such thatR/ρt=R
corresponds to a perfectly uncorrelated population, whileR/ρt→ 0 for the strongest correlations. These two
limits hence represent the easiest and hardest samples, for which onewould expect τ→ 0 and t  ¥,
respectively, for parallel tempering. A related quantity that also takes the decorrelating effect of spin flips into
account is the effective population sizeReff defined in [71]. Infigure 6we show a scatter plot of ρt for 100 samples
of each of the hardness classes k<7 and 14 samples for k=7, respectively. The disorder average of ρt atβ=3
is found to be 49, 135, 420, 663 and 840 for k=3, 4, 5, 6, and 7, respectively, indicating that while for themain
part of the distribution the hardnesses in EPA and parallel tempering are strongly correlated, for the tails of the
distribution the hardness in EPA increasesmore gently than that found in parallel tempering. As is demonstrated
elsewhere, these intrinsic hardnessmeasures can be used tomake PA simulations adaptive to the sample

Figure 5.Performance of the EPA andWL-1/t estimates of theDOS on spin-glass samples of varying hardness. The plot shows the
average standard deviation of level entropies as a function of the hardness group in terms of the parallel-tempering relaxation time τ.
WL-1/twas run in each of the two energywindows, and the obtainedDOSwas normalized to the total number of states. The
performance ofWL-1/t decreases sub-linearly with the problemdifficulty, E Eln ln 0.35s tW W ~( ( )) ( ) , while for EPA

E Eln ln 0.19s tW W ~( ( )) ( ) . The results are averaged over 14 samples from each hardness class with the error bars resulting from the
sample-to-sample fluctuations.
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hardness [60, 63].We note that the planted samples of section 4.1 have an average ρt of≈2000 (see appendix F),
indicating that planted samples of this type aremuch harder than randomones.

5. Summary anddiscussion

Wehave investigated the performance of samplingmethods for estimating theDOS for systemswith complex
free-energy landscapes, focusing on spin glasses as the hardest problems among spin systems.We proposed a
novel sampling technique based on sequentialMonte Carlo on a large population of copies and demonstrated
that it outperforms themost widely used entropic sampler, theWL algorithm, in the vastmajority of cases.More
importantly, the new approach shows better scaling as the hardness of problems is increased (for example
through considering larger systems).

Anotorious problemwithbenchmarking algorithms for estimating theDOS lies in safely assessing convergence.
Herewe address this issue by consideringproblems that are either of planar topology, inwhich casePfaffianmethods
canbeused todetermine theDOSexactly for systemswithmore than1000 spins, orwhichhaveplanted solutions
such that the exact degeneracies of the groundandfirst excited states canbe calculatedusing a ‘bucket’ algorithm.
Both classes providehardoptimizationproblems, implying a verynon-trivial benchmark. In addition,we also
consideredmore general problems such as stochastic spin-glass samples onChimera graphs sortedby thermal
hardness aswell as themost challenging case of three-dimensional spin-glass instances of up to14×14×14 spins.

One essential advantage of the approach based on PA is that it does not require any prior knowledge about
the energy spectrum,which in contrast needs to be acquired in an additional pre-run for theWLmethod.
Furthermore, thewell-known and delicate problemof dividing the energy range intowindows that is the only
way ofmakingWL simulations converge for themore challenging cases, is completely absent for EPA. The
difficulty of premature and false convergence that plaguesWL and relatedmethods is not somuch of an issue for
the newly introduced technique, where a re-distribution of weights can occur at all stages of the algorithm. In
fact, for the EPAmethod it is easily possible tomonitor equilibration from intrinsic properties and only output
theDOS for energies where thermalization could be ensured. Themain advantage of the approach, however, lies
in the ideal suitability formassively parallel calculations, where given sufficient parallel resources the accuracy of
the approximation can be arbitrarily improved at a constant wall-clock time by increasing the size of the
population or combining the outcome of independent runs in aweighted average.

The specific spin systemwe study, namely spin glasses, is very relevant as current experimental quantum
annealers attempt to solve precisely this type of problem.With questions still lingering aboutwhich distribution
these devices sample from [30], it is important to have an accurate tool to estimate theDOS (for instance to
understand thermalization [30]). For this problemwe specifically consider instances with vastly different
hardnesses, confirming that the accuracy of the technique proposed degrades significantly less for harder
samples that previous approaches.We note that the EPA approach is in noway specific to the spin systems
considered here, and it can be straightforwardly generalized to other problems such as lattice polymers and, with
the help of binning or spectralmethods [72], to cases with continuous degrees of freedom.

Figure 6.Mean-square family size ρt at the lowest temperature in EPA for the varying-hardness samples (100 for k=3, 4, 5 and 6 and
14 for k=7) for each hardness group. Larger average family sizes result from stronger correlations in the PA ensembles of replicas and
hence indicate the difficulty of the algorithm in equilibrating the system. The red diamondsmark the disorder average of ρt atβ=3
for each of the hardness groups.
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Our results are verypromising aswe could clearly show that (i) for a rangeof problemswith complex energy
landscapes existing samplingmethods for theDOSare difficult to set up anddonot converge very reliably, especially
forhard samples; (ii) adependablemethod for the benchmarkingof entropic samplers on spin glasses is nowavailable,
whichwehopewill drive research forward infinding evenbetter algorithms; and (iii) theEPAalgorithmdevisedhere
allows for the reliable samplingof large-scale frustrated systems.We therefore trust that the algorithmwill becomea
useful tool forDOScalculation in condensedmatter physics, quantumcomputing andother areas of research.
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AppendixA. TheDOS estimator

In this sectionwe outline the derivation of the estimator (6) for theDOS.We initially follow the reasoning of
[62]. In population annealing, the histogramof energies at temperatureβi, H E

ib
ˆ ( ) or in short Hi

ˆ , is an estimator
of the equilibriumprobability density of internal energies
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Hence an estimate of theDOS froma single histogram is given by
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Tomake use of the histograms at different temperature steps, we take aweighted average
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As a simple calculation shows [73], for independent individual estimates aminimumvariance of the result is
achievedwhen choosing theweights
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and hence the variance-optimizedweighted average (A.3) becomes
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Noting that Z Fexpi i ib b= -[ ( )]and that E EexpE bå W -ˆ ( ) [ ] is an estimator of Z Fexp b= -[ ], one canwrite
the following equation,
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which canbe read as a set ofNβ self-consistency conditions for theparameters k̂ that represent the free energies at
the inverse temperaturesβk. Equation (A.6) canbe solved iteratively by evaluating the righthand side for each k to
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receive updated values of k̂ . Convergence is very slow (andmight even fail) if startingwith initial values for k̂ that
are very far from the solution. If one startswith Fk k b=ˆ ˆ ( ) according to equation (5), however,which already
provides very accurate estimates of the free energies, convergence is typically achieved in less than ten iterations.

It remains to discuss how to determine the variances H Ei
2s [ ˆ ( )].Without further assumptions, these can be

estimated via a jackknife analysis [74], i.e. by dividing the populations at all temperature steps into jackknife
blocks. Calculating H Ei

ˆ ( ) for each jackknife block then allows one to use the jackknife estimator of variance,
energy by energy13. Simpler expressions can be derivedwith further assumptions, as wewill discuss now. If all
members of the populationwere independent of each other, the entries in a histogramwould follow a Poisson
distribution and hence the variancewas

H E H E R Z E e , A.7i i i i
E2 1 is = á ñ = W b- -[ ˆ ( )] ˆ ( ) ( ) ( )

where the second equality follows from equation (A.1). Substituting this into equation (A.5) onefinds
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which corresponds to the estimator (6) introduced in themain text when using the single-temperature estimate
Fj j b=ˆ ˆ ( ).While this estimate can be further improved, in principle, via the iterations (A.6), we find that for

the small temperature steps used in our runs the improvement is quite small, and the simpler approach of
equation (A.8)with Fj j b=ˆ ˆ ( ) already yields excellent results.

In reality different replicas of the population are not independent of each other as the resampling introduces
correlations. Onemight argue that as this reduces the effective population size by a factor R Ri ieff, [63],
equation (A.7) should be replaced by
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such that equation (A.8) is replaced by
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In the absence of an estimate for R ieff, , it is also possible to revert to Ri t i,r as defined in equation (8), which in
general provides a lower bound for R ieff, [71]. This approximation assumes, however, that the only effect of
correlations is to reduce the effective number of events and, in particular, that this effect is independent of the
energy levelE. Preliminary tests of applying this variant of theDOS estimator yieldedmixed results with
decreases inΔ of equation (7) of atmost 10%, so the effect appears to be rather weak.

Finally, we should also take into account the fact that the populations at different temperature steps are
correlated14 . In this case the average (A.3) should be performedwithweights [73, 75, 76]
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denotes the covariancematrix of theDOS estimates EiŴ ( ) fromdifferent temperature steps, and cov 1- is the
corresponding inversematrix.We note that, in generalization of equation (A.4), one has
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As for the variances, the covariances of the energy histograms can be estimated from a jackknife analysis over the
populations [74, 76]. The corresponding expression for the optimizedDOS estimate is then generalized to
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13
Note that in order to apply the jackknife procedure one should consider an observable with afinite expectation value in the limit of an

infinite number ofmeasurements, such as H E Ri i
ˆ ( ) .

14
This is in contrast to the usual situation inmulti-histogram reweighting, where the individual histograms belong to independent

simulations.
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Appendix B. Estimating statistical errors and biases

Statistical errors in theDOS estimator EŴ( ) provided in equation (6) or the variants discussed in appendix A can
be estimated by considering the statistics of different runs. As the correct way of combining different runs is
through extending the summations on the right hand side of equation (6) over all the temperature points of all
runs, combinedwith the corresponding free-energy estimates provided by equation (5) instead of taking a plain
average over the estimates EŴ( ) of individual runs, it is important to estimate errors from a jackknife or
bootstrap analysis over the runs instead of the standard estimator of the samplemean in order tominimize bias.

Alternatively, it it possible to estimate statistical errors from a single run of a sufficiently large population
following the arguments of [71]. This amounts to a simultaneous jackknife analysis over the populations at all
temperatures. As discussed in detail in [71], such an analysis can be justified if a linear order of themembers of
the population is assumed, and off-spring configurations in resampling are placed next to each other in the array
of replicas. As one then generally observes an exponential decay of correlationswith the index distance in replica
space, sufficiently large blocks are statistically effectively independent of each other, and the jackknife estimator
for the variance of themean can be applied. For the case of theDOS estimator of equation (6) this implies that
one divides the (linearly ordered) populations at all temperature steps into n blocks (n=100 is often a good
choice) and then applies equations (5) and (6) to all data apart from the replicas in block s=1,K, n to arrive at
estimates Eln sŴ ( )( )

15. The variance of themean (squared error bar) is then estimated by [74]
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As is illustrated infigure B1 this provides an accurate estimate of statistical errors as long as the total simulation
remains in thermal equilibrium.

Regarding bias effects (i.e. lack of thermalization), we note that EPA as a sequentialMonte Carlomethod
behaves differently toMarkov chain samplers and the closely relatedWL approach.Whereas in the latter the
results of a simulation that was not properly equilibratedwill be affected by biases in its entirety, a PA simulation
of a frustrated systemwill fall out of equilibrium at a certain threshold temperature, and consequently results
derived from the populations at and below this temperature will be affected by biases. Conversely, however,
results only incorporating data above this threshold are unaffected. For theDOS estimators studied here a
strategy to avoid bias hence consists of only including histograms from thewell-equilibrated regime in the
estimate (6). Here, equilibration can be ensured bymonitoring heuristic criteria such asR0>100ρt [56, 60] that
can be evaluated on thefly to determine a stopping temperature.

Figure B1. Statistical error of the logarithmof theDOS estimate for an L=48 toroidal sample fromEPAwithR=100 000, θ=10
estimated from a jackknife analysis (red diamonds) as compared to the reference estimate from200 independent runs (blue dots).
Both estimates are in excellent agreement down to energies where the simulation starts to fall out of equilibrium as indicated by the
steep increase of ρt (dashed line, right scale).

15
AsΩ(E) spansmany orders ofmagnitude, it is normallymuchmore reasonable to consider ElnW( ), andwe hence here also estimate the

error bars of this latter quantity.
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AppendixC. The square-lattice Ising ferromagnet

The case of the Ising ferromagnet on the square lattice, corresponding to theHamiltonian (1)with J 1ij = for all
nearest-neighbor pairs (i, j), has served as a standard benchmark for entropic samplers since theywere first
considered [8]. In this case, theDOS can be exactly computed usingmethods that are somewhat simpler than
those of [5], see [4]. Figure C1 shows the relative deviation of ElnW( ) obtained via EPA from the exactDOS for
system size L=64. Similar plots can be found for theWLmethod in [8, 9] and subsequently inmany papers on
improvedmethods. The parameters used for the EPA run areR=100 000, θ=10, andα*=0.86,
corresponding toNβ≈230 temperature steps and 9.4×1011 spin flips. It is apparent that a high accuracy is
achieved across thewhole energy range.

In table C1we compare the average deviationΔ according to equation (7) for different runs of theWL- t1
and EPA algorithms. TheWL-1/t runs obtained the full DOS, while EPA simulations obtained the degeneracies
of energy levels withE 0 andwe exploited the symmetryΩ(−E)=Ω(E). The accuracy ofWL-1/t is
approximately the same as the accuracy of EPA for 5<θ<10, for the same number of spinflips. Introducing
an automatic adaptation of θ for EPA results in an additional approximately threefold reduction ofD [63].

AppendixD.Normalization of theDOS estimates

While EPAprovides theDOSwith its absolute normalization, this is not natively the case forWL. For a fair
comparison hence different possible normalizations should be considered. Twomain normalization schemes
are known. Thefirst one consists offixing the value ofΩ(E*) at a specific energy, for example at the ground state
E*=E0 or atE

*=0. Alternatively, one can use the fact that the total number of states is 2N, i.e.

FigureC1.Relative deviation of level entropies from the exact result for simulating the Ising ferromagnet on an L=64 square lattice
using EPAwithR=100 000, θ=10,α*=0.86, corresponding toNβ≈230 temperature steps and a total of 9.4×1011 spin flips.

TableC1.Average deviationD for the two-
dimensional Isingmodel with L=32. The
deviation is averaged over 200 independent runs of
the EPA andWLalgorithms. Each of the runs
performedN=9.82×1011 spinflips. Also shown
is the standard deviation ofD.

Method D s D( )

WL-1/t 2.67×10−5 1.55×10−5

EPA, θ=1 8.55×10−5 6.80×10−5

EPA, θ=5 2.13×10−5 1.29×10−5

EPA, θ=10 2.66×10−5 1.69×10−5

EPA, θ=20 3.53×10−5 1.82×10−5

EPA, θ=50 5.43×10−5 2.85×10−5
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InfigureD1we show the effect of different normalizations applied to theDOS estimate resulting from an EPA
simulation (top panel) and aWL-1/t run (bottompanel) for a single realization (different realizations provide
comparable relative performances). It is apparent that different normalizations lead to rather different statistical
fluctuations for different energies, and that EPA andWL-1/t behave quite differently in this respect. Clearly,
fixing theDOS at a specific E* leads to zerofluctuations at this point. Averaged over all energies, however, it is
found that the normalization by the total number of states leads to the lowest fluctuations, and for EPA these are
very similar to those found from the intrinsic normalization of EPA. It is also possible to consider entropy
differences such as E Eln ln 2W - W +( ) ( ) that are intrinsically normalization independent and also feature
relatively low levels offluctuation. Two of the curves are almost identical in the bottompanel infigureD1,
because theDOShas its largest value atE=0, hence the degeneracy ismost accurately estimated byWL-1/t
atE=0.

Appendix E. Precision in different energy ranges

A closer comparison ofWL-1/t and EPA is possible by considering the achieved precisionwith the same
computational effort, but resolved by energies. To this end, we studied the behavior of Elns W[ ( )], the standard
deviation of the level entropies. Here, we used the normalization to the total number of states according to
equation (D.1). Simulationswere performedwith bothmethods and the same set of samples, using parameters
that ensure that the same number of spin flips is performed. Figure E1 shows the result of one sample of each
hardness class k=3, 4, 5, 6, and 7.While bothmethods havemost problems for the immediate vicinity of the
ground state, as expected, one can see that EPA results in a relatively smallσ for low energies, especially for hard
samples, and the results deteriorate only in the immediate vicinity of the ground state. In contrast, the results
fromWL-1/t deteriorate already forE−600, but it yields smallerfluctuations for higher energies, with the
best performance at E≈0. This seems plausible asWL spendsmuchmore time at the higher energies with
much larger entropies, whereas in PA the population is continuouslymoved fromhigh to low energies.

FigureD1.Top: standard deviations of the estimated level entropies fromEPA simulations using different normalization schemes. A
single sample from the hardness class k=3 is considered. The parameters of the EPA simulation are described in the caption to
figure E1 below. Bottom: the analogous plot forWL-1/t. The run parameters are described in section 4.4.
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Appendix F.Hardness of the planted ensemble

It is interesting to consider some of the hardnessmeasures for the EPAmethod also for the other ensembles
discussed here. Figure F1 shows themean-square family size ρt at the lowest temperature in EPA for the 625
planted samples onChimera graphs (see section 4.1). The average value is ρt≈2000, so the planted samples of
this type aremuch harder then the randomones (see section 4.4).

Figure E1. Standard deviations of level entropies, Elns W[ ( )], as sampled by theWL-1/t and EPA approaches for a single sample from
each hardness class, k=3 (a), k=4 (b), k=5 (c), k=6 (d), and k=7 (e).WL-1/twas performedwith 4.8×1011 spinflip attempts
for all samples, restricting the walk to energies E Emax , where Emax=−500 (the ground-state energy for these samples is roughly
E0≈−800). A pre-run of 2×1011 spin-flip attempts was performed to discover the range of possible energies for each sample; the
main runswere started in the lowest-energy state found in the pre-run. All runs completed thefirst phase of the simulation here. For
the EPA runswe usedR=106, θ=10,α*=0.86, corresponding toNβ≈100 temperature steps and 4.8×1011 spinflip attempts.
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