
 

 

 

Rotating non-Oberbeck–Boussinesq 
Rayleigh–Bénard convection in water 
Horn, S. & Shishkina, O. 
 
Published PDF deposited in Coventry University’s Repository  
 
Original citation:  
Horn, S & Shishkina, O 2014, 'Rotating non-Oberbeck–Boussinesq Rayleigh–Bénard 
convection in water' Physics of Fluids, vol. 26, no. 5, 055111. 
https://dx.doi.org/10.1063/1.4878669 
 
 
DOI     10.1063/1.4878669 
ISSN    1070-6631 
ESSN   1089-7666 
 
 
Publisher: AIP Publishing 
 
 
This article may be downloaded for personal use only. Any other use requires prior 
permission of the author and AIP Publishing. This article appeared in Horn, S & 
Shishkina, O 2014, 'Rotating non-Oberbeck–Boussinesq Rayleigh–Bénard 
convection in water' Physics of Fluids, vol. 26, no. 5, 055111 and may be found at 
https://dx.doi.org/10.1063/1.4878669 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This item cannot be 
reproduced or quoted extensively from without first obtaining permission in 
writing from the copyright holder(s). The content must not be changed in any way 
or sold commercially in any format or medium without the formal permission of 
the copyright holders. 



PHYSICS OF FLUIDS 26, 055111 (2014)

Rotating non-Oberbeck–Boussinesq Rayleigh–Bénard
convection in water

Susanne Horn1,2,a) and Olga Shishkina1,2

1Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
2Institute of Aerodynamics and Flow Technology, German Aerospace Center, 37073
Göttingen, Germany

(Received 3 February 2014; accepted 7 May 2014; published online 28 May 2014)

Rotating Rayleigh–Bénard convection in water is studied in direct numerical simu-
lations, where the temperature dependence of the viscosity, the thermal conductivity,
and the density within the buoyancy term is taken into account. In all simulations, the
arithmetic mean of the lowest and highest temperature in the system equals 40 ◦C,
corresponding to a Prandtl number of Pr = 4.38. In the non-rotational case, the
Rayleigh number Ra ranges from 107 to 1.16 × 109 and temperature differences �

up to 70 K are considered, whereas in the rotational case the inverse Rossby number
range from 0.07 ≤ 1/Ro ≤ 14.1 is studied for � = 40 K with the focus on Ra = 108.
The non-Oberbeck–Boussinesq (NOB) effects in water are reflected in an up to 5.5 K
enhancement of the center temperature and in an up to 5% reduction of the Nusselt
number. The top thermal and viscous boundary layer thicknesses increase and the
bottom ones decrease, while the sum of the corresponding top and bottom thicknesses
remains as in the classical Oberbeck–Boussinesq (OB) case. Rotation applied to
NOB thermal convection reduces the central temperature enhancement. Under NOB
conditions the top (bottom) thermal and viscous boundary layers become equal for a
slightly larger (smaller) inverse Rossby number than in the OB case. Furthermore, for
rapid rotation the thermal bottom boundary layers become thicker than the top ones.
The Nusselt number normalized by that in the non-rotating case depends similarly on
1/Ro in both, the NOB and the OB cases. The deviation between the Nusselt number
under OB and NOB conditions is minimal when the thermal and viscous boundary
layers are equal. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4878669]

I. INTRODUCTION

Rayleigh–Bénard convection is one of the classical problems of fluid dynamics. Similar as
Taylor–Couette or pipe flow, the setup is rather simple: It consists of a fluid confined between a
heating plate at the bottom and a cooling plate at the top. For theoretical investigations it is usually
convenient to have an infinite lateral extent, whereas in experiments elementary geometries such
as cubes or cylinders are used. Numerical simulations have the advantage that both is easy to
accomplish. Despite its simplicity, the occurring buoyancy driven flows are highly complex and we
are still far away from a complete understanding. Thus, after being first described by Bénard1 and
Lord Rayleigh2 it kept on being an active field of research for over a century now. Some recent
reviews are available by Bodenschatz, Pesch, and Ahlers,3 Ahlers, Grossmann, and Lohse,4 Lohse
and Xia,5 Chillà and Schumacher,6 and Stevens, Clercx, and Lohse7 shedding light on different
aspects.

The main reason for the ongoing interest is not only pure scientific curiosity but also the
importance of convective processes in engineering, meteorology, geo-, and astrophysics. Examples
are the ventilation of buildings and aircrafts, the flow in the atmosphere and oceans of planets,
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including our Earth, and in the convective zone of stars. In the present paper, we want to examine
two different aspects beyond the standard description of Rayleigh–Bénard convection which might
help to get closer to the prediction of realistic flows: First, the influence of temperature-dependent
material properties and second, the influence of rotation, both separately and in combination.

Commonly, variations of the fluid properties within the Rayleigh–Bénard cell are ignored due to
their assumed smallness. Only the variability of the density is accounted for in the buoyancy force.
As a result, the system exhibits a perfect top-bottom symmetry in a statistical sense. In nature and so
to say in all experiments, one always encounters a break-up of this symmetry, since these idealized
conditions can never be fulfilled exactly. These deviations are called non-Oberbeck-Boussinesq
(NOB) effects.

NOB effects caused by the temperature-dependence of the material properties have been in-
vestigated for different fluids in non-rotating convection.8–13 However, only few systematic studies
can be found when rotation comes into play. If, then concerning pattern formation and, thus, with
larger aspect ratios.14 Our objective is to examine the flow in turbulent thermal convection of water
considering its actual properties and the influence of rotation by means of three-dimensional direct
numerical simulations (DNS).

II. NUMERICAL METHODOLOGY

A. Validity of the Oberbeck–Boussinesq approximation

In most numerical investigations of Rayleigh–Bénard convection, the Oberbeck–Boussinesq
(OB) approximation15, 16 is employed. This means, that all material properties are constant, i.e., they
do not vary with pressure or temperature and, consequently, the fluid is assumed to be incompressible.
The only exception is the density in the buoyancy term, which varies linearly with temperature
therein. Since this simplifies the governing equations tremendously and, thus, allows for making
theoretical predictions, it is also desired in most of the experimental investigations to operate under
OB conditions.

However, it is intuitively clear that if the height H of the Rayleigh–Bénard cell is too large or
the temperature difference � between the heating and cooling plate is too big, then the material
properties are non-uniform within the cell. Hence, the question is: When is the OB approximation
valid? A mathematical rigorous answer to it was given by Gray and Giorgini.17 By fixing the
maximum residual error, the validity range of the OB approximation can be calculated explicitly
within the requested accuracy.

In general, for liquids the pressure-dependence can be neglected and only the temperature-
dependence is of importance. In the present work, we only consider water at an arithmetic mean
temperature of Tm = (Tt + Tb)/2 = 40 ◦C, where Tt is the temperature at the top and Tb is the
temperature at the bottom. In the following the indices m, t, and b will always indicate that a quantity
is given for Tm, Tt, and Tb, respectively. The deviation of the material properties from their values
at Tm is shown in Fig. 1(a) in the range between 10 ◦C and 70 ◦C. Their functional dependency was
given by Ahlers et al.10 in terms of polynomials of the temperature up to cubic order (i = 3) with
certain prefactors ai,

X − Xm

Xm
=

∑
i

ai (T − Tm)i X ∈ {ρ, κ, cp, ν, α, �}. (1)

Here X stands for the various material properties, i.e., the density ρ, the heat diffusivity κ , the
specific heat capacity cp, the kinematic viscosity ν, the isobaric expansion coefficient α, and the
heat conductivity �. Using these polynomial functions, we can calculate the validity range of the
OB approximation for water similar as was done in Horn, Shishkina, and Wagner8 for glycerol.
By requiring a maximum residual error of 10% the two constraints are H/� < 35036 cm/K and �

< 0.268 K. The resulting diagram is visualized in Fig. 1(b). Hence, in most experiments in water
the height of the Rayleigh–Bénard cell is not crucial, whereas the employed temperature difference
is indeed due to the variation of the viscosity. However, experiments and 2D-simulations10, 13 have
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FIG. 1. (a) Relative deviation of the material properties X of water from their values Xm at a mean temperature of Tm = 40 ◦C,
adopted from Ahlers et al.;10 diamonds: density ρ, squares: thermal diffusivity κ , circles: specific heat capacity cp, stars:
kinematic viscosity ν, downward triangles: isobaric expansion coefficient α, upward triangle: heat conductivity �. (b)
Diagram of the validity range of the OB approximation according to Gray and Giorgini.17 The gray shaded area shows the
parameter range where the OB approximation is valid within a residual error of 10%. The stars denote the NOB DNS data
points.

shown that some quantities, as, for example, the Nusselt number Nu, remain almost unchanged under
NOB conditions.

B. Parameter space and governing equations

The standard control parameters for rotating Rayleigh–Bénard convection are all defined for the
mean temperature Tm, i.e., the Rayleigh, Prandtl, and Rossby number are given by

Ra = αm g�H 3

κmνm
, Pr = νm

κm
, Ro =

√
gαm H�

2�H
, (2)

respectively, with � being the applied rotational speed and g the acceleration due to gravity. The
Rossby number is an inverse dimensionless rotation rate. To avoid confusion, rather 1/Ro is used
such that a large value of 1/Ro indicates rapid rotation. Furthermore, we introduce the Ekman
number

Ek = νm

�H 2
= 2Ro Pr1/2Ra−1/2, (3)

since this has proven to be a convenient dimensionless number in the boundary layer analysis of
rotating flows,18 sometimes defined with an extra factor of one half.19, 20

The simulations without rotation were performed under OB and various NOB conditions for
the Rayleigh numbers 107, 108, 109, and 1.16 × 109. The Prandtl number is set to Pr = 4.38. The
diameter-to-height aspect ratio is 	 = D/H = 1 or, equivalently, the radius-to-height aspect ratio is
γ = R/H = 1/2. Because we are interested in strong NOB effects, we chose temperature differences
up to 70 K, however, in a temperature range far enough away from the water density anomaly at
around 4 ◦C. Furthermore, we only consider the temperature dependence of the conductivity �, the
viscosity ν, and the variation of the density ρ within the buoyancy term. This approach is accurate
for most liquids and allows to predict the most important NOB effects.8, 9 It should also be noted
that by specifying � and the temperature-dependencies of the material properties, one also fixes all
the other dimensions in the NOB simulations for a constant Ra. The parameters for the performed
DNS in the non-rotating case are presented in Fig. 1(b) and in Table I.

For the simulations with rotation, we set the temperature difference to � = 40 K and the
Rayleigh number to Ra = 108 in the NOB case. The inverse Rossby number range is given by 1/Ro ∈
{0.07, 0.24, 0.35, 0.71, 1.01, 1.41, 2.36, 2.83, 3.54, 4.71, 7.07, 11.31, 14.14}. Hence, the smallest Ek-
man number we achieve is Ek ≈ 3 × 105, thus, still about one magnitude larger than when asymp-
totically reduced equations are to be expected to be sufficient, as introduced by Julien et al.20 In the
OB case, additionally to Ra = 108, moreover a series of DNS was conducted for Ra = 1.16 × 109

and 1/Ro ∈ {0.24, 0.71, 1.41, 2.36, 3.54, 7.07, 11.31, 14.14} to compare with available experimental
data by Kunnen et al.21 with exactly the same Prandtl number of Pr = 4.38.
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TABLE I. Simulation parameters, i.e., Rayleigh number Ra, temperature difference �, height H and the grid resolution in
radial, azimuthal, and vertical direction Nr × Nφ × Nz of the non-rotating DNS. The OB simulations are dimensionless,
while NOB simulations always imply dimensions.

Case Ra �(K) H(cm) Nr × Nφ × Nz

OB 107 . . . . . . 64 × 512 × 128
NOB 107 {10, 20, 30, 40, 50, 60, 70} {3.0, 2.3, 2.1, 1.9, 1.8, 1.6, 1.6} 64 × 512 × 128
OB 108 . . . . . . 192 × 512 × 384
NOB 108 {10, 20, 30, 40, 50, 60, 70} {6.5, 5.1, 4.5, 4.1, 3.8, 3.6, 3.4} 192 × 512 × 384
OB 109 . . . . . . 384 × 512 × 768
NOB 109 {20, 40, 60} {11.0, 8.8, 7.7} 384 × 512 × 768
OB 1.16 × 109 . . . . . . 384 × 512 × 768

Since the dimensions are fixed under NOB conditions, it is also possible to estimate the potential
importance of centrifugal buoyancy effects by calculating the Froude number,

Fr = �2 D

2g
= αm�	

8Ro 2
. (4)

In experiments, it is usually attempted to keep Fr as small as possible, i.e., around 0.05 and lower.22

For our fastest rotation rates, i.e., 1/Ro = 14.14, and � = 40 K the Froude number is Fr = 0.4
which suggests that centrifugal buoyancy effects might be observed23–27 and only for 1/Ro � 5 they
are expected to be negligible. Considering Fr �= 0, however, would lead to an additional source of
breaking the symmetry about the mid plane and it would be hard to decouple centrifugal buoyancy
and NOB effects. Thus, we deliberately set Fr ≡ 0.

Hence, rotating Rayleigh–Bénard convection in water is well-defined by the following set of
equations, given in cylindrical coordinates (r, φ, z): the continuity equation

1

r
∂r (rur ) + 1

r
∂φuφ + ∂zuz = 0, (5)

the Navier–Stokes equations in the co-rotating frame of reference

Dt ur − u2
φ

r
+ 1

ρm
∂r p = 1

r
∂r (rντrr ) + 1

r
∂φ

(
ντrφ

) + ∂z (ντr z) − 1

r
ντφφ − 2�uφ,

Dt uφ + ur uφ

r
+ 1

ρm

1

r
∂φ p = 1

r2
∂r

(
r2ντφr

) + 1

r
∂φ

(
ντφφ

) + ∂z
(
ντφz

) + 2�ur , (6)

Dt uz + 1

ρm
∂z p = 1

r
∂r (rντzr ) + 1

r
∂φ

(
ντzφ

) + ∂z (ντzz) + ρm − ρ

ρm
g,

and the temperature equation

ρmcp,m Dt T = 1

r
∂r (�r∂r T ) + 1

r2
∂φ(�∂φT ) + ∂z(�∂zT ). (7)

Here, Dt is the material derivative

Dt = ∂t + ur∂r + 1

r
uφ∂φ + uz∂z, (8)

p denotes the pressure, ur, uφ , and uz are the radial, azimuthal, and vertical velocity components,
respectively, and the tensor τ is defined as

τrr = 2∂r ur , τrφ = τφr = 1
r ∂φur + ∂r uφ − uφ

r ,

τφφ = 2
(

1
r ∂φuφ + ur

r

)
, τφz = τzφ = ∂zuφ + 1

r ∂φuz,

τzz = 2∂zuz, τzr = τr z = ∂zur + ∂r uz .

(9)
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TABLE II. Nusselt numbers as presented in Fig. 13 for the OB and the NOB case with � = 40 K and Ra = 108. Furthermore,
the last column shows the deviation of the centre temperature from the mean temperature for this NOB case as presented in
Fig. 8(b).

1/Ro NuOB NuNOB Tc − Tm(K)

0.0 32.94 ± 0.10 32.31 ± 0.08 1.80 ± 0.12
0.07 32.85 ± 0.15 32.21 ± 0.14 1.76 ± 0.10
0.24 32.92 ± 0.13 32.52 ± 0.42 1.80 ± 0.10
0.35 32.97 ± 0.21 32.24 ± 0.13 1.75 ± 0.14
0.71 34.05 ± 0.19 34.07 ± 0.22 1.72 ± 0.11
1.01 35.18 ± 0.21 34.55 ± 0.03 1.75 ± 0.11
1.41 35.26 ± 0.07 35.46 ± 0.76 1.70 ± 0.11
2.36 36.77 ± 0.06 35.86 ± 0.16 1.76 ± 0.12
2.83 37.01 ± 0.07 36.29 ± 0.08 1.75 ± 0.12
3.54 37.62 ± 0.06 37.35 ± 0.46 1.57 ± 0.04
4.71 38.51 ± 0.18 38.43 ± 0.13 1.54 ± 0.13
7.07 38.60 ± 0.14 38.57 ± 0.33 1.21 ± 0.09
11.31 34.53 ± 0.40 32.86 ± 0.44 0.93 ± 0.08
14.14 29.81 ± 0.37 28.63 ± 0.63 0.60 ± 0.04

C. Numerical procedure

To simulate rotating turbulent Rayleigh–Bénard convection the governing equations (5)–(7)
are made dimensionless by using the radius R, the buoyancy velocity

√
gαm R�, the temperature

difference �, and the value of the material properties at the mean temperature Tm, i.e., νm, �m, ρm, as
reference scales. This also yields a reference time R/

√
gαm R� and a reference pressure ρmgαmR�.

The resulting equations are solved in discretized form using a finite volume code for cylindrical
domains.

The code uses a fourth-order accurate spatial discretization scheme and a hybrid explicit/semi-
implicit Leapfrog-Euler time integration scheme. More details about the OB version of the code can
be found in Shishkina and Wagner.28 For details on the implementation of temperature-dependent
material properties and the Coriolis term we refer to Horn, Shishkina, and Wagner8 and Horn and
Shishkina.29 The lateral wall is adiabatic and the heating and cooling plates are isothermal; the
dimensionless top temperature is set to T̂t = −0.5 and the bottom temperature is set to T̂b = 0.5.
Here the hat denotes dimensionless quantities, but it will be dropped for clarity in the following.
For all walls no-slip boundary conditions for the velocity are imposed. All boundary conditions are
completed by setting a 2π periodicity in azimuthal direction.

The computational meshes are staggered and their nodes are distributed equidistantly in az-
imuthal direction and non-equidistantly in vertical and radial direction, i.e., the nodes are clustered
close to the walls. The numerical resolution was chosen in such a way that the resolution require-
ments by Shishkina et al.30 are fulfilled. It can be found in Table I. However, at least twice as
many points as suggested by these criteria were put in the boundary layers to account for NOB and
rotational effects.

III. NON-OBERBECK–BOUSSINESQ EFFECTS IN THE NON-ROTATING CASE

This section is devoted to non-rotating Rayleigh–Bénard convection of water. Several au-
thors have studied NOB effects by means of experiments10, 11 and two-dimensional numerical
simulations.13 Here, we present results from three-dimensional DNS, which also serve as refer-
ence for our investigation on the rotating case.

Probably the most prominent and best analyzed NOB effect is the increase of the temperature
within the bulk, which can clearly be seen in Fig. 2 and in the mean temperature profiles in Fig. 3(a).
The higher the applied temperature difference �, the hotter the fluid inside the Rayleigh–Bénard
cell. This effect can be evaluated quantitatively by analyzing the center temperature, i.e., the radially,
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(a) OB (b) NOB, Δ = 20K (c) NOB, Δ = 40K (d) NOB, Δ = 60K

FIG. 2. Instantaneous temperature fields for Ra = 108 without rotation under (a) OB conditions and three different NOB
conditions, (b) � = 20 K, (c) � = 40 K, and (d) � = 60 K. Visualized are isosurfaces for ten equidistantly distributed values
between the top and bottom temperature, Tt and Tb. Pink corresponds to temperatures above the mean temperature Tm and
blue to temperatures below Tm.

azimuthally, and temporally averaged temperature at mid-height,

Tc ≡ 〈T |z=H/2〉r,φ,t . (10)

In Fig. 3(b), we present Tc obtained by our DNS for Ra ∈ {107, 108, 109} for temperature differences
� between 10 K and 70 K. Tc increases with �. For � = 70 K Tc is about 5.5 K higher than in the
OB case. For comparison, the experimental data by Ahlers et al.10 for 109 � Ra � 1011 and the
two-dimensional DNS results by Sugiyama et al.13 for Ra = 108 are also shown. All three data
sets are in excellent agreement and, moreover, there is no significant dependence on the Rayleigh
number for the cases considered.

Several models10, 31–33 have been proposed to predict Tc, however, the suitability of the model
strongly depends on the fluid.6, 8 In the case of water, an extension of the Prandtl–Blasius boundary
layer theory to non-constant viscosity ν and thermal diffusivity κ has been proven to be very
successful.10, 13 The prediction of this theory is also depicted in Fig. 3(b). Since the variation of κ

is rather small compared to the variation of ν with temperature, this also supports the hand-wavy
explanation of the enhanced Tc: The fluid at the bottom is warmer, thus, in comparison to OB
convection, the viscosity is lower and, thus, the fluid and the plumes emerging from the bottom
boundary layer are more mobile, i.e., they are able to cross the cell faster. Furthermore, they also
spend less time in contact with the ambient fluid and, hence, have less time to cool down. The
analogue is true for the cold plumes from the top; their viscosity is higher, they move slower and
they have more time to warm up in the bulk. As a consequence, the temperature in the center of
the cell enhances. This suggests, that in the case of water the viscosity is the major reason for an
increase of Tc with �.

FIG. 3. (a) Mean temperature profiles for Ra = 108 under OB and various NOB conditions, � ∈ {10 K, 20 K, 30 K, 40 K,
50 K, 60 K, 70 K}, without rotation. Note that not the full temperature range is shown. (b) Deviation of the center temperature
Tc from the mean temperature Tm as function of the temperature difference �. The pluses show the experimental data by
Ahlers et al.,10 the asterisks represent the two-dimensional numerical data by Sugiyama et al.13 for Ra = 108, the solid
dashed line is the prediction by the extended Prandtl–Blasius boundary layer theory.10 Our DNS data obtained for Ra = 107,
108, and 109 are denoted by diamonds, circles, and squares, respectively.
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FIG. 4. Boundary layer thicknesses in the NOB case normalized by the boundary layer thickness in the OB case for Ra
= 108. Their calculation is based on the slope criterion, cf. Eqs. (11)–(12). (a) Thermal boundary layer thicknesses, upper
half circles: top thermal boundary layer λθ

t , lower half circles: bottom thermal boundary layer λθ
b , circles: ratio of the sum

of the NOB to the OB boundary layer thicknesses. (b) Viscous boundary layer thicknesses, downward triangles: top viscous
boundary layer λu

t , upward triangles: bottom viscous boundary layer λu
b , diamonds: ratio of the sum of the NOB to the OB

boundary layer thicknesses.

Another very well-known feature of NOB convection is the different boundary layer thicknesses
at the top and bottom. They are presented in Fig. 4. The boundary layer thicknesses are defined by
the slope criterion,34 i.e., they are determined by the point where the tangent of the profile at the
plate intersects with either the center temperature, in the case of thermal boundary layers, or with
the maxima of the radial velocity, in the case of viscous boundary layers. Mathematically expressed,
the thermal top and bottom boundary layer thicknesses are given by

λθ
t = Tt − Tc

∂z〈T 〉r,φ,t

∣∣
z=H

, λθ
b = Tc − Tb

∂z〈T 〉r,φ,t

∣∣
z=0

, (11)

and similarly the viscous ones are given by

λu
t = − umaxt

r

∂z〈ur 〉r,φ,t

∣∣
z=H

, λu
b = umaxb

r

∂z〈ur 〉r,φ,t

∣∣
z=0

, (12)

where umaxt
r and umaxb

r are the first maxima of the radial velocity profile close to the top and bottom
plate, respectively. In the OB case, the top and bottom boundary layers have, of course, the same
thickness,

λOB = λt = λb. (13)

In the NOB case, on the contrary, the top boundary layers are always thicker than the bottom ones.
Furthermore, they exhibit the very peculiar behavior, that the sum of their thicknesses approximately
equals the sum of the thicknesses in the OB case, i.e.,

λt + λb ≈ 2λOB. (14)

This holds for both, the viscous and the thermal boundary layer thicknesses. To be more precise, their
ratio (λt + λb)/(2λOB) equals 1.009 ± 0.007 for the thermal and 1.10 ± 0.06 for the viscous boundary
layer thicknesses. Thus, for both types the sum of OB boundary layer thicknesses is slightly greater
than the sum of the NOB ones and approximation (14) works better for the thermal boundary layers.
For some time it was suspected that Eq. (14) is a universal NOB behavior,10 however, for example,
in the case of glycerol this relation does not hold at all.8, 12

Finally, the dimensionless heat flux, the Nusselt number, defined by

Nu = (RaPrγ )1/2 〈uzT 〉 − γ −1 〈�∂zT 〉 (15)

is shown in Fig. 5(a) as function of Ra for the OB case and the NOB case with � = 40 K and
compared to experimental data by Funfschilling et al.35 and the predictions by the Grossmann–
Lohse (GL) theory.4, 36–39 The Nusselt number in our DNS is evaluated using the mean value of
the r-φ plane averaged heat fluxes for all vertical z positions40 and the error bars indicate the
standard deviation. The Nusselt number according to the GL theory is calculated using the updated
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FIG. 5. (a) Reduced Nusselt number Nu/Ra0.3 as function of Ra under OB (circles) and NOB conditions with � = 40 K.
Additionally, the experimental data by Funfschilling et al.35 and the predictions by the Grossmann–Lohse theory36 are
presented. (b) Nusselt number NuNOB for various NOB conditions normalized by the value under OB conditions NuOB as
function of �; diamonds: Ra = 107, circles: Ra = 108, squares: Ra = 109. The Nusselt numbers were obtained by the mean
value of the r-φ plane averaged heat fluxes for all vertical z positions. The error bars indicate the standard deviation.

prefactors by Stevens et al.39 There is a good agreement of the experimental data, the OB DNS
results and with the GL theory. The Nusselt number in the case of temperature-dependent material
properties, NuNOB, is always slightly lower than in the pure OB case, NuOB. But despite that fact, the
deviation and especially its scaling with Ra is only marginal, i.e., NuOB∝Ra0.293 ± 0.001 compared to
NuNOB ∝ Ra0.288 ± 0.003. And even for higher �, as depicted in Fig. 5(b), the deviation remains below
5%. The insensitivity of the Nusselt number can be understood by expressing Nu in terms of the
temperature gradient at the plates, which yields

NuOB = H

2λOB
, (16)

in the OB case, and similarly

NuNOB = H

λθ
t + λθ

b

�t�t + �b�b

�m�
(17)

in the NOB case, with �t = Tc − Tt and �b = Tb − Tc being the top and bottom temperature drop,
respectively. Hence, the following relation holds:10

NuNOB

NuOB
= 2λOB

λθ
t + λθ

b

�t�t + �b�b

�m�
= FλF�. (18)

By inserting approximation (14), the first factor Fλ equals one. By using the exact values obtained
from our DNS it is slightly less than one. Since there is also no strong temperature-dependence of
�, the second factor F� depends only weakly on � and is likewise close to one. However, one can
even show, that F� is also always less than one, since the center temperature is always higher than
the mean temperature. Thus, even though, there is only a weak dependence of Nu on �, NuNOB is
necessarily smaller than NuOB.

IV. NON-OBERBECK–BOUSSINESQ EFFECTS IN THE ROTATING CASE

In the following, we discuss how the flow changes when the Rayleigh–Bénard cell is rotated
both with constant and with temperature-dependent material properties.

A. Flow structures and temperature distribution

When a constant rotation rate is applied, the typical plume shape changes. The plumes become
more and more elongated with increasing 1/Ro . For smaller 1/Ro a single large-scale circula-
tion (LSC) is the predominant structure, for higher 1/Ro the LSC breaks down41 and a regu-
lar pattern of columnar vortex structures forms. These columnar vortices are also called Ekman
vortices42–44 or convective Taylor columns.45, 46 This change of the flow behavior is visualized by
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(a) OB, 1/Ro = 0.7 (b) OB, 1/Ro = 1.4 (c) OB, 1/Ro = 7.1 (d) OB, 1/Ro = 14.1

(e) NOB, 1/Ro = 0.7 (f) NOB, 1/Ro = 1.4 (g) NOB, 1/Ro = 7.1 (h) NOB, 1/Ro = 14.1

FIG. 6. Instantaneous temperature fields for Ra = 108. Visualized are isosurfaces for ten equidistantly distributed values
between the top and bottom temperature, Tt and Tb. Pink corresponds to temperatures above the mean temperature Tm and
blue to temperatures below Tm. The upper panel, (a)–(d), shows the OB cases, the lower panel, (e)–(h), shows the NOB cases
with � = 40 K. The rotation rate increases from left to right. (a) and (e) 1/Ro = 0.7; (b), (f) 1/Ro = 1.4; (c) and (g) 1/Ro =
7.1; and (d) and (h) 1/Ro = 14.1. The corresponding non-rotating flow fields with 1/Ro = 0 are presented in Figs. 2(a) and
2(c), respectively.

temperature isosurfaces in Fig. 6 for Ra = 108 and four representative inverse Rossby numbers,
1/Ro ∈ {0.7, 1.4, 7.1, 14.1} under OB and NOB conditions with � = 40 K.

In the NOB cases for low and moderate rotation rates, 1/Ro � 1.4, the bulk of the fluid shows a
generally higher temperature, similar as without rotation.47 However, for even higher rotation rates,
at the point when the columnar vortices become very pronounced, 1/Ro � 7.1, the differences in the
temperature fields become less apparent. To investigate this in more detail, we analyze the mean
temperature profiles, see Fig. 7, the mean temperature gradients, Fig. 8(a), and the center temperature
Tc as function of 1/Ro , Fig. 8(b).

Similar as in Sec. III, profiles, the temperature gradients, and Tc were obtained by averaging
over full horizontal planes. This means, we include the sidewall boundary layers. Even though
their contribution, in particular in rotating convection,21, 48 is certainly of importance, a detailed
investigation of NOB effects inside them would go beyond the scope of this paper and we leave this
for future work.

Both the profiles in Fig. 7 in the OB and in the NOB case show a non-zero mean temperature
gradient within the bulk. This was found to be a result of vortex-vortex interactions.49, 50 More
precisely, at fast enough rotation, when the columnar vortices appear, the flow is nearly two-
dimensional and, thus, there is hardly any mixing in vertical direction. The only mixing occurs
when vortices merge, which occurs along their lateral extent, i.e., in horizontal direction. Unlike
without rotation, there is no fully three-dimensional mixing and consequently, there is a non-zero
temperature gradient in the core part of the convection cell. The mean temperature gradient in the
center of the cell, ∂z〈T〉r, φ, z|z = H/2, is determined by making a linear fit on the mean temperature
profiles in the range 0.4 ≤ z/H ≤ 0.6 and presented in Fig. 8(a). In general, the absolute value of it
increases with the rotation rate, and tends to be slightly higher in the NOB cases.

Under NOB conditions the profiles in Fig. 7 possess another intriguing feature. With increasing
rotation rate, the temperature in the bulk decreases and the OB and NOB profiles for 1/Ro = 14.1
approach each other.
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FIG. 7. Mean temperature profiles for Ra = 108. The dotted lines show the OB profiles, the solid lines the NOB ones with
� = 40 K. The color changes from blue to purple with decreasing rotation rate 1/Ro . Note that not the full temperature range
is shown.

Indeed, Fig. 8(b), displaying Tc as function of 1/Ro , reveals that for high enough rotation rates,
1/Ro � 3.5, the center temperature shows a sudden drop (see also Table II). Physically, this is readily
understood. Under strong rotation the relative magnitude of the viscous term in the Navier–Stokes
equations (6) is small and thus, viscous effects in the bulk are less important.18 But as explained in
Sec. III, the increase of the Tc is almost solely due to the viscosity. We have performed a power-law
fit based on the least squares method. It yielded that Tc − Tm decreases approximately as 1/Ro 0.66.
However, it cannot decrease limitless, but probably reaches at most a value corresponding to the
pure conductive state, which is still greater than Tm.

B. Boundary layers

For rotating convection, we can also define the boundary layer thicknesses based on the slope
criterion similar to non-rotating convection. This is straightforward in the case of the viscous
boundary layers by using Eq. (12). A selection of the radial velocity profiles used for the analysis
is presented in Fig. 9(a). There is an anticipated asymmetry in the top and bottom NOB profiles.
Figure 9(a) reveals further that the magnitude of the area-averaged radial velocity near the top and

FIG. 8. (a) Absolute value of the mean temperature gradient |∂z〈T〉r, φ, t|z = H/2| for Ra = 108, obtained by a linear fit of the
mean temperature profiles between 0.4 ≤ z/H ≤ 0.6. The circles denote the OB case, the diamonds the NOB case with �

= 40 K (b) Deviation of the center temperature Tc from the mean temperature Tm as function of the inverse Rossby number
1/Ro for Ra = 108 under NOB conditions with � = 40 K. The dashed line represents the value in the non-rotating case,
1/Ro = 0, the solid line shows a power law fit for 2.8 ≤ 1/Ro ≤ 14.1.
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FIG. 9. (a) Mean profiles of the radial velocity, 〈ur〉r, φ, t, for Ra = 108 under OB and NOB conditions with � = 40 K and
various 1/Ro . The ordinate shows the distance z* from the top and bottom plate, respectively, i.e., the profiles under NOB
conditions of the upper half of the cell are mirrored along the midplane. The OB profiles were obtained by averaging the upper
and lower profiles. Open symbols with solid lines: NOB profiles for the upper half of the cylinder. (b) Viscous boundary layer
thicknesses based on the slope criterion (12) as function of the inverse Rossby number 1/Ro ; diamonds: OB boundary layer
thicknesses λu

OB, upward triangles: top NOB boundary layer thicknesses λu
t , downward triangles: bottom NOB boundary

layer thicknesses λu
b . The solid line shows the Ekman scaling 0.5Ek 1/2.

bottom plates decreases with increasing rotation rate, which indicates a breakdown of the large-scale
circulation that is essential for non-rotational thermal convection in water for Ra = 108.

The maxima for increasing 1/Ro are closer to the top and bottom wall, respectively, a behavior
also reflected in the viscous boundary layer thicknesses λu presented in Fig. 9(b). The viscous
boundary layer thickness λu decreases with higher rotation rates and it is well-known, that in
rapidly rotating flows the viscous boundary layer is an Ekman type boundary layer with a thickness
proportional to Ek 1/2. In fact, λu

OB follows 0.5Ek 1/2 perfectly well for 1/Ro � 0.7. Under NOB
conditions, the drop of λu

t occurs at higher 1/Ro than in the OB case and λu
t > λu

OB for all Ro .
On the contrary, the drop of λu

b occurs for lower 1/Ro than in the OB case and λu
b < λu

OB for all
1/Ro . The deviation is only small and the scaling exponent of Ek is essentially the same in the OB
and the NOB cases. Moreover, the sum of the top and bottom boundary layer thicknesses in the
NOB cases still approximately equals their sum in the OB cases. But it is not too surprising that in
opposite to the center temperature Tc, the thicknesses of the viscous boundary layers keep on being
non-negligibly influenced by the temperature-dependence of the viscosity. In the Ekman layer, the
Coriolis force is balanced by the pressure gradient and the viscous shear.18 Friction acts to satisfy
the no-slip condition at the plates, hence, in the boundary layers the viscous processes are essential,
despite the fact that Coriolis force dominates the bulk.19

The definition of the thermal boundary layer thickness is more tricky.51 Instead of using
Eq. (11), Stevens, Clercx, and Lohse51 suggested to use the intersection of the tangent to the
mean temperature profile at the plate and of the tangent to the profile at the center of the cell,

λ̃θ
t =

Tt − Tc − ∂z〈T 〉r,φ,t

∣∣
z=H/2 H/2

∂z〈T 〉r,φ,t

∣∣
z=H

− ∂z〈T 〉r,φ,t

∣∣
z=H/2

, λ̃θ
b =

Tc − Tb − ∂z〈T 〉r,φ,t

∣∣
z=H/2 H/2

∂z〈T 〉r,φ,t

∣∣
z=0 − ∂z〈T 〉r,φ,t

∣∣
z=H/2

. (19)

The boundary layer thicknesses based on both definitions are presented in Fig. 10. Definition (11)
has the advantage that it allows for some analytical discussion of the Nusselt number, presented in
Sec. IV C. Definition (19) on the other hand is more physical since it takes the mean temperature
gradient into account. But the essential behavior is very similar: λθ and λ̃θ are almost constant for
1/Ro � 0.35, decrease for 0.35 � 1/Ro � 7.1, and then sharply increase for 1/Ro � 7.1. Remarkably,
for 1/Ro > 7.1 the bottom NOB boundary layers are thicker than the top ones and than the OB
boundary layers, whereas the top boundary layers are thinner than the OB boundary layers and
consequently, also as the bottom NOB boundary layers. Hence, for fast rotation the situation is
reversed to slow and moderate rotation. In addition we also plotted the line 0.5Ek 1/2 and the point
of intersection between λu and λθ and between λu and λ̃θ is determined to be at 1/Ro ≈ 1.4. But this
inverse Rossby number does not seem to be crucial for any observed change in a flow feature.
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FIG. 10. (a) Thermal boundary layer thicknesses based on the slope criterion (11) as function of the inverse Rossby number
1/Ro ; circles: OB boundary layer thicknesses λθ

OB, upper half circles: top NOB boundary layer thicknesses λθ
t , lower half

circles: bottom NOB boundary layer thicknesses λθ
b . (b) Thermal boundary layer thicknesses based on the slope criterion

that considers the mean temperature gradient in the bulk (19) as function of the inverse Rossby number 1/Ro ; squares:
OB boundary layer thicknesses λ̃θ

OB, right facing triangles: top NOB boundary layer thicknesses λ̃θ
t , left facing triangles:

bottom NOB boundary layer thicknesses λ̃θ
b . The solid line in both panels shows the Ekman scaling 0.5Ek 1/2, similar as

in Fig. 9(b).

Additionally, we also evaluated the boundary layer thicknesses based on the rms profiles for the
temperature and the radial velocity,52, 53 shown in Fig. 11. The thicknesses are then defined by

δθ
t = H − max

(
z|∂z〈ur,rms 〉=0

)
, δθ

b = min
(

z|∂z〈ur,rms 〉=0

)
, (20)

δu
t = H − max

(
z|∂z〈Trms 〉=0

)
, δu

b = min
(

z|∂z〈Trms 〉=0

)
, (21)

and presented in Fig. 12. When the viscous boundary layer thickness is based on the rms criterion,
the scaling is still consistent with the Ekman scaling, i.e., δu∝Ek 1/2, however, the absolute value
and thus the prefactor is higher. This was also found by Stevens et al.42 and Kunnen, Geurts, and
Clercx.53 According to King, Stellmach, and Aurnou,19 the thermal and viscous Ekman boundary
layers should have the same thickness, δθ = δu, somewhere between 6 � Pr3/4Ra1/4Ro 3/2 � 20, or
expressed explicitly in terms of 1/Ro and for Pr = 4.38 and Ra = 108, it should be between 6.25 �
1/Ro � 14.3. We mark this predicted crossover range by a gray shaded area. Indeed, our OB DNS
results agree nicely with this prediction. We estimate the crossover Rossby number to be 1/Ro ≈
7.9. Under NOB conditions, the crossover of the top boundary layers occurs for higher 1/Ro than
the OB crossover, whereas, the crossover of the bottom boundary layers occurs for smaller 1/Ro
than the OB crossover. In addition, similar as for the λθ and λ̃θ , the top boundary layers are thicker
than the bottom ones for 1/Ro > 7.1. Furthermore, the inverse Rossby number 1/Ro where λθ and
λ̃θ show the sudden increase and their respective thicknesses reverses coincides with the inverse
Rossby number where δθ = δu, i.e., 1/Ro ≈ 7.9.

FIG. 11. (a) Mean profiles of the rms temperature for various inverse Rossby numbers 1/Ro , including no rotation, 1/Ro =
0. The dotted lines show the OB cases, the solid lines the NOB cases. (b) Mean profiles of the radial rms velocity. Analogous
to Fig. (a), the dotted lines show the OB cases, the solid lines the NOB cases.
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FIG. 12. Thermal and viscous boundary layer thicknesses based on the maxima of the rms temperature and velocity profiles,
(20) and (21), respectively, as function of the inverse Rossby number 1/Ro . Circles: OB thermal boundary layer thicknesses
δθ

OB, upper half circles: top NOB thermal boundary layer thicknesses δθ
t , lower half circles: bottom thermal NOB boundary

layer thicknesses δθ
b . Diamonds: OB viscous boundary layer thicknesses δu

OB, upward triangles: top NOB viscous boundary
layer thicknesses δu

t , downward triangles: bottom NOB viscous boundary layer thicknesses δu
b . The solid line shows the

Ekman scaling 0.5Ek 1/2, similar as in Fig. 9(b). The dashed lines are guides to the eye. The gray shaded area shows the
crossover range of the boundary layer thicknesses predicted by King, Stellmach, and Aurnou.19

C. Heat flux

Finally, we discuss how the Nusselt number is influenced by temperature-dependent material
properties in rotating Rayleigh–Bénard convection. The Nusselt number Nu normalized by its value
without rotation Nu0 as function of the inverse Rossby number 1/Ro is shown in Fig. 13.

Under OB conditions the dependence of the heat flux on the rotation rate has been subject to
a plethora of experimental and numerical studies.20, 44, 54–60 It is generally approved that there are
essentially two competing mechanisms that determine how Nu changes with 1/Ro for fluids with
Pr � 1. On the one hand there is Ekman pumping, leading to an enhancement of the heat transport
and on the other hand there is the Taylor–Proudman effect,61, 62 resulting in the suppression of the
heat transport. Hence, one often distinguishes between three different regimes,7, 21, 44 indicated by
the roman numbers I, II, and III in Fig. 13.

For low rotation rates, denoted as regime I, the Nusselt numbers in the rotating and in the
non-rotating case are virtually the same. Hence, the system is governed by the buoyancy force. For
more rapid rotation, regime II, there is a sudden increase of Nu and then, after reaching a maximum
which marks the transition to regime III, the heat transport drops rapidly. The transition from regimes
I to II was found to be a bifurcation and a finite size effect of the Rayleigh–Bénard cell.43, 58 The
critical inverse Rossby number for this transition was determined to

1

Ro c
= a

	

(
1 + b

	

)
, a = 0.381, b = 0.061 (22)

which results in 1/Ro c = 0.4 for our case of 	 = 1.
The enhancement of the heat transport in regime II is commonly understood to be due to the

formation of columnar vortex structures. They suck additional heat out of the thermal boundary
layer,23, 49, 50, 53, 56 a process called Ekman pumping. The decrease in regime III is explained with
help of the Taylor–Proudman theorem. It states that for very rapid rotation all steady slow motions
in an inviscid fluid are two-dimensional, in other words, that all components of the velocity are not
allowed to vary in the direction of the rotation axis.63 Strictly speaking the Taylor–Proudman theorem
is not valid in the time-dependent convective flow considered here. Nonetheless, the tendencies are
correctly captured by it. In this regime, the system is expected to behave as if it was in geostrophic
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FIG. 13. Nusselt number Nu in the rotating case normalized with the Nusselt number in the non-rotating case Nu0 as function
of the inverse Rossby number 1/Ro . The filled diamonds show the OB DNS data for Ra = 108, the filled circles the NOB
data for � = 40 K and the same Ra, and the filled upward triangles OB data for Ra = 1.16 × 109. For comparison the open
stars, squares, and downward triangles show experimental data by Kunnen et al.21 for Ra = 2.99 × 108, 5.88 × 108, and 1.16
× 109, respectively, for the same Pr = 4.38. The vertical dotted dashed line shows the onset of heat transfer enhancement
predicted by Weiss et al.43 The other three vertical lines show predictions for the transition to the rotation dominated
regime, triple-dotted dashed line: Kunnen et al.,21 dashed line: Ecke and Niemela,54 dotted line: Julien et al.20 The gray
shaded area represents the crossover range of the boundary layer thicknesses according to King, Stellmach, and Aurnou,19 as
in Fig. 12.

balance. However, the exact border between the regimes II and III is slightly arbitrary and several
combinations of the control parameters have been proposed to determine whether the flow is rotation
or buoyancy dominated.19, 20, 23, 52, 54, 57, 64 Furthermore, the heat flux is not the only way to characterize
this transition but there are also other approaches, e.g., using the helicity,64 the strength of the large-
scale circulation,42 or the toroidal and poloidal energy.29

In Fig. 13, we compare our DNS results for Ra = 108 and Ra = 1.19 × 109 to experimental
data and several recent predictions for the regime transitions. As previously, the Nusselt number was
obtained by the mean value of the r-φ plane averaged Nu for all vertical z positions.

The agreement with the experimental data by Kunnen et al.21 for Ra = 1.19 × 109 and Pr
= 4.38 is excellent. Furthermore, these authors have shown that their measurements also agree with
the data by Zhong and Ahlers.44 Unfortunately, neither group measured for Rayleigh numbers as
low as ours or for temperature differences as high as our DNS under NOB conditions. However, the
trend of the Nusselt number to an enhanced heat flux increase and a shift of this maximum to higher
1/Ro with decreasing Ra is captured nicely. The higher maximum for lower Ra is explained by a
lower turbulent viscosity.7

The maximum heat flux for Ra = 108 is observed for 1/Ro ≈ 7.1, which is the same point, where
the viscous Ekman and the thermal boundary layers intersect, δu = δθ . This impact of the bound-
ary layer dynamics in rotating Rayleigh–Bénard convection on the global heat transport was first
suggested by Rossby23 and later on taken up by others, e.g., King, Stellmach, and Aurnou,19 Julien
et al.,49 and King et al.52 According to King, Stellmach, and Aurnou,19 the crossover of the boundary
layers is supposed to mark the transition of the heat transport behaving either quasigeostrophic or
weakly rotating. Similar as in Fig. 12, the proposed transition range for Ra = 108 is visualized by a
gray-shaded area and fits nicely to our DNS. However, transitions in the scaling behavior of Nu with
the rotation rate were also observed in numerical simulations with stress-free boundary conditions
by Schmitz and Tilgner57 where no Ekman boundary layers are present. It might be worthwhile
testing whether a generalization in terms of dissipation layers suggested by Petschel et al.65 for
non-rotating Rayleigh–Bénard convection can be found.
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Other authors proposed transition parameters that were supposed to be independent of the
boundary conditions. Julien et al.20 suggested an approach based on an asymptotic state in the limit
Ek → 0 which is expected to be valid for Ekman numbers still about one magnitude lower than ours
for Ra = 108. Nonetheless their prediction of the transitional regime with active Ekman pumping,
given by 1 � Ro � Pr1/8Ra−1/8, yielding 1 � 1/Ro � 8.3 for Ra = 108, matches the maximum Nu
decently. Ecke and Niemela54 empirically determined the transition to geostrophic turbulence by
measurements in helium with Pr = 0.7. There, the thermal boundary layer is always thicker than the
viscous one, thus, the argumentation of a crossover of boundary layers does, of course, not apply. But
despite that, their transitional Rossby number 1/Ro t = 1.5Pr1/2Ra1/14, which gives 11.7 for Ra = 108,
also coincides in a good approximation with the Rossby number where the thermal boundary layers
based on the slope criterion start to increase, where the rms boundary layer thicknesses intersect and
the maximum of the Nusselt number is found.

Now the question arises in which way NOB effects influence the heat transport in rotating
convection. Fig. 13 shows that NuNOB normalized by its value without rotation Nu0

NOB is virtually the
same and agrees within the statistical error with NuOB/Nu0

OB for 1/Ro � 3.5. Thus, the temperature
dependence of the material properties influences the Nusselt number in the same way as without
rotation. However, in the small range between 3.5 � 1/Ro � 11.3, the ratio NuNOB/Nu0

NOB is greater
than NuOB/Nu0

OB. This does not mean that the actual Nusselt number is larger, NuNOB is only at most
as large as NuOB within the statistical error as can be seen in Table II. For 1/Ro � 11.3, the situation
is reversed, i.e., NuNOB/Nu0

NOB < NuOB/Nu0
OB.

To understand this behavior, it is useful to consider again Eq. (18), i.e., the separation of the ratio
NuNOB/NuOB into a contribution by the boundary layers, Fλ, and a contribution by the temperature
drops, F�. The factor F� is independent of 1/Ro for 1/Ro � 3.5. For more rapid rotation, the center
temperature Tc drops, as discussed before and was shown in Fig. 8(b), thus the top temperature drop
�t increases and the bottom temperature drop �b decreases. Consequently, F� decreases, but only
marginally. The factor Fλ is also independent of 1/Ro for 1/Ro � 3.5. Afterwards it increases, which
is also the point where the thermal boundary layers in the NOB case intersect, as was presented in
Fig. 10(a). Fλ has its maximum value of 1.03 for 1/Ro = 7.1. For the highest 1/Ro , when the top
boundary layer thickness λθ

t is thinner than the bottom boundary layer thickness λθ
b , Fλ is smaller

than in the non-rotating case. Hence, the influence on the boundary layers is crucial for Nu. The
drop of Tc is only of minor importance.

V. SUMMARY AND CONCLUDING REMARKS

The influence of rotation on Rayleigh–Bénard convection in water was investigated by means
of three-dimensional DNS. The temperature dependence of the density within the buoyancy force,
the viscosity, and the heat conductivity and were considered explicitly and compared to the standard
OB approximation. Hence, we were able to predict the importance of NOB effects. NOB effects
manifest itself in a variety of ways, here we focused on the most prominent features, namely, the
increase of the center temperature Tc, different boundary layer thicknesses and the modification of
the dimensionless heat flux, the Nusselt number Nu.

Without rotation, Tc increases together with the applied temperature difference. It is well
predicted by an extension of the Prandtl–Blasius boundary layer theory proposed by Ahlers et al.10

This suggests that the temperature dependence of the viscosity is mainly responsible for the enhanced
Tc. The top viscous and thermal boundary layers are always thicker than the bottom boundary layers,
which is expected to be generally true for liquids. However, in gases this can be reversed.66 In the
special case of water at a temperature of Tm = 40 ◦C, the sum of the boundary layer thicknesses
equals approximately the sum of the boundary layer thicknesses under perfect OB conditions.
Furthermore, the Nusselt number Nu is lower under NOB conditions, but this deviation remains
below 5%, even for temperature differences up to 70 K.

For low and moderate rotation rates, the Rayleigh–Bénard system responds very similar to the
temperature dependencies of the material properties as without rotation. That is, Tc has the same
value, the top thermal, and viscous boundary layers are thicker than the corresponding bottom ones
and NuNOB/NuOB is the same as in the non-rotational case.
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However, for rapid rotation, certain NOB effects, i.e., those caused by the viscosity are sup-
pressed. The reason is that viscous effects in the bulk of the Rayleigh–Bénard cell become negligible
for strong rotations rates. This is best reflected by the behavior of Tc that shows a sharp decrease
for 1/Ro � 3.5. Although this might suggest that in experiments many symmetries being inher-
ent in Rayleigh–Bénard convection are restored under NOB conditions if only the rotation rate is
high enough, one has to be careful since it will probably be a fallacy. There, not only the cen-
trifugal buoyancy, that was not considered in this study, would be another source of breaking of
the top-bottom symmetry, including a higher center temperature,25 but furthermore, the boundary
layers keep on being strongly influenced by viscous forces. Under NOB conditions, the crossover
of the top (bottom) thermal and viscous boundary layers happens for slightly larger (smaller) 1/Ro
than under OB conditions. At this crossover Rossby number the absolute deviation between NuOB

and NuNOB is minimal and smaller than without rotation. Moreover, at this 1/Ro , the top thermal
boundary layers become thinner than the bottom ones, whereas for the viscous boundary layer the
situation remains as without rotation and the top viscous boundary layers are thicker than the bottom
ones.

ACKNOWLEDGMENTS

The authors are very grateful to Professor E. Bodenschatz for his support and hospitality at the
Max-Planck-Institute for Dynamics and Self-Organization in Göttingen. Furthermore, the authors
acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) under Grant No.
SH405/2, in the framework of SFB 963/1, Project No. A6, and Heisenberg fellowship SH405/4.
The authors would also like to thank the Leibniz-Rechenzentrum (LRZ) in Garching for providing
computational resources.

1 H. Bénard, “Les tourbillons cellulaires dans une nappe liquide,” Rev. Gen. Sci. Pures Appl. 11, 1261–1271 (1900).
2 Lord Rayleigh, “On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side,”

Phil. Mag. 32, 529–546 (1916).
3 E. Bodenschatz, W. Pesch, and G. Ahlers, “Recent developments in Rayleigh-Bénard convection,” Annu. Rev. Fluid Mech.

32, 709–778 (2000).
4 G. Ahlers, S. Grossmann, and D. Lohse, “Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection,”

Rev. Mod. Phys. 81, 503 (2009).
5 D. Lohse and K.-Q. Xia, “Small-scale properties of turbulent Rayleigh-Bénard convection,” Ann. Rev. Fluid Mech. 42,

335–364 (2010).
6 F. Chillà and J. Schumacher, “New perspectives in turbulent Rayleigh-Bénard convection,” Eur. Phys. J. E 35, 1–25 (2012).
7 R. J. A. M. Stevens, H. J. H. Clercx, and D. Lohse, “Heat transport and flow structure in rotating Rayleigh–Bénard

convection,” Eur. J. Mech. (B/Fluids) 40, 41–49 (2013).
8 S. Horn, O. Shishkina, and C. Wagner, “On non-Oberbeck–Boussinesq effects in three-dimensional Rayleigh–Bénard

convection in glycerol,” J. Fluid Mech. 724, 175–202 (2013).
9 S. Horn, O. Shishkina, and C. Wagner, “Non-Oberbeck–Boussinesq effects in Rayleigh–Bénard convection of liquids,”

Third International Conference on Turbulence and Interactions (Springer, 2013).
10 G. Ahlers, E. Brown, F. Fontenele Araujo, D. Funfschilling, S. Grossmann, and D. Lohse, “Non-Oberbeck–Boussinesq

effects in strongly turbulent Rayleigh–Bénard convection,” J. Fluid Mech. 569, 409–445 (2006).
11 E. Brown and G. Ahlers, “Temperature gradients, and search for non-Boussinesq effects, in the interior of turbulent

Rayleigh–Bénard convection,” Europhys. Lett. 80, 14001 (2007).
12 K. Sugiyama, E. Calzavarini, S. Grossmann, and D. Lohse, “Non-Oberbeck–Boussinesq effects in two-dimensional

Rayleigh-Bénard convection in glycerol,” Europhys. Lett. 80, 34002 (2007).
13 K. Sugiyama, E. Calzavarini, S. Grossmann, and D. Lohse, “Flow organization in two-dimensional non-Oberbeck–

Boussinesq Rayleigh-Bénard convection in water,” J. Fluid Mech. 637, 105–135 (2009).
14 Y.-N. Young, H. Riecke, and W. Pesch, “Whirling hexagons and defect chaos in hexagonal non-Boussinesq convection,”

New J. Phys. 5, 135 (2003).
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