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By means of Direct Numerical Simulations (DNS) we investigate the effect of a tilt angle
β, 0 6 β 6 π/2, of a Rayleigh–Bénard convection (RBC) cell of the aspect ratio 1, on
the Nusselt number Nu and Reynolds number Re. The considered Rayleigh numbers Ra
are from 106 to 108 and Prandtl numbers are from 0.1 to 100 and the total number of
the studied cases is 108. We show that the Nu(β)/Nu(0) dependence is not universal and
is strongly influenced by a combination of Ra and Pr . Thus, with a small inclination β
of the RBC cell, the Nusselt number can decrease or increase, compared to that in the
RBC case, for large and small Pr , respectively. A slight cell tilting may not only stabilise
the plane of the large-scale circulation (LSC) but can also enforce one for cases when the
preferred state in the perfect RBC case is not an LSC but a more complicated multiple
roll state. Close to β = π/2, Nu and Re decrease with growing β in all considered cases.
Generally, the Nu(β)/Nu(0) dependence is a complicated, non-monotonic function of β.
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1. Introduction

Fluid motion driven by an imposed temperature gradient is a common phenomenon in
nature and is important in many industrial applications. In the classical models of thermal
convection, i.e. Rayleigh–Bénard convection (RBC) and vertical convection (VC), the
fluid is confined between a heated and a cooled plate which are parallel to each other.
The induced flow is determined by the Rayleigh number Ra ≡ αg∆H3/(κν), Prandtl
number Pr ≡ ν/κ and the aspect ratio of the container Γ ≡ D/H. Here α denotes the
isobaric thermal expansion coefficient, ν the kinematic viscosity, κ the thermal diffusivity
of the fluid, g the acceleration due to gravity, ∆ ≡ T+ − T− the temperature difference
between the warm (T+) and the cold (T−) isothermal boundaries. We will only consider
cylindrical vessels, characterised by the diameter D and the distance H between the
heated and cooled plates.

The essential difference between RBC and VC is the direction of the gravity vector,
i.e. it is parallel to the isothermal surfaces of the container in the case of VC and
perpendicular to them in RBC. However, the respective flows are different and the
Reynolds number Re and the mean heat flux, described by the Nusselt number Nu,
exhibit very different dependencies on Ra and Pr . For reviews on these two classical
convection models, we refer to Ahlers et al. (2009); Bodenschatz et al. (2000); Castaing
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et al. (1989); Chillà & Schumacher (2012); Lohse & Xia (2010); Siggia (1994) and to Ng
et al. (2015), respectively.

Experimental studies of turbulent thermal convection in long cylinders filled with low-
Prandtl-number fluids show that the convective heat transfer between the heated and
cooled parallel surfaces of the container is most effective neither in a standing position
of the cylinder (as in RBC, with a cell inclination angle β = 0), nor in a lying position
(as in VC, β = 0.5π), but in an inclined container, for a certain intermediate value of β,
0 < β < 0.5π. Such measurements in liquid sodium, Pr ∼ 0.01, are reported by Frick et al.
(2015); Kolesnichenko et al. (2015); Vasil’ev et al. (2015). Moreover, these experiments
show that in the case of small Pr (Pr � 1) and relatively large Ra (Ra & 109), any
tilt β, 0 < β 6 π/2, of the cell leads to an increase of Nu, compared to that in the
RBC case (β = 0). Langebach & Haberstroh (2014) also obtained similar results in their
experimental study for Pr ≈ 0.7.

The effect of the cell tilting on convective heat transport in large-Prandtl-number fluids
is very different from that in the case of low-Prandtl-number fluids. Thus, experiments
by Guo et al. (2015) in a parallelepiped container for Pr ≈ 6.7 and Ra ≈ 4.4×109 showed
a monotonic reduction of Nu with increasing β in β ∈ [0, π/2].

One should note that most of the investigations of the cell-tilt effects on the mean heat
transport were conducted in a narrow region of β close to 0 and mainly for Pr > 1. These
studies show generally a small effect of the cell inclination on the mean heat transport
(Ciliberto et al. 1996; Cioni et al. 1997; Roche et al. 2010; Ahlers et al. 2006; Wei & Xia
2013). Measurements by Chillà et al. (2004) for 0 < β . 0.01π and 5 × 1011 6 Ra 6
4 × 1012 in a cylindrical container of Γ = 1/2, filled with hot water, Pr ≈ 2, showed a
reduction of the normalized Nusselt number Nu(β)/Nu(0) approximately as 1 − 2β, if
a two-roll global flow structure developed. For Pr ≈ 4.3 and 3 × 109 . Ra . 7 × 1010

Sun et al. (2005) also found a reduction of Nu if their cylindrical (Γ = 1/2) RBC cell
was tilted for β ≈ 0.01π. As the Nu-reduction with the cell tilt was associated with
the development of a two-roll flow structure, no significant Nu-reduction was expected
in a slightly inclined cell of Γ = 1. Measurements by Ahlers et al. (2006) in a Γ = 1
cylindrical cell filled with water (Pr ≈ 4.3) for Rayleigh numbers about 1011 showed
indeed only a tiny reduction of Nu, namely as Nu(β)/Nu(0) ≈ 1 − 0.03β, and a much
stronger Reynolds-number dependence Re(β)/Re(0) ≈ 1 + 1.85β − 5.9β2. For similar
Pr , Γ = 1/2 and Ra = 1.8 × 1010 and 7.2 × 1010, Weiss & Ahlers (2013) found even a
very small increase of the mean heat transport with the local maximum at β ≈ 0.02π.
This increase was explained by a stabilization of the single-roll state of the large-scale
circulation (LSC) and a destabilization of the double-roll state, which are associated
with, respectively, an increase and decrease of the mean heat transport. From all these
experimental results one can already conclude that the Nu(β)/Nu(0) dependence near
β = 0 is strongly dependent on Ra, Pr and Γ and is a complicated function of these
parameters, which cannot be represented as a simple product of their power functions.

In the present study, we investigate the effect of a cell tilt, reflected in the inclination
angle β, 0 6 β 6 π/2, on the Nusselt and Reynolds numbers by means of Direct
Numerical Simulations (DNS) of thermal convection in a cylindrical vessel with aspect
ratio 1.

2. Results

The following combinations of Ra and Pr were considered in our three-dimensional
DNS: Ra = 106 for Pr = 0.1, 1, 10 and 100; Ra = 107 for Pr = 1 and 10; and Ra = 108

for Pr = 1. For each combination of Ra and Pr we studied thermal convection under the
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Figure 1. Isosurfaces of the instantaneous temperature fields in inclined convection in cylindrical
containers filled with a fluid of Pr = 1, for Ra = 106, 107, 108 and different inclination angles
β = 0, 0.1π, 0.2π, 0.3π, 0.4π and 0.5π, as obtained in our DNS. Shown are ten isosurfaces that
are equidistantly distributed between the heated (T+) and cooled (T−) cell boundaries. The
proportions between the different sizes of the presented convection cells reflect the proportions
between the different Ra.

Oberbeck–Boussinesq approximation, in inclined cylindrical containers with Γ = 1 and
with different inclination angles β that varied between 0 (RBC) and π/2 (VC). Thus, the
problem is governed by the Navier–Stokes equations in cylindrical coordinates (r, φ, z):

∇ · u = 0,

Dtu = ν∇2u−∇p+ αg(T − T0)ê,

DtT = κ∇2T,

where Dt denotes the substantial derivative, u = (ur, uφ, uz) the velocity vector, p the
reduced kinetic pressure, T the temperature, T0 = (T+ + T−)/2 and ê is the unit vector,
ê = (− sin(β) cos(φ), sin(β) sin(φ), cos(β)). These equations are non-dimensionalized by
using the cylinder radius R and the quantities (αgR∆)1/2, R(αgR∆)−1/2 and ∆ as units
of length, velocity, time and temperature, respectively. (Note that in the definition of
Ra, not the cylinder radius R, but the cylinder height H is used as reference length.)

The resulting dimensionless equations are solved numerically with the code goldfish,
as in Shishkina & Wagner (2016); Shishkina et al. (2015). The computational grids of
up to (Nr, Nφ, Nz) = (192, 512, 384) nodes satisfy the resolution requirements for DNS
(Shishkina et al. 2010).
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Figure 2. Isosurfaces of the instantaneous temperature fields in inclined convection in cylindrical
containers, filled with a fluid of Pr = 0.1, Pr = 1, Pr = 10 or Pr = 100, for Ra = 106 and
different inclination angles from β = 0 to β = 0.5π, as obtained in our DNS. Shown are ten
isosurfaces that are equidistantly distributed between the heated (T+) and cooled (T−) cell
boundaries.

The stepping in the β-range varies from 0.0025π to 0.05π, with minimum 11 and
maximum 22 different inclination angles between 0 (RBC) and π/2 (VC). The refined
β-resolution is applied for cases that are near β = 0. This helps to better understand the
behaviour of Nu and Re in inclined convection close to the exact RBC case, which is par-
ticularly relevant for experimental set-ups. In total we studied 108 different combinations
of Ra, Pr and β.

In figure 1 isosurfaces of the instantaneous temperature are presented for Pr = 1 and
Ra = 106, 107 and 108, and 6 particular inclination angles β = 0 (RBC), 0.1π, 0.2π, 0.3π,
0.4π and 0.5π (VC). In the RBC set-up (β = 0) the flows are always unsteady or even
turbulent, and due to the aspect ratio of Γ = 1 and relatively small Pr , the global flow
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β = 0 β = 0.0025π β = 0.0050π β = 0.0075π

Figure 3. Changing of the instantaneous temperature fields with a small inclination angle β
for Pr = 100 and Ra = 106. Colour scale as in figure 2.

structure is a large-scale circulation (LSC) filling the whole cell. However, the orientation
of the LSC is not fixed and changes with time (e.g. Brown & Ahlers 2006).

With a small inclination β the LSC is fixed to the inclination plane and likewise is
its rotation direction. The flow is reorganised in such a way that fluid near the heated
(cooled) plate ascends (descends) closer to the sidewall, hence most of the interior fluid is
almost quiescent and has a mean temperature of about T = (T+ + T−)/2. For β & 0.3π
the interior temperature field shows signs of stratification, i.e. the temperature isosurfaces
align horizontally. Further, with growing β the corner rolls are less pronounced (if exist)
and the flow generally stabilizes. Thus, we observe steady flows for Ra = 106 if β & 0.2π,
for Ra = 107 if β & 0.3π and even for Ra = 108 if β & 0.45π. However, with increasing
Ra and β = 0.5π (VC) the up-flow and down-flow along the isothermal plates becomes
more vigorous and the impinging of the flow on the viscous boundary layer adjacent to
the adiabatic wall leads to distinct overshoots in the temperature and will ultimately
lead to a rolling up of the fluid and instability.

Furthermore, we conducted DNS for Pr = 0.1, 1, 10 and 100 for a fixed Ra = 106 (see
figure 2) to investigate, how the cell tilt influences convection in fluids with different Pr .
For β = 0 the LSC develops in a singe large-roll state if Pr is small, while for large Pr
(Pr = 100) a more complicated global flow structure develops (Horn et al. 2013; Horn &
Shishkina 2014). With a tiny inclination angle β the flow is reorganized in a one-roll LSC
even if Pr is large. Thus, for Pr = 100, we observe this already for β = 0.005π(= 0.9◦),
see figure 3. Again, all flows are stabilized with growing β. For Ra = 106, Γ = 1, β = 0
and all considered Pr the flows are unsteady, but already for β & 0.06π (Pr = 100),
β & 0.15π (Pr = 10), β & 0.2π (Pr = 1) and β & 0.4π (Pr = 0.1) steady convective
flows are observed.

Quantitative characteristics of the inclined convection flows, i.e. the Nusselt number,

Nu(z) ≡ (〈uzT 〉z − κ∂z〈T 〉z)/(κ∆/H) = const., (2.1)

and the Reynolds number,

Re ≡
√
〈u · u〉H/ν (2.2)

for different Pr are presented in figure 4. Here, 〈·〉z denotes the temporal and planar
average at distance z from the heated plate and 〈·〉 denotes the average in time and over
the whole convection cell.

The curves Nu(β) for small Pr (Pr = 1 and Pr = 0.1) and large Pr (Pr = 10 and
Pr = 100) look very different (see figure 4a). In the small-Pr case Nu increases with
any small tilt of a RBC (β = 0) or VC (β = π/2) cell. The global maximum of Nu is
obtained for an intermediate value of β. The absolute values of Nu are smaller for smaller
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Figure 4. Absolute (a, c) and normalized (c, d) with the corresponding values for RBC (β = 0)
Nusselt numbers (a, b) and Reynolds numbers (c, d) in inclined convection in a cylinder of the
aspect ratio 1, for Ra = 106 and Pr = 0.1 (triangles), Pr = 1 (squares), Pr = 10 (circles) and
Pr = 100 (diamonds), as functions of the inclination angle β.

Pr (figure 4a), but the relative increase of the mean heat transport Nu(β)/Nu(0) is larger
for smaller Pr (figure 4b).

The curves Nu(β) for large Pr (Pr = 10 and Pr = 100) almost replicate each other for
β > 0.1π and differ only near β = 0. With a small tilt of the RBC cell (β close to 0) a tiny
increase of Nu is possible. This effect is similar to that found by Weiss & Ahlers (2013) in
their measurements in water. With further inclination of the cell, the Nu(β)-curve turns
down; this drop of the Nusselt number is better pronounced for larger Pr . For Ra = 106

already by β ≈ 0.05π the value of Nu(β) starts to grow till β ≈ 0.4π, where it reaches
its global maximum and after that it decreases with growing β till β = π/2.

The Reynolds numbers are presented in the figures 4(c) and 4(d). On a log-scale the
general behaviour of Re seems similar for all Pr , however, the normalised Reynolds
numbers, Re(β)/Re(0), reveal a very different dependence on the cell tilt, especially
for small β. Remarkably, for Pr = 0.1 and 1 the Reynolds number increases while for
Pr = 100 it decreases, and for Pr = 10, Re(β)/Re(0) drops, increases, and then drops
again.

Both curves for Pr = 10 and for Pr = 100 show a couple of kinks which can be related
to the different preferred large-scale flow states which can be steady or oscillatory. For
Pr = 1 the initial increase with β is related to unsteady convection and a sufficiently
efficient buoyancy-induced mixing of the bulk. For larger tilting angles 0.05π . β . 0.15π
the flow stabilises, and an oscillating LSC develops that is reflected in the slow decrease
in Re. Finally, for completely steady convection at β & 0.15, Re(β)/Re(0) decreases,
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Figure 5. Absolute (a, c) and normalized (c, d) with the corresponding values for RBC (β = 0)
Nusselt numbers (a, b) and Reynolds numbers (c, d) in inclined convection in a cylinder of
the aspect ratio 1, for Pr = 1 (squares) and Pr = 10 (circles), and Ra = 106 (open symbols),
Ra = 107 (half filled symbols) and Ra = 108 (filled symbols), as functions of the inclination
angle β.

but now much sharper. Similarly, for Pr = 0.1, the initial increase up to β ≈ 0.15π is
due to the unsteady mixing in the bulk. The competing effect of stratification caused
by the inclination then leads first to a gentle down-slope. Eventually, for β & 0.3π, the
flow becomes steady and Re(β)/Re(0) drops abruptly. Hence, in all cases Re(β)/Re(0)
decreases with growing β near β = π/2 (VC state) with similar slope. This decrease is
only slightly steeper for larger Pr .

The Rayleigh number is besides Pr evidently the other important control parameter
that influences the Nu- and Re-dependencies on inclined thermal convection. Thus, we
conducted DNS for Pr = 1 where we varied Ra from 106 to 108, and DNS for Pr = 10
with Ra = 106 and 107. The results are shown in figure 5.

As expected, for almost all considered Ra, Nu(β)/Nu(0) grows near β = 0 and
decreases near β = π/2, see figure 5(a)–(b). Otherwise, the curves do not show a
very distinct or apparent regularity dependent on Ra. The principle structure of the
Nu(β)/Nu(0)-profiles (figure 5(b)) is determined mainly by Pr . For Pr = 1, the function
Nu(β)/Nu(0) has one maximum for Ra = 106 and at least two maxima and one minimum
for Ra = 107 and Ra = 108. The first maxima for Ra = 107 and 108 are at about the
same β. However, the heat transfer is most efficient at an inclination of β = 0.25π for
Ra = 106 and Ra = 108, but closer to the RBC case at β = 0.1π for Ra = 107.

A Pr = 10 fluid behaves differently. In both studied cases, for Ra = 106 and Ra = 107,
the heat transport is most efficient for β = 0.4π, i.e. closer to VC. For Ra = 107 there is
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Figure 6. Normalized (a) friction velocity uτ , averaged in time and over the top and bottom
plates, and (b) time- and volume-averaged kinetic dissipation rate εu, in inclined convection in
a cylinder of the aspect ratio 1, for Pr = 0.1 (triangles), Pr = 1 (squares), Pr = 10 (circles)
and Pr = 100 (diamonds), and Ra = 106 (open symbols), Ra = 107 (half filled symbols) and
Ra = 108 (filled symbols), as functions of the inclination angle β.

another pronounced maximum at β = 0.05, albeit lower in magnitude. Contrary to that,
for Ra = 106, the Nu(β)/Nu(0) curve has a minimum at the very same β. For Ra = 106

only an almost negligable heat flux intensification can be found for small tilt angles, at
the tiny angle of β = 0.005π.

For all Prandtl numbers considered, the Nusselt number in the VC case becomes
gradually smaller relative to the RBC case, with increasing Ra; and for Ra = 108 and
Pr = 1 it is even below it. But neither VC nor RBC seem to be clearly distinguished
states in terms of the heat transport.

The Reynolds number, on the other hand, shows at least for β & 0.25π a much more
regular dependence on β, see figure 5(c)–(d). For all cases, the relative Reynolds number
Re(β)/Re(0) was found to decrease near β = π/2, and stronger for larger Ra. Again, the
largest variation of Re(β)/Re(0) is found near β = 0: first it increases with β near β = 0
and then, after its maximum which is achieved within the inclination interval [0; 0.1π],
it gradually decreases.

In an attempt to gain some further insight into the complicated Nu(β) and Re(β)
behaviour, we studied the friction velocity uτ at the bottom plate, evaluated as

u2τ = ν∂z
(
〈u2r + u2φ〉z=0

)1/2
and presented in figure 6(a). Contrary to the naive assumption that it should be highest

for VC, since in this case the core of the fluid is stably stratified and the flow along
the boundaries is a developed shear flow, the friction velocity is maximal for β = 0.4π.
Indeed, the maximum shear velocity uτ coincides with the maximum of Nu for large Pr .
Very likely it also contributes to the intensification of Nu with decreasing β compared to
the VC case for all Pr . But it is not the only mechanism, and certainly not the dominant
one for smaller Pr and higher Ra. Here, the buoyancy-induced mixing and the more
efficient transport by plumes along the cylinder sidewall, in particular for smaller β,
seems to predominantly determine the behaviour of Nu and Re with β.

Finally, we evaluate the time- and volume-averaged kinetic dissipation rate εu =
〈ν
∑
i(∇ui)2〉. In the particular case of β = 0 (RBC) the following exact relation holds:

εu = (ν3/H4)Pr−2Ra(Nu − 1). With growing but still small inclination angle β, the
normalised kinetic dissipation rate (H4/ν3)Pr2Ra−1(Nu−1)−1εu might slightly increase,
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with respect to the RBC case (β = 0), as it was obtained in the DNS.

but already for β > 0.1π it gradually decreases with growing β in all studied cases.
The β-dependencies of the normalised εu are presented in figure 6(b). In all cases these
dependences look very similar and demonstrate a ≈ 60% decrease of the normalised
volume-averaged kinetic dissipation rate in VC, compared to that in RBC.

3. Discussion

The conducted DNS show that the Nusselt number and Reynolds number dependencies
in inclined convection are generally non-monotonic complicated functions of Ra and Pr .
Obviously, the geometry of the convection cell also influences these dependences. The
results are summarised in figure 7, where phase diagrams for Nu Nu−1

0 and Re Re−1
0 are

presented in the (Pr , β) plane. These diagrams show the regions of relative deviations of
Nu and Re with the respect to the RBC case (β = 0), as it was obtained in the DNS.

In contrast to RBC (β = 0), in VC (β = π/2) the turbulent processes are much weaker,
but the LSC is more coherent. In both limiting cases the heat transport is generally not as
effective as in inclined convection, as it was obtained in all cases studied here (Ra 6 108).

For small-Prandtl-number fluids, the velocity of the LSC (reflected in Re) starts to
increase with β already for a tiny tilt of the RBC cell, which leads to a more effective
heat transport. Thus, a felicitous combination of buoyancy and shear in IC in fluids with
Pr � 1 can lead to a significant increase of the mean heat flux, as it was obtained by
Frick et al. (2015); Kolesnichenko et al. (2015). The increase of Nu compared to that in
the RBC case is found to be larger for smaller Pr and higher Ra.

Contrary to the small-Pr fluid flows, for large Pr , a maximum of Re(β) is obtained
close to β = 0. The absolute increase of the LSC velocity due to the cell inclination is
small, if any, and after a possible maximum the Reynolds number decreases gradually
with increasing β. This drop of Re is stronger for larger Ra. Thus, in large-Pr fluids by
high Ra, an increase of the heat transport due to an additional shear is not expected, and
this is supported by a recent experiment by Guo et al. (2015), where a gradual decrease of
Nu with the cell inclination was obtained for Pr ≈ 6.7 and Ra ≈ 4.4×109. We anticipate
further, that for larger Ra and Pr > 1, the decrease of Nu(β) with increasing β will
be better pronounced by the following reasons. As our simulations show, for larger β,
the onset of turbulence requires larger Ra. Therefore, for the same Ra the flow can be
already in the fully turbulent regime in the case β = 0 (RBC) and still in the laminar
or transitional regime in the case β = π/2 (VC). Since the scaling exponents in the Nu-
vs.-Ra scaling are generally larger for the turbulent regimes (Grossmann & Lohse 2000;
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Schlichting & Gersten 2000), the ratio of the Nusselt number at β = π/2 to the Nusselt
number at β = 0 will gradually decrease with growing Ra in that range. The behaviour
of Nu(β) in large-Pr fluids near β = 0 is quite complicated. A non-monotonicity of Nu(β)
in that region cannot be explained exclusively by a single- or multiple-roll structure of
LSC, as the non-monotonic dependencies were obtained also in the regions where a clear
dominance of a single-roll global flow structure was observed.

The complicated behaviour of the Nu vs. Ra dependence, with multiple extrema, in the
studied range of Ra and Pr can be explained by the interaction of different transitions.
Thus, for a fixed parameter β = 0 (RBC), the flow can vary from a steady one for small
Ra to a turbulent one for large Ra. Even when two parameters are fixed, namely, the
Rayleigh number at a certain moderate value and β = 0, the flow can be turbulent for
small Pr (Frick et al. 2015; Horn & Shishkina 2015; Shishkina et al. 2013, 2014) or non-
turbulent (irregularly or periodically time dependent) for large Pr (Krishnamurti 1970;
Bosbach et al. 2012; Horn & Shishkina 2014; Horn et al. 2013). When also the parameter
β varies, the situation becomes even more complicated, as with growing β the onset of
turbulence moves to larger Ra. Moreover, with changing β, the flow symmetries change,
which influence the Nu(Ra,Pr , β) and Re(Ra,Pr , β) dependences (see also Wei et al.
(2015) on sharp transitions in RBC, caused by changes of flow symmetries).

For larger Ra, where the convection flows are turbulent for all β, the dependences
should be simpler. As discussed, for large Ra we expect a monotonic reduction of Nu
with growing β for large Pr , as in the experiments by Guo et al. (2015), and a single
maximum for an intermediate value of β in the Nu vs. β dependence for the case of small
Pr , as it was obtained in the measurements by Frick et al. (2015); Kolesnichenko et al.
(2015); Langebach & Haberstroh (2014); Vasil’ev et al. (2015). Further investigations
of inclined convection in different fluids, both, experimentally and numerically, for large
and small Pr , are required for a better understanding of the IC driving mechanisms and
its Re(β)- and Nu(β)-dependences.
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