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Influence of the angle between the wind and the isothermal surfaces on the boundary layer
structures in turbulent thermal convection
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We derive the asymptotes for the ratio of the thermal to viscous boundary layer thicknesses for infinite and
infinitesimal Prandtl numbers Pr as functions of the angle β between the large-scale circulation and an isothermal
heated or cooled surface for the case of turbulent thermal convection with laminar-like boundary layers. For this
purpose, we apply the Falkner-Skan ansatz, which is a generalization of the Prandtl-Blasius one to a nonhorizontal
free-stream flow above the viscous boundary layer. Based on our direct numerical simulations (DNS) of turbulent
Rayleigh-Bénard convection for Pr = 0.1, 1, and 10 and moderate Rayleigh numbers up to 108 we evaluate the
value of β that is found to be around 0.7π for all investigated cases. Our theoretical predictions for the boundary
layer thicknesses for this β and the considered Pr are in good agreement with the DNS results.
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I. INTRODUCTION

In turbulent thermal convection of fluids confined between
a heated lower and a cooled upper horizontal plate, i.e., in
Rayleigh-Bénard convection (RBC), thermal boundary layers
(BLs) occur at the plates and viscous BLs at all rigid walls. For
moderate Rayleigh numbers Ra = α̃g̃�̃H̃ 3/(̃κν̃) (̃α denotes
the isobaric thermal expansion coefficient, g̃ the acceleration
due to gravity, �̃ the temperature difference between the plates,
H̃ their vertical distance, ν̃ the kinematic viscosity, and κ̃

the thermal diffusivity), these BLs can be transitional or even
laminar [1–5].

To approximate mean flow characteristics within the top
and bottom BLs in this case, it is usually assumed that the
wind of turbulence, or the so-called large-scale circulation
(LSC), above the viscous BL is horizontal and constant, which
corresponds to a zero pressure gradient. In contrast to this,
recent direct numerical simulations (DNS) of turbulent RBC
in different fluids showed that the wind is nonconstant along
its path [6–8] and the time-averaged pressure gradient does
not vanish [9].

In Shishkina et al. [10] we have shown that the Prandtl and
Pohlhausen BL equations admit similarity solutions if the wind
above the viscous BL follows either an exponential behavior
or a power function. In the case of an exponential wind, the BL
thickness decreases with the wind magnitude, whereas in the
case of a power-function wind, the BL thickness increases with
it. Based on our DNS of RBC in air and water, with Prandtl
numbers Pr = ν̃/̃κ = 0.786 and 4.38, respectively, revealing
that after the stagnation point the BL thickness grows with
the wind magnitude, we concluded that in RBC only the wind
obeying a power-law is relevant. This leads to the Falkner-Skan
(FS) [11] momentum and Pohlhausen energy equations.

These equations account for a nonparallel wind or, in other
words, for an angle β, β < π , between the LSC and the heated
and cooled plate, and can be interpreted as an extension of
the Prandtl-Blasius (PB) ansatz [12] to the case of a nonzero
pressure gradient along the wind. In Shishkina et al. [10] we
have evaluated the FS equations and the viscous BL thickness
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for four particular values of β: π , 3π/4, 2π/3, and π/2. A
comparison of the numerical solutions of the FS BL equations
with our DNS data of water and air has shown that the
FS approach leads to more accurate predictions of the BL
thicknesses than the PB ansatz.

Here we give this idea more precision and derive several
theoretical estimates. In Sec. II we present the numerical
solution for the whole spectra of angles β. We now provide
exact relations for the ratio of the thermal to viscous BL
thicknesses in the limiting cases of Pr � 1 and Pr � 1 and also
obtain the critical Prandtl number Pr∗ for which the transition
between these two regimes occurs.

Furthermore, we verify the FS approximation against DNS
data for the generic Prandtl numbers 0.1, 1.0, and 10.0 (see
Fig. 1), thus spanning three orders of magnitude in Pr. The BL
properties for those Prandtl numbers are analyzed in Sec. III in
a more sophisticated way, however, than in Ref. [10]. Instead
of considering stationary LSC planes, we extract instantaneous
LSC planes, hence, the potential movement of the direction of
the LSC is taken into account as well.

Finally, in Sec. IV the mesh resolution requirements
for the BLs in DNS are discussed. By employing the FS
approximation instead of the PB one, the earlier estimates
given in Shishkina et al. [13] are updated and improved.

II. FALKNER-SKAN-POHLHAUSEN BOUNDARY LAYERS

Following Prandtl [12] and Pohlhausen [14] and assuming
that the wind and the free-fall velocity magnitudes are similar,
from the full system of the 3D governing equations for RBC
in Boussinesq approximation,

ũt̃ + ũ · ∇ũ + ρ̃−1∇p̃ = ν̃∇2ũ + α̃g̃(T̃ − T̃mid)ŷ, (1)

T̃t̃ + ũ · ∇T̃ = κ̃∇2T̃ , ∇ · ũ = 0, (2)

one obtains the following Prandtl (3) and Pohlhausen (4)
equations [15] for laminar BLs:

ũũx̃ + ṽũỹ = ν̃ũỹỹ − p̃x̃/ρ̃, 0 = −p̃ỹ/ρ̃, (3)

ũT̃x̃ + ṽT̃ỹ = κ̃ T̃ỹỹ . (4)
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FIG. 1. (Color online) Instantaneous temperature fields obtained by DNS for Ra = 108 and (a) Pr = 0.1, (b) Pr = 1, and (c) Pr = 10 and
presented with 10 isosurfaces for T̃ ∈ [T̃t ,T̃b].

Here ũ ≡ (̃u,̃v,w̃)T is the velocity vector-function in the
coordinate system x̃ = (̃x,̃y,̃z), ỹ is the vertical direction,
x̃ and z̃ are horizontal directions and x̃ is along the wind,
ŷ ≡ (0,1,0)T , and T̃ denotes the temperature, p̃ the pressure,
T̃mid the arithmetic mean of the top (T̃t ) and bottom (T̃b)
temperatures, T̃t < T̃b, ρ̃ the density, and any variable marked
as a subindex denotes the partial derivative with respect to
this variable, e.g., ũt̃ ≡ ∂ũ/∂t̃ , ũx̃ ≡ ∂ũ/∂x̃, ũx̃x̃ ≡ ∂2ũ/∂x̃2.
The vertical and horizontal walls of the container are assumed
to be, respectively, adiabatic or isothermal and all of them
are impermeable (no-slip boundary conditions). Note, that the
Prandtl-Pohlhausen BL model [Eqs. (3), (4)] differs from that
by Stewartson [16] for a very slow wind Ũ above the viscous
BL, Ũ 2 � α̃g̃�̃L̃, with L̃ being a representative length along
the wind, where the buoyancy cannot be neglected. Since the
considered BL flow is 2D and incompressible, Eqs. (3), (4)
can be rewritten in terms of the streamfunction 
̃, which
satisfies ũ = 
̃ỹ and ṽ = −
̃x̃ . If a similarity solution is
sought under the assumption that 
̃ and the similarity variable
ξ are representable in the forms


̃ = ν̃
(ξ ) g(x), ξ = y f (x), (5)

and for the wind at the edge of the viscous BL holds Ũ = Ũ (̃x),
then the similarity solution exists only if gx/f is constant and
g is either exponential or a power function of x [10]. Here x ≡
x̃/L̃ and y ≡ ỹ/L̃ are the dimensionless spatial coordinates
and the functions g and f depend on x alone. The case in which
g is exponential describes a decreasing BL thickness along the
wind, while if g is a power function, the BL thickness increases.
The latter case is in good agreement with DNS results of
turbulent RBC [8], which showed that near the horizontal plate,
after the stagnation point, the BL thickness grows together with
the wind magnitude. Thus, we consider only this case in the
following. It leads to a BL of FS type [11], which develops
for a corner flow with angle β along the corners’ sides [cf.
Fig. 4(a)]. In this case the core flow (or wind) above the BL
and the pressure term within the BL equal, respectively,

Ũ = Ũ0 x−1+π/β, (6)

−p̃x̃/ρ̃ = (π/β − 1) x−3+2π/β Ũ 2
0 /L̃, (7)

where Ũ0 is a constant velocity magnitude. If the wind is
parallel to the horizontal plate, i.e., β = π , the FS BL is
reduced to the PB one.

Thus, one obtains the following system of the dimensionless
BL equations for the momentum (FS)


ξξξ + 

ξξ + (2 − γ )[1 − (
ξ )2] = 0, (8)


(0) = 0, 
ξ (0) = 0, 
ξ (∞) = 1, (9)

and the energy


ξξ + Pr 

ξ = 0, (10)


(0) = 0, 
(∞) = 1. (11)

For the similarity variable ξ , the stream function 
, and the
dimensionless temperature 
, the following expressions hold:

ξ ≡ γ −1/2 Re1/2
0 y x−1+1/γ , (12)


 ≡ γ −1/2 Re−1/2
0 x−1/γ ν̃−1 
̃, (13)


 ≡ 2(T̃b − T̃ )/�̃. (14)

Here, Re0 ≡ L̃Ũ0/̃ν is the Reynolds number based on the wind
magnitude and

γ ≡ 2β/π. (15)

With respect to the similarity variable ξ , the thickness of
the viscous BL equals

δ = (
ξ |ξ=0)−1 (16)

and can be determined by solutions of the system of Eqs. (8)
and (9). δ depends on γ and, hence, on the angle β. Taking
ξ = δ, y = δ̃u/L̃, where δ̃u is the thickness of the viscous BL
in physical space, from Eq. (12) one obtains

δ̃u/L̃ = δ γ 1/2 Re−1/2
0 x1−1/γ . (17)

From Eqs. (6), (15), and (16) it follows that

δ̃u/L̃ ∼
√

x/Re, (18)

where the Reynolds number Re is based on the wind Ũ

[Eq. (6)]. Relation (18) holds for general Falkner-Skan BLs and
thus also for the special case of Prandtl-Blasius BLs; i.e., γ =
2. The proportionality of the relative thickness of the boundary
layer and the inverse square-root of the Reynolds number,
commonly known as Prandtl formula, is one of the basic
assumptions in the Grossmann-Lohse (GL) theory [1,17,18],
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FIG. 2. (Color online) (a) Dependence on γ [Eq. (15)] of the
viscous BL thickness δ with respect to the similarity variable ξ

[Eq. (12)], as obtained from the numerical solutions of Eqs. (8) and (9)
(—), and its approximation δappr (19) ( ). (b) Limiting cases Pr � 1
( ) and Pr � 1 (—) of the rescaled temperature profile [Eqs. (23)
and (24)] in the FS ansatz, for any angle β.

for the case of nonturbulent BLs. The latter theory estimates
the dependence of the mean heat flux, expressed by the
Nusselt number, on Ra and Pr. Since the more general case
of the Prandtl formula (18) still holds for arbitrary γ , the
scaling exponents in the theoretical estimates should remain
unchanged, while considering Falkner-Skan BLs instead of
Prandtl-Blasius BLs. Nevertheless, further estimates, which
are based on the balance between the thermal and viscous
BLs, may change when applying Falkner-Skan BLs, as we
will elaborate below.

The dependence of the viscous BL δ on γ is obtained by
solving numerically the system of FS Eqs. (8) and (9) for
0 � γ � 2; i.e., for all angles 0 � β � π (see, e.g., Ref. [19],
section 14.2). The result is presented in Fig. 2. It can be well
approximated by

δ ≈ δappr ≡ C1(C2 − γ )−1/2 (19)

with C1 ≈ 0.88, C2 ≈ 2.17.
The temperature distributions within the BLs, i.e., the

solution of the energy Eqs. (10) and (11) does not only depend
on γ , but also on Pr. Using special similarity variables ζ

as in Ref. [10], one obtains the temperature profiles for the
limiting cases Pr � 1 and Pr � 1, which satisfy the boundary
conditions


|ζ=0 = 0, 
ζ |ζ=0 = 1, 
|ζ=∞ = 1. (20)

Thus, for the similarity variable

ζ = C3(Pr)γ −1/2Re1/2
0 yx−1+1/γ , (21)

with

C3(Pr) =
{

21/2 π−1/2 Pr1/2, Pr � 1,

6−1/3[�(4/3)]−1δ−1/3Pr1/3, Pr � 1,

the limiting energy BL equations


ζζ + (π/2)ζ
ζ = 0, Pr � 1,
(22)


ζζ + 3�3(4/3)ζ 2
ζ = 0, Pr � 1,

have the following solution,


(ζ ) =
∫ ζ

0
exp(−Bχω) dχ, (23)

with B and ω being constants defined as follows:

ω = 2, B = π/4, Pr � 1,
(24)

ω = 3, B = �3(4/3) ≈ 0.71, Pr � 1,

and � being the gamma function. The limiting profiles (23)
and (24) are independent of the angle β; i.e., they are the
same as in the PB case for all β [see Fig. 2(b)]. Further, for
the thermal BL thickness δ̃θ in physical space, from Eqs. (20)
and (21) one obtains

δ̃θ /L̃ = C−1
3 γ 1/2 Re−1/2

0 x1−1/γ . (25)

The relations (17) and (25) give the ratio of the thermal to
viscous BLs in the limiting cases Pr � 1 and Pr � 1, which
depends only on the angle β and Prandtl number as

δ̃θ /̃δu = [C3(Pr)δ]−1

=
{

2−1/2 π1/2 Pr−1/2δ−1, Pr � 1,

61/3�(4/3)Pr−1/3δ−2/3, Pr � 1.
(26)

Inserting the approximation (19), δappr, into the ratio (26),
yields

δ̃θ /̃δu ≈ C4(Pr)(C2 − γ )1/ωPr−1/ω, (27)

with

ω = 2, C4 ≈ 1.43, Pr � 1,

ω = 3, C4 ≈ 1.77, Pr � 1. (28)

The derived asymptotes (27) and (28) are in excellent agree-
ment with numerical results for some particular values of β,
as reported in Ref. [10].

The change of the regime from Pr−1/2 (Pr � 1) to Pr−1/3

(Pr � 1) in Eq. (26) corresponds to the critical Prandtl number
Pr∗, where the two asymptotes intersect. From Eqs. (26)–(28)
we obtain that Pr∗ can be approximated as follows:

Pr∗ ≈ 0.596 − 0.275γ, (29)

which leads to Pr∗ ≈ 0.046 for the PB flow [13] and Pr∗ ≈
0.321 for the stagnation-point flow.

For any particular γ and not extremely small or large Pr
an approximation of δ̃θ /̃δu can be obtained by applying a least
square fit to the numerical solutions of the Eqs. (8)–(11) for
the chosen γ and all possible Pr.

III. WIND IN TURBULENT
RAYLEIGH-BÉNARD CONVECTION

In the following, the results of the previous section are
verified against DNS of turbulent RBC in a cylindrical domain
with a diameter-to-height aspect ratio of 1 for the Prandtl
numbers Pr = 0.1, 1, and 10 and Ra up to 108. The DNS
were conducted using the same finite-volume code as in
Ref. [20,21]. The DNS details can be found in Table I.

In the case of turbulent RBC for large enough Ra an LSC of
fluid develops (see Fig. 3). Within the vertical LSC plane one
obtains a large roll (LSC, wind) and two secondary rolls in the
corners [Fig. 3(a)], while in the vertical LSC⊥ plane, which
is orthogonal to the LSC plane, a four-roll structure develops
[Fig. 3(b)]. From a large amount of instantaneous flow fields
obtained in our DNS and sampled with a frequency of three
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TABLE I. DNS parameters for different Pr and Ra: the number
of mesh nodes in Ni direction (i = r,φ,z) and in the thermal and
viscous BLs as used in the DNS (nT and nu) and as estimated in
Ref. [13] (ňT and ňu); Nusselt number Nu with its maximal deviation
and the number of dimensionless time units τ used for the statistical
averaging.

Pr Ra Nr Nφ Nz nT ňT nu ňu Nu τ

0.1 106 48 256 96 8 7 4 3 7.34 ± 0.10 295
107 96 256 192 9 9 4 4 13.61 ± 0.08 506
108 192 512 384 13 13 6 5 26.37 ± 0.64 68

1 106 48 256 96 7 2 7 2 8.60 ± 0.09 1231
107 96 256 192 8 3 8 3 16.99 ± 0.16 1082
108 192 512 384 11 4 11 4 32.60 ± 0.46 228

10 106 36 128 72 6 2 3 2 8.05 ± 0.03 3860
107 64 512 128 5 3 4 3 16.43 ± 0.06 525
108 192 512 384 9 4 11 4 32.50 ± 0.29 184

per time unit, we extract the wind direction. For this purpose
we make use of the temperature distribution at the vertical wall
at the height H̃ /2 from the bottom [8,22]. Figure 4(b) sketches
out the LSC and the secondary roll within the LSC plane near
the bottom left corner of Fig. 3(a). There β can be understood
as the angle between the wind and the heated bottom plate.
The value of β is determined by the locations, where the wall
shear stress at the vertical and horizontal walls at the sides of
the corner is equal to zero (see Fig. 5). Our DNS of turbulent
RBC for different Ra and Pr show that β varies around 0.7π ,

β =
⎧⎨⎩0.69π ± 0.02π, Pr = 0.1,

0.71π ± 0.02π, Pr = 1,

0.71π ± 0.03π, Pr = 10,

(30)

and is similar to the angles obtained earlier for Pr = 0.786 and
4.38 and Ra between 107 and 109 [10].

Thus, for γ = 1.4, which corresponds to β = 0.7π , we
obtain

δ̃θ

δ̃u

≈

⎧⎪⎨⎪⎩
1.25Pr−1/2, Pr < 10−4,

1.75Pr−0.395+0.017 log Pr, 10−4 � Pr � 103,

1.62Pr−1/3, 103 < Pr,

(31)

FIG. 4. (a) Sketch of the corner flow with opening angle β in the
FS sense. (b) Sketch of the LSC and secondary roll within the LSC
plane near the bottom left corner of Fig. 3(a). Here, ηv and ηh are the
distances from the corner to the locations, where the wall shear stress
equals zero, and β is the angle at which the LSC attacks the heated
bottom plate.

where log ≡ log10 is the logarithm to base ten. The esti-
mate (31) gives δ̃θ /̃δu ≈ 4.52 (Pr = 0.1), δ̃θ /̃δu ≈ 1.75 (Pr =
1), and δ̃θ /̃δu ≈ 0.73 (Pr = 10).

We compare these predictions with the ratios 〈̃δθ /̃δu〉̃t along
the wind near the bottom plate, obtained in our DNS. (Here
〈· · · 〉̃t denotes the time averaging.) Similar to Shi et al. [9], we
consider the instantaneous LSC plane and evaluate the viscous
and thermal BL thicknesses by using the slope method [8].
The wind velocity is determined as the maximum of the radial
velocity considered at heights smaller than 2H̃ /Nu(̃δθ /̃δu)−1,
where δ̃θ /̃δu is estimated within the PB ansatz (i.e., β = π ).

Note that in Ref. [8] the maximum considered height for
evaluating the wind magnitude was 2H̃ /Nu, since there Pr was
close to one and, consequently, δ̃θ /̃δu was approximately one
as well.

The resulting ratios 〈̃δθ /̃δu〉̃t are presented in Fig. 6 in
dependence of the horizontal position x/H , for different Pr and
Ra, together with the estimates (horizontal lines) for β = π

(Prandtl-Blasius flow), β = π/2 (stagnation-point flow) [10],
and β = 0.7π [Eq. (31)]. As one can see, the ratios remain
almost constant along the path of the wind. The prediction for
β = 0.7π represents the DNS results generally better than the
classical PB ansatz (β = π ) [10].

However, one of the key assumptions of the developed
approach is a strong enough wind, i.e., buoyancy can be
neglected within the BLs cf. Ref. [10]. Hence, for small
Prandtl numbers, the agreement with the theory is better
for larger Rayleigh numbers, when the wind dominates over

FIG. 3. (Color online) Time-averaged temperature field with superposed velocity vectors in the vertical (a) LSC-plane and (b) LSC⊥-plane,
as obtained in DNS of turbulent RBC for Ra = 107 and Pr = 0.1 (see Table I for the DNS details).
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FIG. 5. (Color online) Dimensionless time-averaged wall shear
stress (a) at the bottom, τω = H̃ 2

Ra κ̃
〈 ∂ṽ

∂x̃
〉̃t , and (b) left vertical wall in

the LSC plane, τω = H̃ 2

Ra κ̃
〈 ∂ũ

∂ỹ
〉̃t , as obtained in the DNS for Pr = 1 and

106 (—), 107 ( ), and Ra = 108 ( ) with ηv and ηh as in Fig. 4(b).

the small-scale fluctuations. This is evident from Fig. 6(a)
for Pr = 0.1. For Ra = 106 and 107 the strong small-scale
fluctuations lead to a small over-prediction of the ratio 〈̃δθ /̃δu〉̃t ,
whereas for Ra = 108 a fair agreement is found. For larger
Prandtl numbers, as in the case of Pr = 10 displayed in
Fig. 6(c), the wind itself is not strong enough, hence the ratio
〈̃δθ /̃δu〉̃t is slightly under-predicted.

Nonetheless, the prediction given by Eq. (31) is always in
a better agreement with the DNS data than the PB one.

IV. CONSEQUENCES FOR THE GRID
RESOLUTION IN DNS

In this section we discuss shortly the influence of wind angle
on the required grid resolution in DNS of turbulent thermal
convection.

It is the well-established criterion [13] that in DNS the
(local) mesh size h̃ must not be larger than the (local)

FIG. 6. (Color online) Ratio 〈̃δθ /̃δu 〉̃t of the thermal and viscous
BL thicknesses for (a) Pr = 0.1, (b) Pr = 1, (c) Pr = 10, as obtained in
the DNS for Ra = 108 ( ), Ra = 107 ( ), and Ra = 106 (··) together
with the predictions [10] (gray horizontal lines) for β = π (Prandtl-
Blasius flow), β = π/2 (stagnation-point flow), and estimate (31) for
β = 0.7π .

Kolmogorov η̃K (̃x,t) [23] and Batchelor η̃B [24] scales:

η̃K (̃x,̃t) = [̃ν3/̃εu (̃x,̃t)]1/4, (32)

η̃B (̃x,̃t) = [̃νκ̃2/̃εu (̃x,̃t)]1/4 = η̃K (̃x,̃t)Pr−1/2, (33)

which are defined with the kinetic energy dissipation rate

ε̃u (̃x,̃t) ≡ ν̃

2

∑
i

∑
j

[
∂ũi (̃x,̃t)

∂x̃j

+ ∂ũj (̃x,̃t)

∂x̃i

]2

, (34)

where (̃x1 ,̃x2 ,̃x3) ≡ (̃x,̃y,̃z). In a horizontal plane A within
the viscous BL the energy dissipation rate ε̃u|A∈BL can be
approximated as

ε̃u|A∈BL ≈ ν̃(Ũ /̃δu)2. (35)

From this and Eqs. (17), (19), and (32) we obtain the following
estimate for η̃K |A∈BL:

η̃K |A∈BL

L̃
≈

(
γ

C2 − γ

C2
1x

Re3

)1/4

, (36)

where Re ≡ L̃Ũ /̃ν is the Reynolds number based on the wind
Eq. (6).

Therefore, for similar Reynolds numbers, near the isother-
mal plate, the required mesh size h̃sp for the stagnation point
flow (γ = γsp ≡ 1) is related to the mesh size h̃PB for the PB
flow (γ = γPB ≡ 2) by

h̃PB

h̃sp
≈

(
γPB

C2 − γPB

C2 − γsp

γsp

)1/4

≈ 1.93. (37)

This means that in DNS of turbulent thermal convection, in
which the wind is not everywhere parallel to the isothermal
plate (like in RBC), an up to two times finer mesh resolution
than in the case of PB BLs is required within the BLs.

V. CONCLUSIONS

To describe laminar boundary layers in thermal convection,
we considered a generalization of the Prandtl-Blasius ansatz to
the case of a nonhorizontal free-stream flow above the viscous
boundary layer, i.e., the Falkner-Skan ansatz [10].

The asymptotes for the ratio of the thermal to viscous
boundary layer thicknesses for infinite and infinitesimal
Prandtl numbers were derived as functions of the angle β

between the wind and the isothermal horizontal plate.
DNS of turbulent RBC for Pr = 0.1, 1, and 10 and Rayleigh

numbers up to 108 showed that β ≈ 0.7π for all investigated
cases. The predictions for the boundary layer thicknesses for
this β and the considered Pr are found to be in better agreement
with the DNS results than the Prandtl-Blasius ones.

Since the developed approach is based on the assumption
of a relatively strong wind above the viscous boundary layer,
which is compatible with the free-fall velocity, the agreement
of the theoretical estimates and the DNS results is best for
relatively large Rayleigh numbers, Ra � 108, and small
Prandtl numbers, Pr � 1. For smaller Ra and higher Pr there
is an apparent deviation between theory and DNS, because
this prerequisite is less valid. Nonetheless, even in those
cases the theoretical predictions based on the Falkner-Skan
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ansatz result in a better agreement than those based on the
Prandtl-Blasius ansatz.

It is also expected that in mixed convection with im-
posed free-stream flows, moderate Rayleigh numbers and
Archimedes numbers about one, even better agreement of
the theoretical predictions and DNS or experimental results
can be obtained. This and measurements [25] of the BL
thicknesses along the path of the large-scale circulation near

the isothermal surfaces might be the subject of forthcoming
studies.
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[5] F. Chillà and J. Schumacher, Eur. Phys. J. E 35, 58 (2012).
[6] M. Kaczorowski, O. Shishkina, A. Shishkin, C. Wagner, and

K.-Q. Xia, in Direct and Large-Eddy Simulation VIII, edited by
H. Kuerten, B. Geurts, V. Armenio, and J. Fröhlich (Springer,
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