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Rotating Rayleigh–Bénard convection is typified by a variety of regimes with very distinct
flow morphologies that originate from several instability mechanisms. Here we present
results from direct numerical simulations of three representative setups: First, a fluid with
Pr “ 6.4, corresponding to water, in a cylinder with a diameter-to-height aspect ratio of
Γ “ 2, secondly, a fluid with Pr “ 0.8, corresponding to SF6 or air, confined in a slender
cylinder with Γ “ 0.5, and thirdly, the main focus of this paper, a fluid with Pr “ 0.025,
corresponding to a liquid metal, in a cylinder with Γ “ 1.87. The obtained flow fields
are analysed using the sparsity-promoting variant of the dynamic mode decomposition
(DMD). By means of this technique, we extract the coherent structures that govern the
dynamics of the flow, as well as their associated frequencies. In addition, we follow the
temporal evolution of single modes and present a criterion to identify their direction of
travel, i.e. whether they are precessing prograde or retrograde.
We show that for moderate Pr a few dynamic modes suffice to accurately describe

the flow. For large aspect ratios, these are wall-localised waves that travel retrograde
along the periphery of the cylinder. Their DMD frequencies agree with the predictions of
linear stability theory. With increasing Rayleigh number Ra, the interior gradually fills
with columnar vortices, and eventually a regular pattern of convective Taylor columns
prevails. For small aspect ratios and close enough to onset, the dominant flow structures
are body modes that can precess either prograde or retrograde. For Pr “ 0.8, DMD
additionally unveiled the existence of so far unobserved low-amplitude oscillatory modes.
Furthermore, we elucidate the multi-modal character of oscillatory convection in low

Prandtl number fluids. Generally, more dynamic modes must be retained to accurately
approximate the flow. Close to onset, the flow is purely oscillatory and the DMD reveals
that these high-frequency modes are a superposition of oscillatory columns and cylinder-
scale inertial waves. We find that there are co-existing prograde and retrograde modes,
as well as quasi-axisymmetric torsional modes. For higher Ra, the flow also becomes
unstable to wall modes. These low-frequency modes can both co-exist with the oscillatory
modes, and also couple to them. However, the typical flow feature of rotating convection
at moderate Pr , the quasi-steady Taylor vortices, is entirely absent in low Pr flows.

1. Introduction

Rotating Rayleigh–Bénard convection (RBC) is an idealised system that is often
invoked to describe the primary physics in a multitude of geo- and astrophysical settings,
such as the convective motion occurring in the outer layer of stars, in the oceans, the
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2 S. Horn and P.J. Schmid

atmosphere, or in the metallic core of moons and planets. The system itself is deceptively
simple – a fluid confined between a heated and a cooled surface, and rotated about
its vertical axis. The interplay of the occurring buoyancy and Coriolis forces, however,
may yield highly complex flows with very distinct flow structures whose nature strongly
depend on the control parameters.
These dimensionless control parameters are the Rayleigh number Ra, describing the

vigour of the thermal forcing, the Prandtl number Pr , a pure material characteristic,
and the Ekman number Ek , a measure for the rotation rate. They are defined as

Ra “ αg∆H3

κν
, Pr “ ν

κ
, Ek “ ν

2ΩH2
, (1.1)

where α denotes the isobaric expansion coefficient, g the acceleration due to gravity,
H the fluid layer height, ∆ the imposed adverse temperature difference, κ the thermal
diffusivity, ν the viscosity, and Ω the angular rotation speed. Alternatively, instead of
Ek , the convective Rossby number

Ro “
?
gα∆H

2ΩH
“ Ek

?
Ra?

Pr
(1.2)

can be used. Unfortunately, there is often a substantial discrepancy, occasionally in order
of magnitudes, between the actual Ra, Ek and Pr in most of the aforementioned natural
phenomena and the ones that are achievable in laboratory experiments and in numerical
simulations.
Here, we will briefly elaborate on one specific example, namely the metallic core of

rocky planets. In many instances, as in the case of our Earth, it consists of an innermost
solidifying part and an outer part in a liquid phase. The core acts as a dynamo whose
efficiency in generating and maintaining the magnetic field is essentially determined by
the rotationally dominated convective motions occurring in the fluid part. The typical
Rayleigh number in the convecting outer fluid core is estimated to be Ra Á 1020 with
an Ekman number of Ek « 10´15, and since the material is assumed to be an iron-rich
alloy, the Prandtl number is around 10´2 (Roberts & King 2013).
In contrast, present-day non-rotating Rayleigh–Bénard experiments are limited to

Ra À 1015 (He et al. 2012) and direct numerical simulations (DNS) to Ra À 1012 (Stevens
et al. 2011). Experimentally, a major restriction here comes from the fact that an
exceedingly large container height, H , or an exceedingly large temperature difference
∆, leads to non-Oberbeck–Boussinesq effects (Ahlers et al. 2006; Horn & Shishkina
2014; Horn et al. 2013); numerically, the resolution requirements become prohibitively
severe (Shishkina et al. 2010, 2014). Similarly, in the rotating case, the lowest achievable
Ekman numbers are about Ek À 10´7, both in experiments and in simulations (Cheng
et al. 2015; Gastine et al. 2016; Stellmach et al. 2014): experimentally, because of the non-
negligible centrifugal buoyancy, numerically, because the ever thinner Ekman boundary
layers must be accurately resolved. One control parameter that is, however, often ignored
and, hence, might falsify our interpretation of rotating Rayleigh–Bénard convection as a
proxy for planetary cores, is the Prandtl number.
There is a plethora of experiments and simulations in fluids with Prandtl numbers of

order unity, corresponding to air (Pr « 0.7), or water (Pr « 5). This is especially true
for rotating RBC, where the majority of studies use a fluid with Pr ą 1, most commonly
water (e.g. Cheng et al. 2015; Ecke & Niemela 2014; Horn & Shishkina 2014; Julien et al.
1996; King et al. 2009; Kunnen et al. 2010; Stevens et al. 2010, 2013; Weiss & Ahlers
2011a; Zhong et al. 1993; Zhong & Ahlers 2010). Water, in particular, has the advantage
of being easily visually accessible in the laboratory. Convection in fluids with low Prandtl
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numbers, as characteristic for liquid metals, i.e. Pr « 10´2, is far less investigated. It
is experimentally hampered by the optical opaqueness of metals and again numerically
by a much smaller time step and finer resolution required for DNS with small Pr . A
few exceptions are, for example, the studies by Aurnou & Olson (2001); Chandrasekhar
(1961); Goldstein et al. (1994); King & Aurnou (2013); Rossby (1969); Schumacher et al.
(2016, 2015).
Consequently, the extensive studies of moderate-Pr fluids had a formative influence

on the common picture of rotating RBC. For Pr Á 1, and if the Ekman number is
high, usually equivalently if Ro ą 1, i.e. with only slow rotation rates, the occurring
structures are very similar to the non-rotating case. With increasing rotation rate, the
typical mushroom-shaped plumes become elongated, and in the regime of rapidly rotating
convection, columnar structures, that are referred to as convective Taylor columns or
Ekman vortices, govern the flow (Grooms et al. 2010; Horn & Shishkina 2014; Julien
et al. 1996; King et al. 2012; Kunnen et al. 2008, 2014; Sakai 1997; Stevens et al. 2013,
2009; Weiss et al. 2010; Zhong & Ahlers 2010). Also, present-day dynamo models heavily
rely on columnar structures (Aurnou et al. 2015; Roberts & King 2013). For high Ra and
small Ek the flow is in the regime of geostrophic turbulence, with columnar-like vortex
features present (Ecke & Niemela 2014; Horn & Shishkina 2015; Julien et al. 2012a).
However, rotating convection in a small-Prandtl-number fluid is inherently different.

There are unique types of instabilities present, and the flow structures, as well as the
heat transport mechanisms, are much less well understood than those for Pr Á 1.
For Pr ą 0.68 and in an infinite layer, the onset of convection occurs via a sta-

tionary bifurcation, as in the non-rotating case. For Pr À 0.68, on the other hand,
oscillatory modes permit convection well below the stationary Rac-value via a Hopf
bifurcation (Chandrasekhar 1961). Either way, the critical Rayleigh number Rac increases
with the rotation rate, since convection in a rotating system is inhibited by the Taylor–
Proudman effect. Laterally confined geometries, on the other hand can relax this con-
straint. Here, only cylindrical containers shall be considered. They are specified by their
diameter-to-height aspect ratio Γ “ D{H or the radius-to-height aspect ratio γ “ R{H ,
respectively. A comprehensive theoretical framework for all Pr based on linear stability
theory and asymptotics has been developed by Clune & Knobloch (1993); Goldstein et al.
(1993, 1994); Herrmann & Busse (1993); Kuo & Cross (1993); Zhang & Liao (2009);
Zhang et al. (2007). Independent of Pr , there is a supercritical Hopf bifurcation from the
conductive state to an asymmetric travelling-wave state. These inertially driven waves
owe their existence to the sidewall and have their highest amplitude close to it. Hence,
they are called wall modes. Their precession is induced by the broken azimuthal reflection
symmetry. The onset by wall modes is always at a lower Rac than the steady-state onset.
Ecke et al. (1992); Liu & Ecke (1997, 1999); Ning & Ecke (1993); Zhong et al. (1991,
1993) performed experiments in Γ ě 2-tanks in water with 6.4 À Pr À 7.0, finding that
these modes precessed in the retrograde direction, i.e. counter to the applied rotation. At
higher Ra and Pr Á 1, there is the second transition to states with the aforementioned
columnar vortices in the centre that grow in the interior and that are modulated by the
precession of the outer structures. Eventually, aperiodic vortex structures appear and
turbulent rotating convection sets in. Furthermore, there is another set of modes, so-
called body modes; they exist close to the tank’s centre and have lower amplitudes and
precession frequencies compared to the wall modes. These slow modes can also precess
in the prograde direction, and are the preferred onset modes for small Γ. Moreover, their
frequencies decay with increasing Γ and vanish for Γ Ñ 8, consistent with a steady-state
onset.
In contrast, for Pr À 1, oscillatory convection is characterised by standing or radially
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outward travelling waves in confined geometries according to Goldstein et al. (1994).
In addition, wall and body modes co-exist, whose distinction can become ambiguous,
and wall modes may also precess in the prograde direction. Which mode is the first to
become unstable is extremely sensitive to Ek , Pr , and Γ . Furthermore, already for Ra
slightly above criticality, a multitude of modes can be unstable, and all these modes are
interacting with each other. Accordingly, small-Prandtl-number flows become unsteady
and turbulent very quickly (Aurnou & Olson 2001; Rossby 1969). This also indicates
that results from linear stability theory alone become insufficient even for comparatively
low Ra. Thus, little is known about the dominant flow structures and their dynamics in
rotating RBC in small-Prandtl-number fluids, even at only moderately high Ra.
The objective of the present work is to use DNS in combination with dynamic mode

decomposition (DMD) to characterise the flow morphology in rotating RBC with an
emphasis on the little explored small Pr regime.
We will show that DMD is well suited to this task as it is applicable to nonlinear

data and, thus, goes beyond mere linear stability analysis. By means of DMD we are
not only able to analyse the spatial structure but also the temporal evolution of modes.
Consequently, we can capture the rich diversity of modes that exists in this system and
also gain insight into their interaction and prevalence past onset. This will reveal how
oscillatory convection shapes the flow and how it differs from moderate Prandtl number
convection.
First, we will demonstrate some of the capabilities of DMD on two simple examples. In

section 3, rotating convection in a Pr “ 6.4-fluid is considered, with parameters chosen
close to available experimental and theoretical studies in water, making it amenable to
quantitative validation. In the second example, presented in section 4, DMD is used to
identify the precession direction, i.e. either prograde or retrograde, of rotating RBC in a
slender cylinder filled with a fluid with Pr “ 0.8, corresponding to SF6. Finally, the main
part, section 5, is on oscillatory convection in a fluid with Prandtl number Pr » 0.025
corresponding to liquid metals such as gallium or mercury.
Based on these results, some light is shed on the question on whether the present-day

picture of quasi-steady convective Taylor columns residing in the liquid metal cores of
planets is indeed adequate.

2. Numerical methodology

2.1. Governing equations and method of solution

We consider Rayleigh–Bénard convection in an upright cylinder rotating with uniform
angular velocity about the vertical axis in the clockwise direction when looking from
above. The centrifugal acceleration is taken to be small compared to gravity, hence,
the buoyancy force only acts in the vertical direction. The governing equations of the
problem are the incompressible Navier–Stokes equations in the Oberbeck–Boussinesq
approximation, augmented by the temperature equation,

∇ ¨ u “ 0, (2.1)

Dtu “ Ra´ 1
2Pr

1
2 γ´ 3

2∇
2u´ ∇p` Ro´1γ

1
2 êz ˆ u` T êz, (2.2)

DtT “ Ra´ 1
2Pr´ 1

2 γ´ 3
2∇

2T. (2.3)

They are to be solved in cylindrical coordinates pr, φ, zq, and Dt denotes the material
derivative, u “ pur, uφ, uzq the velocity, T the temperature, p the reduced pressure, and
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êz is the unit vector in the vertical direction. All other quantities have been defined in
section 1.
The equations are non-dimensionlised using the radius R̂, the buoyancy velocity

pĝα̂R̂∆̂q1{2, the temperature difference ∆̂ and the material properties at the mean
temperature as reference scales. The reference time is then given by R̂{pĝα̂R̂∆̂q1{2 and
the reference pressure by ρ̂ĝα̂R̂∆̂. The hat marks dimensional quantities, which had been
omitted for clarity in section 1.
The top and bottom plates are assumed to be isothermal and the sidewall to be

adiabatic, i.e. for the temperature we impose Dirichlet boundary conditions on the
horizontal walls and Neumann conditions on the lateral wall,

T
ˇ̌
z“H

“ Tt “ ´0.5, T
ˇ̌
z“0

“ Tb “ 0.5, BrT
ˇ̌
r“R

“ 0. (2.4)

All boundaries are assumed to be impenetrable and no-slip, i.e. the velocity boundary
conditions are given by

u
ˇ̌
z“H

“ u
ˇ̌
z“0

“ u
ˇ̌
r“R

“ 0. (2.5)

We conduct direct numerical simulations (DNS) to solve the set of equations (2.1)–(2.3)
with the boundary conditions (2.4) and (2.5) numerically using the finite-volume code
goldfish (Shishkina & Horn 2016; Shishkina et al. 2015; Shishkina &Wagner 2016). The
code is designed for thermal convection problems and uses a fourth-order accurate spatial
discretisation scheme and a hybrid explicit/semi-implicit Leapfrog–Euler time integration
scheme. The numerical solution is acquired using Chorin’s projection ansatz (Chorin
1967), and staggered meshes guarantee the appropriate boundary conditions at the walls.
In the azimuthal direction the meshes are equidistant, whereas in the vertical and radial
directions the volume cells are clustered close to the domain boundaries and stretched
towards the centre with a resolution based on the requirements derived by Shishkina
et al. (2010, 2014). The Ekman and Stewartson layers were resolved with as many points
as would be required within a standard non-rotating viscous boundary layer according
to those criteria. The total number of finite volumes and the control parameters used
in the DNS are summarised in table 1. For the simulations with Pr “ 0.025, we have
verified the results using a higher resolution of Nr ˆNφ ˆNz “ 256 ˆ 256 ˆ 256.

2.2. Dynamic mode decomposition (DMD) in its sparsity-promoting variant

The dynamic mode decomposition (DMD), developed by Schmid (2010), is a data-
driven technique for the identification and extraction of the dynamically most relevant
structures in a flow. The DMD can be considered as a numerical approximation of the
Koopman spectral analysis, i.e. it approximates Koopman modes and eigenvalues (Row-
ley et al. 2009; Tu et al. 2014). It is distinctively well-suited for oscillating flows, i.e. flows
with very specific frequencies, and where various instability mechanisms are present.
These properties make it particularly fitting in the analysis of the flow in rotating
convection of liquid metals.
Along this line, one of the paramount advantages of DMD is that the extracted dynamic

modes (or DMD modes) consist of exactly one frequency. This does not only make their
physical interpretation rather straightforward, but it also allows for an easy connection
of a flow structure to an either numerically or experimentally obtained spectra stemming
from a point-wise local time series. Moreover, and maybe even more importantly, the
DMD algorithm yields information about the temporal evolution, i.e. the dynamics, of
these coherent structures.
These attributes clearly distinguish DMD and make it superior to the classical proper

orthogonal decomposition (POD) (Sirovich 1987), also known as principal component
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fluid Pr Ra Ro Ek Γ Nr ˆ Nφ ˆ Nz τs fs dominant mode(s)

H2O 6.4 1.55 ˆ 105 0.036 2.3 ˆ 10´4 2.0 64 ˆ 64 ˆ 64 500 1 m=5 wall mode
6.4 2.79 ˆ 105 0.049 2.3 ˆ 10´4 2.0 64 ˆ 64 ˆ 64 500 1 m=7 wall mode
6.4 3.99 ˆ 105 0.058 2.3 ˆ 10´4 2.0 64 ˆ 64 ˆ 64 500 1 m=7 wall mode
6.4 5.79 ˆ 105 0.070 2.3 ˆ 10´4 2.0 64 ˆ 64 ˆ 64 500 1 m=7 wall mode
6.4 6.49 ˆ 105 0.074 2.3 ˆ 10´4 2.0 64 ˆ 64 ˆ 64 500 1 m=7 wall mode
6.4 7.69 ˆ 105 0.081 2.3 ˆ 10´4 2.0 84 ˆ 128 ˆ 84 500 1 m=5 wall mode
6.4 2.60 ˆ 106 0.149 2.3 ˆ 10´4 2.0 96 ˆ 128 ˆ 96 500 1 convective Taylor

columns

SF6 0.8 1 ˆ 105 0.3 8.5 ˆ 10´4 0.5 11 ˆ 32 ˆ 34 2000 1 retrograde m=1
body mode

0.8 1 ˆ 105 0.5 1.4 ˆ 10´3 0.5 11 ˆ 32 ˆ 34 2000 1 prograde m=1
body mode

Ga 0.025 8.08 ˆ 105 0.115 2 ˆ 10´5 1.87 128 ˆ 128 ˆ 128 400 1 oscillatory modes
0.024 3.61 ˆ 106 0.242 2 ˆ 10´5 1.87 128 ˆ 128 ˆ 128 400 1 oscillatory and

wall modes
0.025 2.5 ˆ 106 0.1 1 ˆ 10´5 1.87 112 ˆ 128 ˆ 112 400 1 oscillatory modes
0.025 4.0 ˆ 106 0.126 1 ˆ 10´5 1.87 112 ˆ 128 ˆ 112 400 1 oscillatory and

wall modes
0.025 4.5 ˆ 106 0.067 5 ˆ 10´6 1.87 112 ˆ 128 ˆ 112 400 1 oscillatory modes
0.025 8.0 ˆ 106 0.089 5 ˆ 10´6 1.87 112 ˆ 128 ˆ 112 400 1 oscillatory and

wall modes

Table 1. Control parameters Pr , Ra , Ro, Ek , and Γ and the numerical resolution Nr ˆNφˆNz

used in the DNS, as well as the sampling time τs and the sampling frequency fs for the DMD.
The last column gives the dominant modes, discussed in detail in section 3 for water, in section
4 for sulfur hexafluoride, and in section 5 for gallium.

analysis: POD modes typically have a multi-frequency content and only provide static
information based on their generic energy content. It should, however, be noted that
POD modes can be easily recovered as a byproduct of DMD. Another advantage of
DMD over POD is, that it is not necessary to evaluate an integer number of a typical
period (Chen et al. 2012) and, unlike POD, does not yield unintended results in this case.
Furthermore, in combination with the sparsity-promoting algorithm by Jovanović et al.
(2014), the dynamic modes can be ranked by their dynamical importance, in contrast
to POD where the modes are ranked by their energy content. This is crucial for the
understanding of the entire dynamics of the flow, since it is well-known that often even
low-energetic modes are nonetheless important.
For linearised data, the DMD yields global stability results. For nonlinear data, that

shall solely be considered here, the results represent a linear tangent approximation of
the flow. It is assumed that temporally successive flow fields, i.e. snapshots vk and vk`1,

are connected by a linear mapping A, which does not change over the entire sampling
period τs, i.e. it holds that vk`1 “ Avk. Thus, the complete flow V N1 can be expressed
as a Krylov sequence tv1, Av1, A2v1, . . . , A

N´1v1u, where the subscript of V denotes the
index of the first entry of the series and the superscript the last one. A single flow field
is, hence, given by vk “ Ak´1v1. By means of DMD an optimal representation of A is
sought.
The vectors vk can be any flow variable, or several. There are no requirements on

the geometry, and it is also possible to analyse only a subset of the full numerical (or
alternatively experimental) domain.
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For the sake of completeness, the basic algorithm to extract dynamic modes (Schmid
2010) is briefly recapitulated here. We will assume that full instantaneous flow fields from
the goldfish DNS will be processed, thus, the data are real-valued, and one snapshot
is expressed as a column vector vk “ pT, ur, uφ, uzqk at a given time tk with dimension
M “ 4NrNφNz.

(i) Collect N temporally equidistant snapshots tv1,v2,v3, . . . ,vNu, vk P RMˆ1.
(ii) Cast the first N ´ 1 snapshots into a matrix V N 1́

1 P RMˆpN 1́q, that is

V N 1́
1 “ pv1 v2 v3 ¨ ¨ ¨ vN´1q.

(iii) Perform a singular value decomposition (SVD),

V N 1́
1 “ UΣWH .

The superscript H denotes the conjugate-transpose of a matrix. The number of non-zero
elements in Σ determines the rank q of V N 1́

1 , thus Σ P Rqˆq. The matrix U P RMˆq

contains the spatial structures andW P RpN 1́qˆq the temporal ones, i.e. the POD modes
are given be the k-th column of U . They are ranked by their energy content, i.e. their
eigenvalues λPODk “ Σ2

kk.
(iv) Combine the last N ´ 1 snapshots, V N2 P RMˆpN 1́q with the matrices U and W

and calculate the optimal representation S P Rqˆq of the linear mapping A in the basis
spanned by the POD modes,

S “ UHV N2 WΣ´1.

(v) Obtain the eigenvectors Y P Cqˆq and the complex eigenvalues λk of S,

Syk “ λkyk

(vi) Compute the dynamic modes, Ψ P CMˆq,

ψk “ Uyk.

In matrix form, the full flow V N 1́
1 can now approximately be expressed as (Jovanović

et al. 2014):

pv1 v2 ¨ ¨ ¨ vN´1qloooooooooomoooooooooon
V

N 1́
1

« pψ1 ψ2 ¨ ¨ ¨ ψqqloooooooomoooooooon
Ψ

¨
˚̊
˚̋

a1
a2

. . .

aq

˛
‹‹‹‚

looooooooooooomooooooooooooon
Da ” diagpakq

¨
˚̊
˚̋

1 λ1 ¨ ¨ ¨ λN´1
1

1 λ2 ¨ ¨ ¨ λN´1
2

...
...

. . .
...

1 λq ¨ ¨ ¨ λN´1
q

˛
‹‹‹‚

looooooooooooooomooooooooooooooon
Vand

,

where Da contains the complex amplitudes, and the Vandermonde matrix Vand is deter-
mined by the eigenvalues λk of S. The amplitudes ak for the full-rank dynamic modes,
i.e. with rank q, are given by

Da “
`
pY HY q ˝ pVandV Handq

˘´1
diagpVandWΣHY q, (2.6)

where the overbar denotes the complex-conjugate of a matrix, and ˝ the Schur product.
Since the DNS data are real-valued, the eigenvalues appear either in complex-conjugate

pairs or are real, i.e. are non-oscillatory. In the latter case, they do not play any role for
the dynamics as they are present the entire time. The common logarithmic mapping
associates the eigenvalues with the frequency ωk and the decay rate σk of the DMD
mode, i.e.

ωk “ Implnpλkqq
∆t

, σk “ Replnpλkqq
∆t

, (2.7)
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with ∆t as the time step between the snapshots, i.e. the inverse sampling rate 1{fs.
However, we only consider flow fields obtained from nonlinear simulations, thus, all
the eigenvalues are expected to be neutrally stable, i.e. they lie on the unit circle for
sufficiently long time series. The reason is that instabilities become nonlinearly saturated
and all decaying processes are to disappear.
The approximate flow can herewith be represented by

vptq «
ÿ

k

ake
pσk`iωkqtψk. (2.8)

Naturally, the more DMD modes are included, the more accurate this approximation
becomes.
The sparsity-promoting algorithm by Jovanović et al. (2014) allows to further fix a

desired number of snaphots by still optimally approximating the flow, or to fix the quality
of approximation retaining a minimal number of modes. The best tradeoff between both
approaches depends on the respective objective of the considered problem. The crucial
point in the sparsity-promoting variant of DMD is to determine the amplitudes of the
reduced system, i.e. the respective sparse DMD modes. This amounts to solving the
optimisation problem

minimize
a

Jpaq ” ‖ΣWH ´ Y DaVand‖
2
F , (2.9)

where the subscript F indicates the Frobenius norm. Instead of solving eq. (2.9), sparsity-
promotion means to solve the optimisation problem by penalising the number of non-
zero elements in the unknown vector pakq. Using the l1-norm as a relaxed version of the
cardinality of pakq, we thus calculate

minimize
a

Jpaq ` ζ
ÿ

k

|ak|, (2.10)

with the sparsity-promoting parameter ζ. The quality of the sparse approximation can
be judged using the performance loss

%Πloss “ 100

d
Jpaq
Jp0q “ ‖V N 1́

1 ´ ΨDαVand‖F
‖V N 1́

1 ‖F
. (2.11)

Employing the sparsity-promoting variant of DMD also implies that we are able to select
and rank the DMD modes based on their importance to the total dynamics of the system.

3. Wall modes and stationary modes in rotating convection of water

First, we apply the DMD to rotating RBC of water with Pr “ 6.4, Ek “ 2.331ˆ10´4,
Γ “ 2 and varying Ra; the exact parameters are given in table 1. All DNS were performed
relatively close to the onset of convection, where linear stability analysis (Goldstein et al.
1993) and experimental data (Ecke et al. 1992; Ning & Ecke 1993; Zhong et al. 1991,
1993) are available. This makes it an appealing validation example and an ideal case to
prove the applicability of DMD to identify the dominant modes and their frequencies.
The numerical simulations are carried out in cylindrical tanks, where the conductive

state initially becomes unstable through a Hopf bifurcation leading to precessing wall
modes. The instabilities in this case are induced, as the name suggests, by the lateral
walls. In the limit of Ek Ñ 0 and neglecting the curvature of the cylinder, the critical
Rayleigh number is given by

Raw “ π2p6
?
3q 1

2Ek´1 ` 46.55Ek´ 2
3 . (3.1)
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with an onset frequency (Zhang & Liao 2009) of

rωw “ p2πq2
?
3p2 `

?
3q 1

2
Ek

Pr
´ 1464.53

Ek
4
3

Pr
. (3.2)

The frequency rωw is normalised with the system’s rotation rate Ω. The system’s rota-
tion time scale is 1{p2Ωq. Equations (3.1) and (3.2) are in agreement with the results
by Herrmann & Busse (1993), but provide a higher-order correction to account for the
no-slip boundary conditions at the top and bottom.
The onset in a confined container and for Pr ą 0.68 is always at a lower Rayleigh

number than the predicted stationary onset in an infinite layer. There the critical
Rayleigh number in the asymptotic limit of rapid rotation and for isothermal top and
bottom boundary conditions (Chandrasekhar 1961) is given by

Ra8
s “ 3

2 p2π4q 1
3Ek´ 4

3 . (3.3)

The result is asymptotically indistinguishable for no-slip and free-slip boundaries (Clune
& Knobloch 1993). Notably, both critical Rayleigh numbers, Raw and Ra8

s , are in-
dependent of Pr . For the parameters considered here, this gives Raw “ 1.49 ˆ 105,
rωw “ 1.53ˆ10´3, and Ra8

s “ 6.06ˆ105. However, the Ekman number is not sufficiently
low yet for the asymptotic solution to be very accurate (see also section 5). Thus, we
compare to the experimental value for the onset frequency obtained by Zhong et al.
(1993), with rωexp

0 “ 3.04 ˆ 10´3.
In figure 1 (a), the dimensionless heat flux, expressed in terms of the Nusselt number

Nu ” Pr
1
2Ra

1
2 γ

1
2uzT ´ γ´1BzT , and evaluated as an average over all horizontal planes,

is presented as a function of the reduced bifurcation parameter εpRaq “ pRa´Rawq{Raw
introduced by Ecke et al. (1992); Zhong et al. (1993). For ε À 2.9, Nu approximately
follows a linear scaling, which was also found experimentally by Zhong et al. (1993), who
reported a transition at ε « 2.8. This value is consistent with εpRasq “ 3.1, considering
the asymptotic nature of Ras and Raw, and the fact that both are derived for infinite
and half-infinite fluid layers, respectively. After the steady-state onset the slope of Nu
with respect to Ra first increases and ultimately becomes less steep.
With DMD we can further elucidate this transition. We extracted the dynamic modes

for a time period of 500 time units with a sampling period of fs “ 1. As to be
expected, more modes need to be retained for increasing Ra to still guarantee an accurate
representation of the flow, as shown in figure 1 (b). The most dominant mode corresponds
to a base or mean flow, as visualised in figure 2 (a) for Ra “ 1.55 ˆ 105 and ε “ 0.04,
which resembles the conductive state, while the azimuthal flow shows a mainly constant
retrograde flow, and a prograde corner flow, which is a Stewartson extension of the Ekman
layer (Kunnen et al. 2013). However, this flow is evidently dynamically not important.
The principal DMD mode is a wall-localised mode with an azimuthal wave number of
m “ 5, shown in figure 2 (b). This is in agreement with the onset mode predicted
by Goldstein et al. (1993) and experimentally found by Zhong et al. (1993). For increasing
Ra, at Ra “ 2.79ˆ105 and ε “ 0.88, the flow is still essentially described by a single wall
mode, although with m “ 7. All other modes are higher-order Fourier components (Chen
et al. 2012). For Ra “ 3.99ˆ105 and ε “ 1.68, the dominant mode is no longer purely wall-
localised, but faint columnar vortices appear in the centre. Nonetheless, the second most
important mode is still a clean m “ 7 wall mode. The frequencies of these modes have a
linear dependence on ε, i.e. rω9ε, as expected for a Hopf bifurcation. A linear fit yields an
onset frequency of rωDMD

0 “ 3.08 which is in respectable agreement with rωexp
0 , as shown

in figure 1 (c). The linear behaviour does not hold for larger ε, i.e. even higher Ra. Then,
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Figure 1. (a) Nusselt number versus the reduced bifurcation parameter ε “ pRa ´ Rawq{Raw

for Pr “ 6.4, Γ “ 2, Ek “ 2.33 ˆ 10´4. The dashed horizontal line corresponds to the purely
conducting state with Nu “ 1, the solid line to a linear scaling of Nu with ε, and the dashed
vertical line corresponds to the transition ε « 2.8 obtained experimentally by Zhong et al. (1993).
(b) Performance loss as a function of the number of retained DMD modes. (c) Frequencies
obtained from DMD. For all cases Πloss was fixed to 5%. The dashed horizontal line shows
the experimental onset frequency rωexp

0
“ 3.04 ˆ 10´3, and the dashed vertical line corresponds

to the transition ε « 2.8 obtained experimentally by Zhong et al. (1993). The filled symbols
indicate pure wall modes, and the solid line shows a linear fit through them. (d) Absolute values
of the DMD amplitudes versus normalised frequencies of the dominant modes guaranteeing a
maximum performance loss ofΠloss ď 10%. The dashed vertical line indicates rωexp

0
. The symbols

are the same as in figure (b).

all dynamic modes are mixed modes, i.e. they are nonlinear superpositions of wall modes
and body modes, as exemplary shown for Ra “ 6.49 ˆ 105 and ε “ 3.36 in figure 2 (c).
The inner bulk modes are associated with the stationary onset of convection, as discussed
in the introduction, and they are modulated by the wall modes. For Ra “ 7.69ˆ105 and
ε “ 4.17, presented in figure 2 (d), the bulk contribution and the wall mode contribution
are of comparable strength. Remarkably, the dominant mode is again an m “ 5 wall
mode. That the DMD does not decompose the wall modes and the bulk modes is well
substantiated by the fact that wall modes are indeed not restricted to the near-wall region
but are actually filling the entire convection cell, albeit with decreasing magnitude from
the sidewall to the centre. Thus, their motion also affects the bulk modes, and they
precess with the same frequency. For increasing Ra, the interior modes dominate over
the wall modes.

Ultimately, the flow becomes dominated by convective Taylor columns, as shown in
movie 3. At Ra “ 2.60 ˆ 106, ε “ 16.47 there are no longer modes present with
a pronounced wall localisation, and a multitude of dynamic modes is necessary to
accurately describe the flow. This can also be seen in the DMD spectra in figure 1 (d).
For Ra À 7.69 ˆ 105 there are only few retained modes with low frequencies, for



Prograde, retrograde, and oscillatory modes 11

(a) (b)

(c) (d)

Figure 2. Isosurfaces of the real part of the temperature T and the azimuthal velocity uφ of
the DMD modes for Pr “ 6.4, corresponding to water, Γ “ 2, Ek “ 2.33 ˆ 10´4. In each
case T is visualised on the left, uφ on the right. The isosurfaces are equidistantly distributed
between rTt, Tbs and r´max |uφ|,max |uφ|s, respectively. (a) Ra “ 1.55 ˆ 105, m “ 0 mode; (b)
Ra “ 1.55 ˆ 105, dominant m “ 5 wall mode; (c) Ra “ 6.49 ˆ 105, mixed m “ 7 mode; (d)
Ra “ 7.69 ˆ 105, mixed m “ 5 mode. See also the supplementary movies 1, 2 and 3 for the full
DNS.
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Figure 3. Space-time diagrams of the temperature T at the sidewall, r “ R and half height,
z “ H{2 for Pr “ 0.8, Ra “ 105, Γ “ 0.5, and (a) Ro “ 0.3: retrograde, (b) Ro “ 0.5: prograde.
See also the supplementary movie 4.

Ra “ 2.60ˆ106, most modes are almost exclusively at higher frequencies and, in addition,
span a rather broad range.

4. Identification of retrograde and prograde precession in SF6

For moderate Prandtl numbers and relatively large aspect ratios, as in the example
discussed in the previous section 3, it is clear that the precession direction of the
dominant modes is retrograde. However, theory (Goldstein et al. 1993, 1994) predicts
that this is no longer the case for small Prandtl numbers or aspect ratios. Unfortunately,
information about the precession direction is not directly evident from the extracted
DMD frequencies, because real-valued data are processed. Hence, the DMD eigenvalues
appear in complex-conjugate pairs, and there is always a corresponding positive frequency
to a negative one.
One way of identifying the direction of travel is to develop the modes in time according

to eq. (2.8). Yet, this method can get cumbersome for a larger number of modes, even
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Figure 4. (a) Performance loss %Πloss as a function of the number of retained DMD modes
NDMD for Pr “ 0.8, Ra “ 105, Γ “ 0.5. Triangles mark Ro “ 0.3 and circles mark Ro “ 0.5. (b)
Entire spectrum, i.e. amplitudes |ak| versus frequency rω, shown with grey open symbols. The
amplitudes corresponding to a loss rate of Πloss “ 1% are demarcated by closed black symbols.
Triangles mark Ro “ 0.3 and circles mark Ro “ 0.5. In addition, we indicate the oscillating
modes for Ro “ 0.5 with black open circles.
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Figure 5. Isosurfaces of the real part of the temperature T and the azimuthal velocity uφ of
the DMD modes for Pr “ 0.8, corresponding to SF6, Ra “ 105, and Γ “ 0.5. The upper panels
(a)–(c) show the modes for Ro “ 0.3, the lower panels (d)–(f) for Ro “ 0.5, with the azimuthal
wave numbers (a), (d) m “ 0; (b), (e) m “ 1; and (c), (f) m “ 6. In each case T is visualised
on the left, uφ on the right.

though confirming that the precession direction is immanent in the formulation of the
DMD modes.
Here, we will present an alternative identification criterion exemplified on a fluid with

Pr “ 0.8, corresponding to SF6, in a slender cylinder with Γ “ 1{2 and at Ra “ 105.
This set-up constitutes a very illustrative example, because it displays a topologically
simple m “ 1 mode that, depending on the rotation rate, either precesses prograde
or retrograde (Horn & Shishkina 2015). More precisely, at Ro “ 0.3 the precession is
prograde, and at Ro “ 0.5 the precession is retrograde, as can clearly be seen in figure 3
and in movie 4. Furthermore, there is no precession for Ro “ 0.367. It is worth noting
that prograde modes are not restricted to low Pr , but have also been found in water
with Pr “ 4.38 for Γ “ 0.5 by Weiss & Ahlers (2011b). They are likely related to the
prograde precessing body modes discussed by Goldstein et al. (1993).
Due to the relatively simple flow, the sparsity-promoting DMD algorithm retains only
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three dynamic modes to already guarantee a loss rate of less than %Πloss “ 1%, and
the amplitudes of the modes all lie on the same branch, see figure 4. Owing to the
fact that there is only one travelling periodic wave, the first nine modes in either case
can be interpreted as Fourier components belonging to the same structure (Chen et al.
2012). This is also supported by the spatial structures visualised by the real part of the
temperature and the azimuthal velocity in figure 5. The zeroth modes are presented in
figures 5 (a) and (d) and are the modes with zero frequency. They do not, formally,
contribute to the dynamics of the flow; nonetheless, they are instructive. They indicate
not only that the bulk flow is retrograde for Ro “ 0.3 and prograde for Ro “ 0.5, but
also that the mean temperature gradient is destabilising for Ro “ 0.3 and, remarkably,
stabilising for Ro “ 0.5. The most dominant m “ 1 modes, shown in figures 5 (b) and
(e), are visually indistinguishable and provide no hint on the precession direction. The
higher m “ 6 modes, displayed in figures 5 (c) and (f), show that the vertical structure
is in fact different for Ro “ 0.3 and Ro “ 0.5, but because of their low amplitudes they
only exert an insignificant influence on the actual flow.
To develop a criterion for the precession direction, we start with equation (2.8) which

describes the approximate flow as a superposition of all modes, and only look at the
temporal evolution of the k-th mode. Since we consider a nonlinear problem, we can
further assume that the decay rate is negligible; a single mode can then be expressed as

Ψk “ akψk exp piωktq (4.1)

“ |ak| exp piArgpakqq|ψk| exp piArgpψkqq exppiωktq. (4.2)

Here, ak and ψk are represented by their complex modulus and argument. The argument
for any complex number z “ x ` iy is given by Argpzq “ atan2py, xq and defined in
the principal interval p´π, πs. In the following, we will only focus on the physical real
part RepΨkq, although the analogous argumentation can be made for the imaginary part
ImpΨkq. Both exhibit the same precession direction. We have

RepΨkq “ |ak||ψk| cos
`
ωkt ` Argpψkq ` Argpakq

˘
(4.3)

which can be interpreted as a standard travelling wave equation. Argpakq is a constant
and, hence, merely represents a phase shift θ. Therefore, it is generally the phase between
the real part and the imaginary part of the DMD mode that determines the direction of
travel.
We can make further assumptions for the azimuthally travelling waves in rotating

Rayleigh–Bénard convection. First, we separate ψk into functions of r and z, and φ, i.e.
ψ “ fpr, zqgpφq. Note that in our case, typically, Repfpr, zqq « Impfpr, zqq, and both
are time independent. Secondly, the waves are known to be travelling in the azimuthal
direction, consequently Argpgpφqq is required to be a linear function of φ, and eq. (4.3)
can be written as

RepΨkq “ |ak||ψk| cos
`
ωkt` φ BφArgpgpφqq ` Argpfpr, zqq ` θ

˘
. (4.4)

Accordingly, BφArgpgpφqq corresponds to a wavenumber, and if ωkBφArgpgpφqq ą 0,
the mode precesses retrograde; conversely, if ωkBφArgpgpφqq ă 0, the mode precesses
prograde.
We will demonstrate this criterion on the dominant dynamic mode pairs for the

prograde and retrograde case in SF6, visualised by their temperature in figure 6. In fig-
ure 6(a), we can already visually infer that there is a phase of ´π

2 between the real and the
imaginary part; in combination with the positive DMD frequency, this means the mode is
retrograde. In more detail, we can describe the mode in figure 6 (a) by Repψq9 cospφq and
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(a) rω “ `1.11 ˆ 10´2

RepψpT qq ImpψpT qq

(b) rω “ ´1.11 ˆ 10´2

RepψpT qq ImpψpT qq

(c) rω “ `1.50 ˆ 10´2

RepψpT qq ImpψpT qq

(d) rω “ ´1.50 ˆ 10´2

RepψpT qq ImpψpT qq

Figure 6. Cross-section at half height, z “ H{2, of the dominant dynamic mode with contours
between r´max |ψpT q|,max |ψpT qs, the left panel shows the real part of the temperature,
RepψpT qq, the right panel shows the imaginary part of the temperature, ImpψpT qq; (a), (b) for
the retrograde mode for Ro “ 0.3, with (a) positive and (b) negative DMD frequency associated
with it; (c), (d) the prograde mode for Ro “ 0.5 with (c) positive and (d) negative frequency,
respectively.

Impψq9 cospφ´π
2 q. From this it follows that Argpgq « atan2

` cospφ´ π

2
q

cospφq

˘
“ atan2

` sinpφq
cospφq

˘
“

atan2ptanpφqq “ φ, which means m “ Bφφ “ `1. Similarly, in figure 6 (b), the phase

is π
2 and the DMD frequency is negative, or equivalently Argpgq « atan2

` cospφ` π

2
q

cospφq

˘
“

atan2
`
´ sinpφq

cospφq

˘
“ ´φ, which means m “ ´1. Hence, also this mode is retrograde, as it

must be, since it is just the complex-conjugate twin to the mode shown in figure 6 (a).
In an analogous way, we can conclude that the modes presented in figure 6 (c) and (d)
are both prograde.
Besides these ordinary precessing waves, we have also found oscillating m “ 1 modes.

These are indicated by open circles for Ro “ 0.5 in figure 4 and are shown in movie
5. Despite the fact that they only have an amplitude of |ak| « 10´5, making them
inconsequential for the overall dynamics of the flow, they are fascinating since oscillating
convection is a phenomenon associated only with rotating convection of small-Prandtl-
number fluids, and often the classical result for an infinite layer by Chandrasekhar
(1961) is invoked stating that it can only occur for Pr ď 0.68. However, as mentioned
by Goldstein et al. (1994), for a confined container the upper bound for oscillatory
convection is Pr “ 1. We have verified that they are not a numerical artefact caused
by insufficient resolution by conducting the DNS on a finer mesh with Nr ˆNφ ˆNz “
20ˆ 38ˆ 48 volume cells which yielded the same result. Furthermore, we confirmed that
the eigenvalues associated with these modes lie on the unit circle, i.e. they are not just
transients. Consequently, we believe that these are real oscillatory modes, which makes
this a quite striking finding.

5. Oscillatory modes and wall modes in liquid gallium

Utilising the results from the previous sections 3 and 4, we are now equipped with the
tools to address the more complex flows in liquid metals. Here we will focus on a fluid
with Pr “ 0.025, corresponding to liquid gallium or mercury, in a cylindrical container
with an aspect ratio of Γ “ 1.87. The exact parameters for all performed DNS are given
in table 1.

5.1. Onset, oscillatory convection and wall modes in low-Prandtl-number fluids

The onset of convection for small Prandtl numbers can occur in a different manner than
in higher-Prandtl-number fluids discussed in section 3, namely in the form of oscillating
convection. For Pr ď 0.68 the critical Rayleigh number in an infinite layer and in the
asymptotic limit of rapid rotation is then given by

Ra8
o “ 3

2

p2πPr q 4
3

p1 ` Prq 1
3

Ek´ 4
3 , (5.1)
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Figure 7. (a) Critical Rayleigh number for the onset of rotating convection in a Pr “ 0.025
fluid. Predictions are shown for the stationary and oscillatory onset in an infinite layer, Ra8

s

(dashed-triple-dotted line), and Ra8

o (short-dashed line), by Chandrasekhar (1961); for the onset
in a cylinder with Γ “ 2 as obtained by the numerical stability analysis by Goldstein et al. (1994)
(dashed-dotted line); for the onset of convection-driven oscillatory inertial waves, Raa

o , derived
by asymptotics for a Γ “ 2 (dotted line) and a Γ “ 1.87 (solid line) cylinder, respectively, and
for the onset of wall modes, Raw, (long-dashed line) by Zhang & Liao (2009). The stars mark
our simulations, and the grey shaded area indicates the parameter region where convection is
precluded. (b) Corresponding predictions for the onset frequencies. In addition, results obtained
via a variational principle for the infinite layer are marked by crosses (Chandrasekhar 1961). For
Γ “ 2, Pr “ 0.025, the preferred onset mode for Ek ą 3.125 ˆ 10´2 is a steady m “ 0 mode,
indicated by the grey shaded area (Goldstein et al. 1994).

with an onset oscillation frequency of

rω8
o “ p2πq 2

3
p2 ´ 3Pr2q 1

2

Pr
1
3 p1 ` Pr q 2

3

Ek
1
3 , (5.2)

which is again independent of the velocity boundary conditions (Chandrasekhar 1961;
Clune & Knobloch 1993). Zhang & Liao (2009) developed an asymptotic theory for low
Prandtl numbers, rapid rotation rates and accounting for the cylindrical confinement.
Based on the assumption that the onset is in the form of large-scale convection-driven
inertial oscillatory waves, for brevity, we will refer to them as oscillatory modes, the
critical Rayleigh number can herewith be obtained by minimising

Raao “
«

pm2 ` π2γ2q
` |σ0|

1
2

γ
p1 ´ σ2

0q 1
2 ` p1 ` σ0q 3

2 ` p1 ´ σ0q 3
2

˘

4m2p2p1 ´ σ2
0qEkq 1

2

` π4γ2 `mπ2pm´ σ0q
4m2σ2

0p1 ´ σ2
0q

´ σ0
`
p1 ` σ0q 1

2 ` p1 ´ σ0q 1
2

˘

2mp2p1 ´ σ2
0qEk q 1

2

ff ¨
˝

Nÿ

n“1

`
π2 ` β2

mn

γ2

˘
Qmn

`
π2 ` β2

mn

γ2

˘2 `
`
σ0Pr

Ek

˘2

˛
‚

´1

(5.3)

over m and l. Here σ0 is a solution for different m and l of

ξJm´1pξq ` σ0

|σ0|

ˆb
1 `

`
ξ
γπ

˘2 ´ 1

˙
mJmpξq “ 0, ξ “ γπ

b`
1
σ2
0

´ 1
˘
,
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where Jm denotes Bessel functions of the first kind, βmn are the roots of their derivatives,
and Qmn “ pπγβmnq2{r2σ2

0pξ2 ´ β2
mnq2pβ2

mn ´ m2qs. Equation (5.3) also yields the
structure, i.e. the azimuthal wave number mc and the number of nodes lc in the radial
direction, for the onset mode. The onset frequency is given similarly by

rωao “ 2σ0 ´ p2p1 ´ σ2
0qEk q 1

2

π2γ2 `mpm´ σ0q

«
pm2 ` π2γ2q

ˆ
|σ0|

1
2

γ
p1 ´ σ2

0q 1
2 ´ p1 ` σ0q 3

2 ` p1 ´ σ0q 3
2

˙

` 2σ0m
`
p1 ` σ0q 1

2 ´ p1 ´ σ0q 1
2

˘
`

Nÿ

n“1

2
5
2mσ0p1 ´ σ2

0q 1
2RaaoPrEk

´ 1
2Qmn`

π2 ` β2
mn

γ2

˘2 `
`
σ0Pr

Ek

˘2

ff
. (5.4)

We have calculated the critical Rayleigh numbers Ra8
o and Raao , as well the corresponding

onset frequencies rω8
o and rωao for Pr “ 0.025 and, as used in our studies, they are shown

as a function of the inverse Ekman number in figure 7. We also included the stability
results by Goldstein et al. (1994) obtained for the same Pr and a very similar Γ “ 2. They
indicate that the onset Ra and rω can be predicted well by the asymptotic Ek Ñ 0 ap-
proximation in the rapid rotation parameter range we are focussing on. For slow rotation
rates, Ek ď 3.125ˆ10´2, the onset is, however, in the form of an axisymmetric steady, i.e.
non-oscillatory,m “ 0 mode (Goldstein et al. 1994). Only for smaller Ek , convection sets
in by oscillatory inertial body modes with wavenumbers always greater than zero. We also
give the onset frequencies for an infinite layer and no-slip velocity boundary conditions
calculated by a variational principle following Chandrasekhar (1961). In addition, the
critical Rayleigh numbers for the stationary onset and the onset of wall modes together
with the corresponding onset frequencies are presented in figure 7; they are, however,
independent of Pr .
Based on the above analysis, simulations in the purely oscillatory range and in the

oscillatory and wall-mode range were conducted, and they are denoted by stars in
figure 7 (a); the corresponding control parameters are given in table 1. The Rayleigh
number range may seem rather small but, unlike in higher Pr fluids, the flow morphology
changes very rapidly with increasing Ra due to the multitude of unstable modes and their
interaction for Ra only slightly above onset at Rao. Thus, even below Ras, which is over
an order of magnitude higher than Rao, the flow can become extremely complex and
even turbulent.

5.2. Direct numerical simulations

We will discuss two DNS in depth, that are representative for the two characteristic
forms of rapidly rotating convection in a liquid metal in our considered parameter range.
They are visualised by their temperature T and the azimuthal velocity uφ in figures 8
and 9, respectively, and in corresponding movies 6 and 7. The first one is in the purely
oscillatory regime at Ro “ 0.115, Ra “ 8.08 ˆ 105, and Pr “ 0.025, which means
Ek “ 2 ˆ 10´5. The case is close to onset, i.e. Ra “ 1.29Raao . As seen in figure 8 (a), the
temperature shows only small deviations from the conductive state but in the form of
wavy oscillations. On the other hand, the velocity field in figure 8 (b), visualised by its
azimuthal component, is comparatively complex, and, unlike water discussed in section 3,
it is evidently not dominated by a single mode. This is characteristic for small Pr fluids.
Due to the thermal diffusivity being much greater than the viscosity, the rather large
velocity fluctuations are not strongly correlated with the temperature field and, as a
consequence, the heat transport is not efficient. The latter is even further suppressed
by the rotational constraint. The Nusselt number Nu as a function of Ra{Raao is shown
in figure 10. Here Nu “ 1.04. The second case is at a comparable Rossby number,
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(a) (b)

Figure 8. Instantaneous isosurfaces obtained by DNS for
Pr “ 0.025, Ra “ 8.1 ˆ 105, Ek “ 2 ˆ 10´5, i.e. in the purely oscillatory regime; (a)
the temperature T , (b) the azimuthal velocity uφ. The isosurfaces are equidistantly distributed
between rTt, Tbs and r´max |uφ|,max |uφ|s, respectively. See also the supplementary movie 6.

(a) (b)

Figure 9. Similar to figure 8 but for Pr “ 0.025, Ra “ 8.0ˆ106, Ek “ 5ˆ10´6, i.e. when wall
modes and oscillatory modes coexist. Isosurfaces for (a) the temperature T , (b) the azimuthal
velocity uφ. See also the supplementary movie 7.

Ro “ 0.089 and a Rayleigh number above wall-mode onset, i.e. Ra “ 1.23Raw. That
is, Ra “ 8.0 ˆ 106 “ 2.30Raao , Pr “ 0.025 and, hence, Ek “ 5 ˆ 10´6. The Nusselt
number is Nu “ 1.21. The temperature T , visualised in figure 9 (a), shows clear signs
of a wall mode, however, it is not that apparent in the azimuthal velocity field uφ in
figure 9 (b). Instead, the interior is filled with an irregular pattern of oscillatory columns
and cylinder-scale inertial waves, though wall-mode-like features are also present.

Visual evidence already suggests that the flow in liquid metals is multi-modal and
dynamically very rich, even close to onset. But we remark that in none of the simulations
any signs of quasi-steady columns were found as they are typical for moderate-Prandtl-
number fluids (e.g. Horn & Shishkina 2014). Instead, for Ra “ 3.6ˆ106 and Ek “ 2ˆ10´5

with Nu “ 1.95, i.e. well below Ras, the flow is already geostrophically turbulent.



18 S. Horn and P.J. Schmid

1 2 3 4 5 6

1.0

1.2

1.4

1.6

1.8

2.0(a)

Ra{Raa
o

Nu

Ra “ 8.1 ˆ 105, Ek “ 2 ˆ 10´5

Ra “ 3.6 ˆ 106, Ek “ 2 ˆ 10´5

Ra “ 2.5 ˆ 106, Ek “ 1 ˆ 10´5

Ra “ 4.0 ˆ 106, Ek “ 1 ˆ 10´5

Ra “ 4.5 ˆ 106, Ek “ 5 ˆ 10´6

Ra “ 8.0 ˆ 106, Ek “ 5 ˆ 10´6

1 10 100

0

10

20

30

40

50(b)

NDMD

%Πloss

Figure 10. (a) Nusselt number Nu as a function of the Rayleigh number Ra normalised by the
critical Ra for the onset of oscillatory convection Rao

a according to eq. (5.3) for Pr “ 0.025.
Empty symbols correspond to purely oscillatory cases, filled ones to cases where additionally
wall modes are present. (b) Performance loss as a function of the number of retained DMD
modes. Symbols correspond to the same cases as in figure (a).

5.3. Dynamic modes

With the sparsity-promoting variant of DMD we can quantify and characterise the
flows in liquid metals in more detail. We have used 400 snapshots with a sampling rate of
fs “ 1 and performed the DMD for all DNS. In figure 10 (b) we show %Πloss as a function
of the number of retained dynamic modes NDMD. As pointed out in section 2.2, modes
extracted from real-valued data appear either as conjugate-complex dynamic mode pairs
or as dynamically irrelevant zero frequency modes, here the first mode is always the mean
flow. Hence, for example, NDMD “ 21 corresponds to 10 unique DMD modes. Contrary
to the simulations in water (see figure 1(b)) and in SF6 (see figure 4(a)), the decrease in
%Πloss is not very steep. Nonetheless, typically a few modes still suffice to describe the
flow accurately in a least-squares sense.
In figure 11 we show the full DMD spectra and indicate on the one hand the first

ten dominant dynamic modes and on the other hand the modes for a fixed accuracy
of %Πloss ď 10%. Furthermore, the predictions for the onset frequencies by oscillatory
inertial and by wall-localised travelling waves according to eqs. (5.4) and (3.2) are shown.
In the purely oscillatory simulations, nearly all dominant modes have high frequencies
very close to rωac . Only for the simulations at a higher criticality, at Ra “ 2.5 ˆ 106 “
1.68Raao and Ek “ 1 ˆ 10´5, few low-frequency modes are selected which correspond to
body modes. For the mixed oscillatory and wall-mode simulations, the most dominant
modes are low-frequency modes that are also close to the theoretical predictions for rωw.
Not all modes are retrograde; in fact, there are also prograde modes, as seen in figure 13.
Nonetheless, the high-frequency modes are just about as important, and for Ra “

3.6 ˆ 106 “ 0.23Ra8
s and Ek “ 2 ˆ 10´5, the spectrum is almost entirely broadband.

The broadband signal suggests that the simulation is in the range of weakly or emerging
geostrophic turbulence, despite being well below Ra8

s . This is in agreement with the
results obtained by Aurnou et al. (2015) (see their figure 14), who found developed
geostrophic turbulence for Pr “ 0.0235 at the critical Rayleigh number by numerically
solving asymptotically reduced equations for rapidly rotating convection (see e.g. Sprague
et al. 2006). Evidence for the onset of geostrophic turbulence below Ra8

s was also found
experimentally by Bertin et al. (2017) for very similar control parameters to the DNS
presented here.
In the following, we will discuss the modes for the previously mentioned representative

cases in detail, with the spectra shown in figures 11 (a) and (f), respectively.
In the oscillatory case, only ten modes guarantee a loss rate of less than 10%, here
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Figure 11. DMD amplitudes |ak| versus absolute value of the normalised frequencies rω. The grey
circles are for all DMD modes, the black circles are for the 10 dominant modes, the filled symbols
are for Πloss ď 10%. In addition, characteristic modes that are visualised in figures 12–14
and 15–17 and shown in the supplementary movies 8–13, are marked in figures (a) and (f). The
vertical dotted lines indicate the theoretical predictions for the oscillatory and wall-mode onset
frequencies, rωa

o and rωw, according to eqs. (3.2) and (5.4), respectively.

%Πloss “ 9.75%. Their frequencies are all very close to the theoretical prediction of rω “
0.356. Most of these modes, including the most dominant one, are retrograde precessing
large-scale body modes with oscillatory columns, as visualised in figure 12 and in movie
8; but prograde modes exist as well, shown in figure 13 and movie 9. This is in general
accordance with the results of Goldstein et al. (1994), who predicted a multitude of modes
that have critical Rayleigh numbers very close to each other and prograde modes being
very likely for small-Prandtl-number fluids. In the prograde case, it is apparent that the
hot oscillatory columns get shielded by cold fluid and the cold oscillatory columns get
shielded by hot fluid. Furthermore, the oscillation is also observable from the azimuthal
velocity field, i.e. if the upper part of the oscillatory column has a left-handed motion,
then the lower part is right-handed, and vice versa.
Even more extraordinary, we found an approximately axisymmetric torsional mode, i.e.
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(a) (b)

Figure 12. Isosurfaces of the real part of (a) the temperature T and (b) the azimuthal
velocity uφ of a retrograde DMD mode for Ra “ 8.1 ˆ 105, Ek “ 2 ˆ 10´5, Pr “ 0.025.
The isosurfaces are equidistantly distributed between r´max |RepψpT qq|,max |RepψpT qq|s and
r´max |Repψpuφqq|,max |Repψpuφqq|s, respectively. See also the supplementary movie 8.

(a) (b)

Figure 13. Similar to figure 12, but for a prograde mode. See also the supplementary movie 9.

anm “ 0 mode consisting of concentric circular structures with radial wavenumber of l “
2, presented in figure 14. Also in this case, oscillatory columns are simultaneously present.
As seen in movie 10, the mode essentially does not precess in the azimuthal direction and
also shows no travelling in the radial direction. Instead, the mode completely collapses
at one quarter of a period, entirely rebuilds itself at half a period (but with the opposite
sign in the temperature and the azimuthal velocity field), disintegrates again at three
quarters and is then restored to its original form after one full period. This type of mode
cannot be the preferred onset mode for the considered geometry and Prandtl number,
according to Goldstein et al. (1994) and Zhang & Liao (2009). However, the fact that it
belongs to the important dynamic modes might suggest that, for particular parameter
combinations, its growth rate can be sufficiently high to render the mode predominant.
Typically, these torsional modes are associated with spherical geometries (Sánchez et al.
2016) and magnetohydrodynamic flows (Gillet et al. 2010) and are very common in
geophysical settings, but here they arise very naturally in a purely thermally driven
convection set-up in a cylinder.
In the mixed oscillatory and wall-mode case, at Ra “ 8.0ˆ106 and Ek “ 5ˆ10´6, more
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(a) (b)

(c) (d)

Figure 14. Similar to figure 12, but for the axisymmetric oscillatory mode. (a), (b) At
the beginning of the oscillation period; (c),(d) at half of the oscillation period. See also the
supplementary movie 10.

(a) (b)

Figure 15. Isosurfaces of the real part of (a) the temperature T and (b) the azimuthal velocity
uφ of a retrograde m “ 4 DMD wall-mode for Ek “ 5 ˆ 10´6, Ra “ 8.0 ˆ 106, Pr “ 0.025.
The isosurfaces are equidistantly distributed between r´max |RepψpT qq|,max |RepψpT qq|s and
r´max |Repψpuφqq|,max |Repψpuφqq|s, respectively. See also the supplementary movie 11.
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(a) (b)

Figure 16. Similar to figure 15, but for a retrograde m “ 5 DMD wall-mode coupled to an
oscillatory body-mode. See also the supplementary movie 12.

(a) (b)

Figure 17. Similar to figure 15, but for a pure oscillating DMD-mode. See also the
supplementary movie 13.

DMD modes are necessary to ensure a comparable good approximation of the flow; in
fact, we need 36 modes for a loss rate of less than 10%, more specifically, %Πloss “ 9.82%.
The flow is dominated by a retrograde precessingm “ 4 wall mode, shown in figure 15 and
in movie 11. The mode with the second highest amplitude is merely a higher harmonic
with m “ 8. Both the temperature and the velocity field are completely wall-localised
in this case. The m “ 4 mode has a frequency of rω “ 0.051 which is more than twice
as high as the predicted wall-mode onset frequency of rωw “ 0.021, as evident from
figure 11 (f). This suggests that, in contrast to water, the linear stability results become
invalid rather quickly for Rayleigh numbers as low as 1.23Raw. This result is confirmed by
experiments in liquid gallium by Bertin et al. (2017) at very similar control parameters.
Their temperature spectra obtained by point temperature probes also only shows a strong
peak at rω « rωw for Ra « Raw, whereas for slightly higher Ra the obtained frequency is
approximately twice as high as rωw.
The likely reason for this behaviour is nonlinear interaction and the coupling of the

oscillatory modes to the wall modes. Most of the low-frequency modes carry thermally
the signature of a wall mode and kinematically the one of an inertial oscillatory mode.
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An example is shown in figure 16 and in movie 12. The mode shows a pronounced m “ 5
wall mode travelling in the retrograde direction in the temperature field; however, the
velocity field shows a superposition of a wall mode and an interior oscillatory structure. In
fact, the DMD modes that are close to the predicted onset frequency resemble this type
of mixed mode, despite the fact that they were not selected by the sparsity-promoting
algorithm and hence are not relevant for the description of the global flow dynamics.
The oscillatory modes, with one shown in figure 17 and in movie 13, are similar to the

modes discussed above; all of them have frequencies close to the theoretical prediction of
rωao “ 0.236.
The comparable amplitudes of all modes, except the most dominant m “ 4 mode,

also demonstrate that the flow in liquid metals is multi-modal with a variety of distinct
modes in a rather broad range of frequencies, even only slightly above criticality and
well below the stationary onset. Ultimately, this will give way to geostrophic turbulence.
However, the regular pattern of convective Taylor columns – the well-known feature of
rotating convection in moderate-Prandtl-number fluids – is entirely missing.

6. Summary and concluding remarks

We have investigated the flow structures in rotating Rayleigh–Bénard convection
in different fluids with an emphasis on liquid metals by utilising the dynamic mode
decomposition (DMD) (Schmid 2010). DMD is an effective tool to analyse flows and
thereby understand their fundamental physics. In its sparsity-promoting variant, DMD
is able to rank structures by their importance to the entire flow dynamics, and, in line
with this, fix the accuracy of approximation given by a superposition of a subset of the
dynamic modes. One of the major advantages of DMD over POD that we have exploited
here, is that the extracted structures not only have a single frequency content, but that
we are able to predict their temporal evolution. We have shown, moreover, that it is
the complex phase between the real part and the imaginary part of the dynamic modes
that determines the direction of travel. In the case of rotating convection in cylindrical
containers a simple criterion was derived to decide whether the precession is prograde or
retrograde.
For validation purposes, we have first applied DMD to the well-understood example of

rotating convection in a fluid with Pr “ 6.4, corresponding to water, in a tank with an
aspect ratio Γ “ 2, rotating with a constant Ek “ 2.3 ˆ 10´5, and varying the Rayleigh
number between 1.55 ˆ 105 ď Ra ď 2.60 ˆ 106. For moderate Ra a few dynamic modes
suffice to accurately describe the flow. In agreement with previous experiments by Zhong
et al. (1991, 1993) and linear theory by Goldstein et al. (1993), we found that, close to
onset, convection occurs by wall-localised retrograde precessing waves whose frequency
increases linearly with ε, indicating that they originated from a Hopf bifurcation. With
increasing Rayleigh number Ra, the interior of the container gradually fills with columnar
vortices. These result in mixed modes, with the bulk and the wall region having the
same frequency content, i.e. they do not get separated by the DMD. Eventually, for
the highest Ra investigated here, the well-known regular pattern of convective Taylor
columns prevails.
As a second example, we studied rotating RBC in a Pr “ 0.8 fluid confined in a

cylinder with Γ “ 0.5, for two specific rotation rates Ro “ 0.3 and Ro “ 0.5. In this
case, the dominant structure is an m “ 1 body mode, however, the small change in Ro
leads to either a prograde or a retrograde precession. Thus, it constitutes an ideal case
to corroborate that it is the complex argument of the dynamic modes that contains the
information about the direction of travel.
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In the third and main part, we considered thermal convection in a fluid with Pr “ 0.025
corresponding to a liquid metal at rapid rotation rates of Ek “ 2ˆ10´5, 1ˆ10´5, and 5ˆ
10´6, respectively. In contrast to moderate-Prandtl-number flows, we demonstrated that
there is a variety of distinct modes already close to onset in this case. A comparatively
small variation of Ra, i.e. less than a decade, yields a significant change of the flow
morphology. DMD proved to be especially well-suited for these low Pr flows, since there
exist various inherent instability processes that are linked to characteristic frequencies.
The two archetypes occurring in the considered parameter range describe (i) purely
oscillatory convection and (ii) mixed oscillatory and wall-mode convection. We discussed
them on two examples in more detail. For Ra “ 8.1 ˆ 105 and Ek “ 2 ˆ 10´5, the
oscillatory case, DMD revealed that there are simultaneously pronounced prograde and
retrograde modes. Kinematically they appear as cylinder-scale inertial waves, thermally
as oscillatory columns. Moreover, we obtained a quasi-axisymmetric torsional mode,
which is the first observation of this type of mode in a cylinder. All the dynamic modes
show high frequencies close to the predicted onset frequency according to Zhang & Liao
(2009). For Ra “ 8.0ˆ106 and Ek “ 5ˆ10´6, in the mixed-mode case, we found that low-
frequency wall modes dominate the flow. Furthermore, there are also oscillatory inertial
modes present, very similar to the purely oscillatory case. Some of these mixed modes
consist of a nonlinear superposition of wall modes and inertial modes. The flow is hence
multi-modal at very low supercriticality. With increasing Ra, the flow becomes more
chaotic and ultimately gives way to geostrophic turbulence, likely before the classical
prediction for the stationary onset (Aurnou et al. 2015; Bertin et al. 2017).

DMD is equally applicable to flow fields that are obtained experimentally, e.g. by PIV
(Schmid 2010; Schmid et al. 2011). However, their acquisition is extremely difficult for
convection in visually opaque liquid metals, rather data typically comes from point wise
measurements. DNS in combination with DMD is invaluable here since it allows us to
directly link frequencies, e.g. from time series of temperatures, to an actual flow structure.
A comparative study with laboratory experiments in liquid gallium to demonstrate this
point is planned.

Considering rotating RBC in a Pr “ 0.025 fluid as a proxy for convection in the
liquid cores of planets, our findings suggest that convective Taylor vortices are unlikely
to be responsible for planetary dynamos, as these structures are completely absent in
our simulations. Yet, they are the key ingredient of most present-day dynamo models
(Christensen 2011; Jones 2011). This is consistent with the fact that the typical length-

scale of Taylor columns in their primary form is too small, as they scale with Ek1{3

(Aurnou & King 2017).

However, this does not rule out that columnar large-scale vortices (LSVs) are formed
through an inverse cascade (Aurnou et al. 2015; Favier et al. 2014; Guervilly et al. 2014;
Julien et al. 2012b; Kunnen et al. 2016; Rubio et al. 2014; Stellmach et al. 2014). In
fact, our simulations are suggestive that the formation of LSVs is facilitated in a low
Prandtl number fluid, because the pathway to geostrophic turbulence is not through
convective Taylor columns that first have to loose their sleeves (Julien et al. 2012b).
Simulations at higher Ra and, hence, deeper in the geostrophically turbulent regime, will
be subject to future studies and will enable us to test this hypothesis. Nevertheless, using
the estimates of PrC „ 10´2 and EkC „ 10´15 for Earth’s core yields critical Rayleigh
number estimates of Ra8

s „ 9ˆ1020 and Ra8
o „ 4ˆ1018. Thus, assuming a core Rayleigh

number of RaC « 1020, we argue that the DNS results presented here might be close to
the correct regime, at least, in terms of supercriticality.

On the other hand, we find that convection in Pr “ 0.025 exhibits many of the
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features not only found in the core, but also in many other low-Prandtl-number geo-
and astrophysical settings. These are, for example, the low-frequency wall modes that
modulate the oscillatory waves, that resemble the large-scale modulation of waves at the
core-mantle-boundary, the retrograde drift of the magnetic flux patches that is likely
associated with the motion in the fluid part of the Earth’s core (Finlay & Jackson 2003;
Hori et al. 2015), the prograde motion of waves in the Sun (Gizon & Birch 2005) and
even the torsional modes (Gillet et al. 2010; Roberts & Aurnou 2012). Typically, these
motions are all associated with systems that are strongly influenced by magnetic fields;
however, here we have shown that such behaviour can appear in a purely thermal setup.
Thus, understanding the flow, in particular, the coherent flow structures in the present
very basic configuration, is essential and a necessary first step for gaining more insight
into the far more complex geophysical and astrophysical flows.

SH acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG) under grant
HO 5890/1-1. We also gratefully acknowledge the Leibniz-Rechenzentrum in Garching
for providing computational resources on SuperMUC.
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