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Multiple Nonlinear Harmonic Oscillator-Based
Frequency Estimation for Distorted Grid Voltage

Hafiz Ahmed, Member, IEEE, Michael Bierhoff, Member, IEEE, and Mohamed Benbouzid, Senior Member, IEEE

Abstract—In the presence of nonlinear loads and various
disturbances, harmonics and DC bias may corrupt the grid
voltage signal leading to distorted grid. Frequency estimation
of distorted grid signal is a challenging issue. In this paper,
multiresonant nonlinear harmonic oscillators based frequency
estimation technique is reported for distorted power grid. The
proposed approach has also been applied for detecting the
sequences of unbalanced grid. In the proposed approach, a
nonlinear harmonic oscillator is used as the proxy of the
grid signal. Then using the frequency-locked loop, an adaptive
approach is proposed to estimate the frequency and other
parameters (sequences) in the presence of harmonics and DC
component. Local stability analysis and parameter tuning are
provided. Comparative experimental results are provided with
two other nonlinear state of the art techniques. Experimental
results demonstrated the suitability of the proposed technique.

Index Terms—Frequency estimation, three-phase sequence de-
tection, frequency-locked loop, unbalanced grid voltage

I. INTRODUCTION

Phase, frequency and amplitude characterize the single-
phase grid voltage signal while symmetric components char-
acterize the three-phase grid voltage signal. They are useful in
numerous control and monitoring applications related to power
system. They are used in the control of grid connected power
converters [1]–[3], active power filter [4]–[6], bidirectional
electric vehicle charger [7], uninterrupted power supply [8],
distributed generation systems [9], power grid monitoring [10]
etc. The importance of fast and accurate estimation of grid
voltage parameters and sequences can be easily seen from the
list of applications. As a result, numerous results are reported
in the literature to estimate the parameters and sequences of
the grid voltage signal.

Some of the popular techniques proposed in the literature
are discrete Fourier transform (DFT) [11], [12], neural network
[13], various variants of least-square (weighted, recursive
etc.) [14]–[16] techniques, linear observer based techniques
(Luenberger observer, Kalman filter etc.) [17]–[19], various
variants of phase-locked loop (PLL) [20]–[26], frequency-
locked loop including second order generalized integrator
[1], [27], adaptive notch filter (ANF) [28]–[30], statistical
techniques [10], [31]–[33], limit cycle oscillator [34]–[36] etc.
All these techniques have their own merits and demerits.
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Various variants of DFT based techniques [37] are using
frequency domain approach. Since grid voltage signal has
clearly distinguishable frequency feature, DFT based tech-
niques are very useful. However, in the presence of harmonics,
data window size increases for DFT based techniques which
increases the computational cost. Moreover spectral leakage
and accumulation error are reported in the literature for DFT
based techniques. Regression based techniques like various
variants of least-square [14]–[16] can efficiently estimate the
parameters however they are computationally expensive as
online matrix inversion is needed. Moreover, time-varying
nature of the frequency can not be accommodated directly
into least-square based techniques. Indirect way like using
forgetting factors may solve that problem. Kalman filter [19]
based approach can directly take into account the time vary-
ing nature of the frequency parameters. However, it uses a
predictor-corrector structure that increases the computational
complexity. Moreover, tuning of the parameters are mostly
heuristics. Linear observer e.g. Luenberger observer [18] can
solve these problems. However, the performance degrades
significantly in the presence of harmonics and/or DC bias.

Out of all the techniques mentioned at the beginning, PLL
and its various variants are the most popular techniques in
the literature. They are time tested, widely used in numerous
technical areas, simple structure, easy to tune and implement
in an wide range of embedded hardwares. However PLLs
performance suffers in distorted grid conditions. Moreover,
fast dynamic response comes at a cost of disturbance re-
jection capability. To overcome the limitation of standard
PLL, many modifications have been proposed in the litera-
ture e.g. using moving average filtering [38], low-pass notch
filter [39], various variants of delayed signal cancellation
[40], [41] to name a few. These modifications improved the
performance of standard PLL in the presence of distorted
grid condition. However, since the frequency is estimated
through a proportional-integral (PI) type low-pass loop filter,
the dynamic response relies heavily on the tuning of the loop-
filter. Fast dynamic response is generally obtained through a
second-order response type tuning which introduces overshoot
in the frequency estimation loop.

Enhanced PLL (EPLL) [21] is another type of PLL that
uses a nonlinear structure. Later on, EPLL has been extended
for distorted grid conditions including harmonics and DC
component [42], [43]. However, as suggested in [44], EPLLs
dynamic response is slow and not suitable for application
where fast convergence is required.

In recent times, two nonlinear techniques emerged as a
strong competitor to PLL. They are second order general-
ized integrator - frequency-locked loop (SOGI-FLL) [27] and
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adaptive notch filter (ANF) [30]. Various variants of these
techniques are also reported in the literature. SOGI-FLL and
ANF use linear harmonic oscillator. Although the overall
structure is nonlinear but the principal component is linear. As
a result, they suffer from voltage swell and sags. Nonlinear
oscillators are used in [34]. However, this technique is not
immune to DC bias. Moreover, the presence of harmonics or
any change of the amplitude from the nominal value will give
rise to steady-state error.

To overcome the issues related to nonlinear oscillator based
approach, a different kind of oscillator i.e. circular limit cycle
oscillator (CLO) is used in [35]. The oscillator structure of
CLO is computationally simpler than that of [34]. Although
CLO can handle DC offset disturbance but details are missing
about addressing the presence of DC components in the grid
signal. Moreover, it is not immune to harmonics. These issues
are considered in this work.

In this work, motivated by the results presented in [27],
[35], [43], we propose a multiple circular limit cycle oscillator
- frequency-locked loop (MCLO-FLL). The proposed MCLO-
FLL can easily handle various disturbances commonly present
in distorted grid i.e. harmonics, DC component etc. and dis-
continuous jumps in various grid voltage parameters. MCLO-
FLL based three-phase sequences extraction technique is also
presented. As the fundamental building block of the proposed
technique uses nonlinear harmonic oscillator, it overcomes the
problem of its linear counter part e.g. [26]. Linear oscillator
[26] oscillates because the eigenvalues are ±iω. In the pres-
ence of perturbation, the eigenvalues will no longer be purely
imaginary conjugate, as a result oscillation will eventually die
out. This is not the case for CLO. CLO is robustly stable i.e.
the oscillation will not decay despite the presence of bounded
disturbance. Moreover, the nonlinear structure also helps to
get fast dynamic response. These are significant advantages of
the MCLO-FLL over the existing literature.

The rest of the paper is organized as follows: The problem
statement is given in Sec. II. Sec. III explains the proposed
approach while dSPACE based hardware-in-the-loop (HIL)
experimental results are given in Section IV. Finally, Section
V concludes this paper.

II. PROBLEM STATEMENT

Single-phase grid voltage signal containing only the funda-
mental frequency is given by:

y = y0 +Ag sin

ωgt+ ϕ︸ ︷︷ ︸
θ

 (1)

where |y0| ≥ 0 is the DC bias, Ag is the grid voltage
amplitude, fg =

ωg

2π is the frequency of the grid signal
and θ ∈ [0, 2π) is the instantaneous phase angle. For the
fundamental case, the problem is to estimate Ag , fg and
θg is the presence of various nonsmooth variations in phase,
frequency, amplitude and DC bias.

In the presence of harmonic components, the single-phase
grid voltage is given by:

y = y0 +

n∑
i=1

Agi sin

(2i− 1)ωgt+ ϕi︸ ︷︷ ︸
θi

 (2)

where Agi is the amplitude of the individual harmonic compo-
nents, fgi =

ωgi

2π is the frequency of the individual harmonic
components and θi ∈ [0, 2π) is the instantaneous phase angle
of the individual components. In this case, the problem is
to estimate Ag , fg and θg of the fundamental components
despite the presence of harmonic components, DC bias and
subject to various nonsmooth variations in phase, frequency,
amplitude and DC bias. In the case of three-phase, in addition
to the frequency estimation, estimating the positive, negative
and zero sequences are also considered in this paper.

III. PROPOSED APPROACH

In this Section, first we recall the basics of the circular limit
cycle oscillator (CLO) for the parameter estimation of single-
phase grid voltage signal. Part of the results described in this
Section originally appeared in [35], [45]. However, the model
proposed in [35] can’t handle the presence of DC bias and
harmonics. In this work, we overcome the limitations of [35]
by modifying the original structure. Moreover, application to
three-phase case is also reported in this work

A. Basics of Circular Limit Cycle Oscillator

In the literature of nonlinear dynamical systems, second
order nonlinear oscillatory systems are an important class
of systems. They have been applied to solve many practical
problems. Frequently this class of systems demonstrate an
isolated trajectory in the phase plane (i.e. variable 1 vs.
variable 2 plane). This kind of isolated trajectory is known
as limit cycle and correspondingly an oscillator that has a
limit cycle is known as limit cycle oscillator. Limit cycle
can be of many shape. Circular limit cycle oscillator has a
circularly shaped limit cycle. An advantage of this kind of
limit cycle is that the shape is independent of the oscillator
parameters or initial conditions. Motivated by the nonlinear
dynamics literature, in this work we propose the following
CLO which is a modified version of the oscillator given in
Exercise 7.1.8 of [46]:

ẋ1 = x2ωn (3a)

ẋ2 = −x1ωn − x2
(
x21 + x22 − r2

)
(3b)

where x1 and x2 are the state variables, ωn is the angular
frequency of the sustained oscillation and r is the radius of
the limit cycle in the x1 vs. x2 plane. The solutions of the
CLO (3) are:

x1 (t) = −rcos (ωnt) , x2(t) = rsin (ωnt)

As the solution of x2(t) is similar to the grid voltage signal,
CLO (3) can be considered as a proxy of the grid voltage
signal. Then using proper feedback mechanism, any change
in the grid voltage parameters, can be easily tracked using
model (3).
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Figure 1. Phase portrait and numerical solution of the circular limit cycle
oscillator (3) with ω = 2π and r = 1. In this figure→ indicates the direction
of the vector field, ◦ indicates the starting point i.e. initial condition and �
indicates the final point of the solution.

A particular feature of CLO (3) is that it has an unsta-
ble equilibrium which is the origin and an almost globally
asymptotically stable (A-GAS) limit cycle which is the circle
of radius r denoted by x21 + x22 = r2. It means, any trajectory
that originates anywhere in the phase-plane, will converge to
the circle of radius r except the one at origin. Fig. 1 shows
the phase portrait of CLO. This Fig. shows that irrespective
of the initial conditions, the trajectories converge to the unit
circle. In addition to being A-GAS, the CLO is robust to
bounded external disturbance/perturbation i.e. posses input-to-
state stability (ISS) property. Using Lyapunov function based
approach, these properties have been shown in [47, Proposition
5 and 6]. As such technical details are avoided here for the
purpose of brevity. In this work, the focus is on the application
aspect.

B. CLO based parameter estimation

Although CLO (3) can be considered as a model of the
single-phase grid voltage signal, there are two limitations of
this model. Firstly, CLO is not frequency adaptive. Secondly,
in the presence of DC bias, grid signal is given by y(t) =
y0 + Ag sin(ωgt), y0 > 0 , whereas for CLO the solution
is x2(t) = r sin(ωnt). So, steady-state error is inevitable. In
order to tackle these problems, the following modification of
CLO is proposed in this work:

ẋ1 = x2ω (4a)

ẋ2 = α(y − x2 − x4)ω − x1ω − x2
(
x21 + x22 − r2

)
(4b)

ẋ3 = −β(y − x2 − x4)x1ω (4c)
ẋ4 = γ(y − x2 − x4) (4d)

where α, β, γ > 0 are the tuning parameters of the CLO, ω =
ωn+2πx3 is the estimated angular frequency with ωn denoting

the nominal grid frequency (in the steady-state ω = ωg), r is
the radius of CLO, x4 represents the estimated value of the
DC bias, (y−x2−x4) denotes the estimation error of the grid
signal by the CLO and the phase angle dynamics of the grid
voltage signal y is given by:

θ̇g = −ωg (5)

where θg and ωg retain the same meaning as defined in Sec.
II.

Remark 1. Eq. (4b), depends on the radius of the CLO which
is also the amplitude of the grid voltage signal. However,
estimating the amplitude adds computational complexity. To
solve this problem, we have fixed r = 1 i.e. the nominal grid
voltage amplitude. In non-nominal grid voltage condition, the
oscillation amplitude of the CLO is no longer the same as
the grid voltage amplitude from the theoretical point of view.
However, in practice, even in non-ideal voltage condition, CLO
continues to oscillate with the actual grid voltage amplitude
(cf. Fig. 5a). As such setting r = 1 can be considered as an
engineering solution to reduce the computational complexity
of CLO.

Original CLO (3) oscillates at ωn, however, the frequency
adaptive CLO oscillates with the actual grid frequency ωg ,
thanks to the feedback mechanism and the coupling of fre-
quency adaptation part (4c). Due to the frequency adaptive
nature of the CLO, for further analysis the modified CLO (4)
is denoted as CLO- frequency-locked loop (CLO-FLL). In the
steady state, α(y−x2−x4)ω → 0. Then the dynamics of eq.
(4a) and (4b) are similar to the original CLO (3a) and (3b). As
such the solutions are also similar i.e. x1(t) = −Ag cos(θg)
and x2(t) = Ag sin(θg). Then the following formula gives the
frequency, phase and amplitude of the actual grid signal y:

ωg = ωn + 2πx3 (6a)
θg = arctan {x2/ (−x1)} (6b)

Ag =
√
x21 + x22 (6c)

C. Stability analysis of CLO-FLL

This Section details the stability analysis of the CLO-FLL.
For this purpose, we will use polar coordinate transformation.
Prior to that, to couple the dynamics of the grid signal (5)
into the CLO-FLL (4), let us introduce the instantaneous phase
error as:

∆θ = θ − θg (7)

In polar coordinates, x1 = rcos(θ), x2 = rsin(θ) and θ =
arctan (x2/x1). To convert the dynamics from the Cartesian
coordinates to polar coordinates, the following formulas are
used [46]:

rṙ = x1ẋ1 + x2ẋ2 (8a)

θ̇ = (x1ẋ2 − ẋ1x2) /r2 (8b)
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Using eq. (8a), the dynamics of the CLO-FLL (4a), (4b) can
be written as:

rṙ = αx2 (y − x2 − x4)ω − x22(x21 + x22 − 1)

= αey−(x2+x4)r sin(∆θ + θg)ω − r2 sin2(∆θ + θg)

ṙ = αey−(x2+x4) sin(∆θ + θg)ω − r sin2(∆θ + θg) (9)

where ey−(x2+x4) = Ag sin(θg)− r sin(∆θ+ θg)− x4. Using
eq. (8b), the phase error dynamics can be written as:

∆̇θ = θ̇ − θ̇g

=
x1ẋ2 − ẋ1x2

r2
+ ωg

=
−(x21 + x22)ω − x1x2(x21 + x22 − 1)

r2
+

αx1(y − x2 − x4)ω

r2
+ ωg

∆̇θ = ωg − ω − cos(∆θ + θg) sin(∆θ + θg)(r
2 − 1) +

αey−(x2+x4)ω cos(∆θ + θg)

r
(10)

Then the overall closed-loop dynamics of the CLO-FLL (4)
can be written as:

ṙ = αey−(x2+x4) sin(∆θ + θg)ω − r sin2(∆θ + θg) (11a)

∆̇θ = ωg − ω − cos(∆θ + θg) sin(∆θ + θg)(r
2 − 1)+

αey−(x2+x4)ω cos(∆θ + θg)

r
(11b)

ẋ3 = −βey−(x2+x4)ωr cos(∆θ + θg) (11c)
ẋ4 = γey−(x2+x4) (11d)

The desired equilibrium of eq. (11) is given by:

x? = {r = A = Ag,∆θ = 0, x3 = (ωg − ωn) /2π, x4 = yo}
(12)

Without losing any generality, for the sake of computational
simplicity, we assume that Ag = 1, yo = 0.1 The closed-
loop dynamics (11) is nonlinear. However, we are interested
in the local behavior of the closed-loop dynamics near the
desired equilibrium given in eq. (12). This can be done by
calculating the Jacobian matrix [48] of the system (11) near
the desired equilibrium. The Jacobian matrix is given at the
bottom of this page. Stability of the closed-loop dynamics near
the equilibrium x? is determined by the eigenvalues of the
matrix J(x?). This can be determined by the characteristics
equation of the J(x?) i.e. det(J(x?) − λI4) = 0 which is
given in the following:

c4λ
4 + c3λ

3 + c2λ
2 + c1λ+ c0λ

0 = 0 (13)

where the coefficients are given by: c4 = 1, c3 = γ + αωg +
2 sin2(θg), c2 = 2γ sin2(θg) + 2βπωg{1 − sin2(θg)}, c1 =
4βπωg

(
sin2(θg)− sin4(θg)

)
and c0 = 0. The stability of the

polynomial (13) can be obtained through Routh-Hurwitz test.
For this purpose, polynomial (13) can be rewritten as:

λ
(
c4λ

3 + c3λ
2 + c2λ+ c1

)
= 0 (14)

To show that the polynomial (14) doesn’t have any roots in
the right-half plane, let us consider the Routh-Hurwitz table
given in Table I.

Since 1 − sin2(θg) ≥ 0,∀θg and sin2(θg) ≥ sin4(θg),∀θg ,
then for suitably selected gain values, all the elements in
the first column of the Routh-Hurwitz table are positive.
This implies no sign change, as a result, no roots lie in the
right-half plane. This together with the root at origin implies
marginal stability of the closed-loop system. The root at origin
is coming from the DC bias estimation loop given in Eq.
(11d) which is a pure integrator. DC bias introduces steady-
state error in the estimation. As such using a pure integrator
to eliminate the steady-state error is a standard practice in
the control system literature. Please consult [43] for detailed
discussion on DC-bias estimation techniques in the context of
grid synchronization techniques literature.

D. CLO-FLL parameters tuning

This section gives a guidelines on the tuning of the pa-
rameters α, β and γ of the CLO-FLL. For this purpose, we
resort to the standard literature in linear control theory. For
further development, assume that θg = 0. This simplifies the
polynomial (13) to

λ4 + (γ + αωg)λ
3 + 2πβωgλ

2 = 0

λ2 + (γ + αωg)λ
1 + 2πβωg = 0 (15)

The denominator polynomial of a second-order transfer func-
tion is given by

λ2 + 2ζω0λ+ ω2
0 = 0 (16)

By comparing the eq. (15) to that of second-order transfer
function’s denominator polynomial (16), one can find that and
2ζωo = γ+αωg . If we choose the damping ratio to be ζ = 1√

2
,

then the following can be obtained:

ωo =
1√
2

(γ + αωg) (17a)

ωo =
√

2πβωg (17b)

By solving the nonlinear equations (17a) and (17b), one can
obtain that

J (x?) =


(2 + αωg){cos2(θg − 1)} −αωg sin (2θg) /2 0 −αωg sin (θg)
−(2 + αωg) sin (2θg) /2 −αωg cos2(θg) −2π −αωg cos (θg)

βωg sin (2θg) /2 βωg cos2(θg) 0 βωg cos (θg)
−γ sin (θg) −γ cos (θg) 0 −γ
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Table I
ROUTH-HURWITZ TABLE

λ3 1 2γ sin2(θg) + 2βπωg{1− sin2(θg)}
λ2 γ + αωg + 2 sin2(θg) 4βπωg

(
sin2(θg)− sin4(θg)

)
λ1

4γ sin4(θg)+2γ2 sin2(θg)+2πβωgγ(1−sin2(θg))+2παβω2
g(1−sin2(θg))+2αγω)+2παγωg sin2(θg)

γ+αωg+2 sin2(θg)
0

λ0
8πβωg(sin

2(θg)−sin4(θg))(2γ sin4(θg)+πβγωg+παβω
2
g+sin2(θg)(γ

2+παβω2
g+αγωg−πβγωg))

4γ sin4(θg)+2πβγωg+2παβω2
g+sin2(θg)(2γ2−2παβω2

g+2αγωg−2πβγωg)
0

Figure 2. Block digram of the MCLO-FLL.

α =
ω0√
2ωg

, β =
ω2
0

2πωg
, γ =

ω0√
2

(18)

Formula (18) can be considered as the starting point for tuning
the gains of the CLO-FLL.

E. Extension and application of CLO-FLL to three-phase case

CLO-FLL proposed in Sec. III assumes that the grid signal
is composed of a single frequency only with potentially subject
to DC bias i.e. y(t) = y0 + Ag sin(ωgt), y0 > 0. However,
in practice, the presence of harmonics can’t be neglected.
Due to the modular nature of the CLO-FLL, by making
multiple copies of CLO, it is possible to address the presence
of harmonics. Following the ideas presented in [27], multi-
frequency CLO-FLL (MCLO-FLL) can be implemented. Since
the main idea is same as [27], details are avoided here for the
purpose of brevity. Graphical representation of the MCLO-
FLL is given in Fig. 2.

In addition to distorted single-phase grid, the proposed
CLO-FLL can be directly applied to extract the sequences of
the unbalanced and distorted three-phase grid voltage as well.
Following the ideas presented in [30], CLO’s can be used
to generate the quadrature signals from the individual phase
voltage signal. Then using the mathematical relationships
given in eq. (7) and (8) of [30], the sequences of unbalanced
grid can easily be estimated. Details are avoided here for the
purpose brevity.

IV. EXPERIMENTAL RESULTS

In this Section, experimental results are considered using
dSPACE 1104 board based hardware-in-the-loop (HIL) setup.
The experimental setup used in this work is given in Fig. 3.

Figure 3. dSPACE-based HIL experimental system.

Using the third order Adams Bashforth scheme, the proposed
MCLO-FLL technique was implemented in Simulink and the
sampling frequency was 10KHz. Parameters of the MCLO-
FLL are selected as α = 1/

√
2, β = 5 and γ = 80. As a

comparison tool, we have selected multiple EPLL (MEPLL)
[42] and multiple SOGI-FLL (MSOGI-FLL) [27]. Both of
these techniques in the standard form can’t handle DC bias.
So, we have modified them by following the guidelines given
in [43]. Parameters of the EPLL are selected as µ1i = µ3i =
i × ωn, i = 1, 3, 5, .., µ2 = 15000 and µ0 = 85 with
ωn = 2π50. Parameters of the MSOGI-FLL are selected as:
k0 = 0.25, k =

√
2 and γ = 50. Both MEPLL and MSOGI-

FLL are discretized using the third-order Adams Bashforth
scheme for the sake of fair comparison.
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Figure 4. Harmonics robustness test summary.

A. Single-Phase case

For the experimental tests, we have considered a harmonic
grid voltage signal with 20% total harmonic distortion (THD)
comprised of 3rd, 7th and 9th order harmonics each having
0.1155p.u. amplitude. In the first instant, we have used the
test signal to check the harmonic robustness of the proposed
technique i.e. when only one CLO-FLL block tuned at the
fundamental frequency is considered. The result is summarized
in Fig. 4. This result shows that MCLO-FLL produced the
lowest THD among the comparison techniques. However,
the THD is not zero. To obtain zero THD, multiple-filters
approach i.e. MCLO-FLL is considered. Then to analyze the
performances of the three-techniques, following step changes
are considered as the test cases:
• Case 1: −0.2p.u. change in the fundamental amplitude
• Case 2: −0.15p.u. added as the DC component
• Case 3: +5Hz. change in the fundamental frequency
• Case 4: +50° change in the fundamental phase

Using the above test scenarios, the three techniques (MCLO-
FLL, MEPLL and MSOGI-FLL) are then tested. Comparative
experimental results are given in Fig. 5 and 6 respectively.
Time domain performance summary of the three techniques
can be found in Table II. These results demonstrate that the
performance improvement by the proposed technique over
state of the art techniques. MCLO-FLL performed better than
the selected techniques in most of the cases. It has the lowest
settling time for both phase and frequency. Similarly MCLO-
FLL has the lowest frequency estimation overshoot among the
comparison techniques. The only area where MCLO-FLL is
not the absolute winner is the phase estimation error. However,
the performance of MCLO-FLL in this regard is comparable
with the comparison techniques. In terms of overall perfor-
mance, MCLO-FLL can be considered as a potential tool to
improve the performance of various power system monitoring
and control applications.

B. Three-Phase case

As explained in Sec. III-E, MCLO-FLL is capable to extract
the sequences of three-phase system. Parameters of MCLO-
FLL are kept the same as in single-phase case. To test
MCLO-FLL, an unbalanced and highly distorted grid signal is
considered. The pre-fault value of the grid signal is considered

Table II
COMPARATIVE TIME DOMAIN PERFORMANCE SUMMARY.

MCLO-FLL MSOGI MEPLL
−0.2p.u. amplitude change

Settling time (±0.1Hz.) 19ms 30ms 42ms
Settling time (±0.1°) 30ms 52ms 60ms
Frequency overshoot 0.3Hz. 0.32Hz. 0.45Hz.

Phase overshoot 2.65° 2.58° 3.85°

−0.1p.u. DC change
Settling time (±0.1Hz.) 19ms 20ms 21ms

Settling time (±0.1°) 48ms 48ms 35ms
Frequency overshoot 0.25Hz. 0.35Hz. 0.5Hz.

Phase overshoot 3.0° 2.2° 3.0°

+5Hz. freq. change
Settling time (±0.1Hz.) 50ms 72ms 57ms

Settling time (±0.1°) 62ms 92ms 90ms
Frequency overshoot 0Hz. 0.2Hz. 0.15Hz.

Phase overshoot 15.6° 16.2° 14.1°

+50° phase change
Settling time (±0.1Hz.) 60ms 85ms 58ms

Settling time (±0.1°) 76ms 108ms 106ms
Frequency overshoot 4.55Hz. 5.2Hz. 5.3Hz.

Phase overshoot NA NA NA
*NA=Not Applicable

as
−→
V pf = 1∠0°. After the fault, harmonics, interharmonic and

subharmonic are added to the grid voltage signal having a THD
of 46%. Grid is polluted with

−→
V 1

+ = 0.5∠0°,
−→
V 1
− = 0.25∠0°,

−→
V −5 = 0.2∠0°,

−→
V +0

7 = 0.2∠0°and
−→
V 0

11 = 0.2∠0°. In
addition, sub harmonic of 20Hz. and interharmonic of 160Hz.
are added with each having amplitude of 0.05p.u.Experimental
results are given in Fig. 7. Experimental results demonstrate
that MCLO-FLL successfully estimated the frequency and
instantaneous components of the various sequences despite
the grid signal being unbalanced and highly polluted. This
demonstrate the suitability of MCLO-FLL for three-phase
sequences extractions.

V. CONCLUSIONS

This paper demonstrated multiresonant nonlinear harmonic
oscillators based estimation technique for single-phase and
three-phase grid voltage signal. First a nonlinear oscillator
is used as a model for the grid voltage signal. Then using
standard results from the literature, some modifications are
proposed to make the model frequency adaptive and DC
bias robust. Using polar coordinate transformation and lin-
earization, local stability analysis of the overall closed-loop
system has been performed. Simple gain tuning rules are
also provided. Comparative analysis with multiple EPLL and
multiple SOGI-FLL based techniques have been performed
using distorted grid voltage signals. Various step changes in
parameters are performed to test the robustness of the different
techniques. Experimental results demonstrated the superiority
of the proposed technique.

Several future works are planned e.g. applying the MCLO-
FLL as the frequency identifier block in proportional res-
onant (PR) controller based grid synchronization technique,
grid friendly appliance controller, real time identification of
transients and fluctuations in the context of future smart-grid.
In this work, local stability analysis around the equilibrium
point has been provided. As such quantifying the domain
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(a) Case 1 (b) Case 2 (c) Case 3

Figure 5. Experimental results (a) Case 1, (b) Case 2 and (c) Case 3.

Figure 6. Experimental Results for Case 4.

of attraction (i.e. the set of all points that converge) for the
equilibrium point could be interesting and will be considered
in a future work.
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