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Rayleigh–Bénard convection in glycerol (Prandtl number Pr = 2547.9) in a cylindrical
cell with an aspect ratio of Γ = 1 was studied by means of three-dimensional direct
numerical simulations (DNS). For that purpose, we implemented temperature-dependent
material properties into our DNS code, by prescribing polynomial functions up to seventh
order for the viscosity, the heat conductivity and the density. We performed simulations
with the common Oberbeck–Boussinesq (OB) approximation and with non-Oberbeck–
Boussinesq (NOB) effects within a range of Rayleigh numbers of 105 6 Ra 6 109. For
the highest temperature differences, ∆ = 80 K, the viscosity at the top is about 360%
times higher than at the bottom, while the differences of the other material properties are
less than 15%. We analysed the temperature and velocity profiles and the thermal and
viscous boundary layer thicknesses. NOB effects generally lead to a breakdown of the top–
bottom symmetry, typical for OB Rayleigh–Bénard convection. Under NOB conditions,
the temperature in the centre of the cell Tc increases with increasing ∆ and can be up
to 15 K higher than under OB conditions. The comparison of our findings with several
theoretical and empirical models showed that 2D boundary layer models overestimate
the actual Tc, while models based on the temperature or velocity scales predict Tc very
well with a standard deviation of 0.4 K. Furthermore, the obtained temperature profiles
bend closer towards the cold top plate and further away from the hot bottom plate. The
situation for the velocity profiles is reversed: they bend farther away from the top plate
and closer towards to the bottom plate. The top boundary layers are always thicker than
the bottom ones. Their ratio is up to 2.5 for the thermal and up to 4.5 for the viscous
boundary layers. Additionally, the Reynolds number Re and the Nusselt number Nu were
investigated: Re is higher and Nu is lower under NOB conditions. The Nusselt number
Nu is influenced in a non-linear way by NOB effects, stronger than was suggested by the
2D simulations. The actual scaling of Nu with Ra in the NOB case is Nu ∝ Ra0.298 and
is in excellent agreement with the experimental data.

Key Words:

1. Introduction
Understanding Rayleigh–Bénard convection, i.e., a fluid heated from below and cooled

from above, is a topic of ongoing interest in fluid dynamics. Trying to understand the
particular case of Rayleigh–Bénard convection in glycerol means facing two challenges at
the same time. First of all, the standard approach of using the Oberbeck–Boussinesq (OB)
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approximation (Boussinesq 1903; Oberbeck 1879) is not appropriate here, and second,
glycerol has a very high but finite Prandtl number of Pr = 2547.9. Thus the inertial
forces are small but not negligible, while the momentum is very diffusive.

The OB approximation is a well-established method for studying the idealised prob-
lem of Rayleigh–Bénard convection from a mathematical and numerical point of view. It
assumes that all material properties are constant, in particular also the density. Corre-
spondingly, the fluid is incompressible. However, within the buoyancy term, the density
varies linearly with temperature. This might indeed be admissible in certain cases, but
nonetheless, the range of validity of this approach is actually quite restricted. A rig-
orous deduction was given by Gray & Giorgini (1976) and the method will be briefly
summarised in section 2. Deviations due to the violation of the OB assumption are com-
monly referred to as non-Oberbeck–Boussinesq (NOB) effects.

NOB effects have been studied theoretically by Busse (1967) in a Rayleigh number
range close to the onset of convection. For higher Rayleigh numbers, and in particular in
the turbulent regime, experiments have been conducted with gases at low temperature or
close to the critical point, for example, in helium by Wu & Libchaber (1991), in ethane
by Ahlers et al. (2007), and in sulfur hexa-fluoride by Burnishev et al. (2010). There the
compressibility and the pressure dependence of the material properties play the most
important role for NOB effects.

On the other hand, NOB effects in liquids almost solely originate from the temperature
dependence of the material properties. And that is what we are going to focus on. As the
starting point of our investigations we use the work by Ahlers et al. (2006). They have
not only conducted experiments in water, but also made some hypothetical predictions
for glycerol. Later, their research was complemented by 2D simulations in water and
glycerol by Sugiyama et al. (2007, 2009).

However, the reliability of two-dimensional simulations to predict three-dimensional
properties is debatable. Schmalzl et al. (2004) have investigated the difference between
two- and three-dimensional simulations for a moderate Rayleigh number of Ra = 106 and
Pr ∈ [0.001, 100]. They found that, e.g., the discrepancy in the Nusselt number Nu and
the maximal horizontal root mean square (rms) velocity is about 80% for Pr = 0.025.
In comparison to that, the calculations for Pr = 100 seemed to yield similar results in
the two- and three-dimensional simulations. Nonetheless, the deviation in the Nusselt
numbers and the maximal horizontal rms velocity was larger than 20%.

Glycerol has also been experimentally investigated by Zhang et al. (1997, 1998), but
their experiments were conducted for a large range of Prandtl numbers (600 . Pr .
8000), a major shortcoming induced by the strongly varying viscosity. However, to draw
quantitative conclusions, it is preferable to have a constant Pr . This can be achieved
by means of numerical simulations, despite the fact that treating high Prandtl number
fluids is very challenging due to the required mesh resolution, which will be corroborated
in section 3.

As indicated above, thermal convection at large Pr exhibits very different character-
istics compared to low and moderate Pr , even without NOB effects. But not much work
has been devoted to this. A recent example to mention here is the work by Silano et al.
(2010). They performed numerical simulations for Pr = 1000 and Pr = 10000 for up to
Ra = 109 and up to Ra = 107, respectively. However, for Ra = 109 their computational
mesh is very unlikely to be sufficiently fine to resolve the smallest scales, as is demanded
by direct numerical simulations (DNS), cf. Shishkina et al. (2010); Stevens et al. (2010)
and section 3.3. Generally, instead of conducting simulations at high Pr , rather the limit
as Pr goes to infinity has been used, as, for example, by Busse (1979) and Constantin
& Doering (1999) under OB conditions and Christensen & Harder (1991); Ogawa et al.
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Figure 1. (a) Relative deviations of glycerol properties X from their values Xm at a mean
temperature of Tm = 40◦, according to Segur & Oberstar (1951) and Ahlers et al. (2006); black
solid line: density ρ; green dashed line: thermal diffusivity κ; orange short dashed line: specific
heat capacity cp; purple dashed dotted line: kinematic viscosity ν; blue dashed triple-dotted line:
expansion coefficient α; pink dotted line: thermal conductivity Λ. (b) Region of validity of the
Oberbeck–Boussinesq approximation for glycerol at Tm = 40 ◦C, according to Gray & Giorgini
(1976). The grey shaded area shows the parameter range where OB is applicable and our NOB
DNS data points are denoted by stars. The restricting borders in terms of the εi factors are
shown as well.

(1991) and Manga & Weeraratne (1999) with a temperature-dependent viscosity. While
making analytical and numerical considerations simpler, this approach completely ne-
glects effects induced by inertia.

Thus, the objective of this paper is twofold: First, to provide an accurate and extensive
set of data for a high Pr fluid under strict OB conditions – which is only possible by means
of well-resolved three-dimensional DNS, because experiments are unavoidably spoiled by
NOB effects at higher Ra (cf. e.g. Xia et al. 2002). Second, to also evaluate the influence
of NOB effects for that case.

2. Validity range of the OB approximation in the case of glycerol
The viscosity of glycerol is highly varying with temperature, as can be seen in figure

1 (a). Thus, it is already evident that glycerol cannot be described properly within the
framework of the common OB approximation if the temperature difference ∆ between
the upper and lower plate becomes too large.

Gray & Giorgini (1976) provided a mathematically straightforward way to explicitly
calculate the validity range of the OB approximation. Their final result is a requirement
on certain εi factors to be smaller than a requested accuracy. Since we are only interested
in NOB effects induced by the temperature dependence of the material properties, these
are given by

ε1 =
αm g H

cp,m

Tm
∆
, ε2 =

αm g H

cp,m

νm
κm

, ε3 = − ∆
ρm

∂ρ

∂T

∣∣∣∣
Tm

, ε4 =
∆
cp,m

∂cp
∂T

∣∣∣∣
Tm

,

ε5 =
∆

ρmνm

∂(ρν)
∂T

∣∣∣∣
Tm

, ε6 =
∆

Λm
∂Λ
∂T

∣∣∣∣
Tm

, ε7 =
∆
αm

∂α

∂T

∣∣∣∣
Tm

.
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Here, T is the temperature, H the height of the Rayleigh–Bénard cell, g the acceleration
due to gravity, α the isobaric expansion coefficient, ρ the density, ν the kinematic viscos-
ity, Λ the heat conductivity, cp the specific heat at constant pressure, and ∆ = Tb−Tt the
imposed adverse temperature difference. The indices t, b, and m here and in the follow-
ing refer to the quantity at the top, the bottom, and the arithmetic mean temperature
Tm = (Tt+Tb)/2, respectively. That means, that if |ε1| . . . |ε7| 6 0.1, a residual error of at
most 10 % is guaranteed. The factor ε3 represents the common α∆ 6 0.1 criterion which
is often quoted as being a sufficient criterion. An accurate calculation yields that the fac-
tors ε1 and ε4 for glycerol are the decisive parameters, requiring H/∆ < 170.986 mK−1

and ∆ < 0.04 K, respectively. The range of validity is also shown in figure 1 (b), along
with the parameters of our performed NOB DNS.

Note that the Gray–Giorgini ansatz does not provide a criterion for a strong devel-
opment of non-Oberbeck–Boussinesqness, which becomes visible already in such integral
quantities like the Nusselt number or the centre temperature. As it was shown by Ahlers
et al. (2006) and Sugiyama et al. (2007), these global parameters are affected mainly by
higher order terms in the temperature dependences of the material parameters.

3. Numerical methodology
3.1. The basic Oberbeck–Boussinesq code

For our studies of OB Rayleigh–Bénard convection we perform DNS with a well-tested
fourth order accurate finite volume code for cylindrical domains.

The code is based on flowsi, a DNS code for turbulent flow problems originally devel-
oped by Schmitt & Friedrich (1988). It solves the Navier–Stokes equations on staggered
grids and uses the volume balance procedure motivated by Schumann (1975). Later on,
it was advanced with a fourth order accurate spatial integration scheme and for the sim-
ulation of Rayleigh–Bénard convection by Shishkina & Wagner (2005, 2007b). As time
integration scheme, a hybrid explicit/semi-implicit Euler-Leapfrog method is employed; a
semi-implicit scheme close to the cylinder axis; and an explicit one elsewhere. For further
details of the code’s current OB version, we also refer to Shishkina & Wagner (2007a).

3.2. Implementation of temperature-dependent material properties and
governing equations

For the purpose of investigating NOB effects, we implemented temperature-dependent
material properties (Horn et al. 2011) and applied it to the special case of glycerol. That
is, the viscosity ν, the thermal conductivity Λ, the thermal diffusivity κ, and the density
in the buoyancy term ρ are described by polynomials up to seventh order (i = 7),

X −Xm

Xm
=
∑
i

ai(T − Tm)i, X = ν,Λ, κ, ρ, (3.1)

while the density ρ, except within the buoyancy term, and the isobaric specific heat
capacity cp are set constant to their values at the mean temperature Tm. The coefficients
ai for κ, α, and Λ are adopted from Ahlers et al. (2006), but their given polynomial for ν
was not sufficient, since it led to negative viscosities for T & 70◦C. Thus, we performed a
least squares polynomial fit on the data from Segur & Oberstar (1951) ranging from 0 ◦C
to 100 ◦C, leading to a mean viscosity of νm = 238.738×10−6m2s−1 and the following
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coefficients:

a1 = −771.27× 10−10 K−1m2s−1, a2 = 2746.4× 10−12 K−2m2s−1,
a3 = −3257.1× 10−14 K−3m2s−1, a4 = 1513.2× 10−15 K−4m2s−1,
a5 = −1135.0× 10−16 K−5m2s−1, a6 = 261.07× 10−17 K−6m2s−1,
a7 = −18.682× 10−18 K−7m2s−1.

(3.2)

The approach described here is appropriate for most liquids, including glycerol, and
accounts for the major relevant NOB effects.

The flow characteristics are obtained by solving the continuity equation (3.3), the
Navier–Stokes equations (3.4), and the energy equation (3.5) for incompressible fluids in
cylindrical coordinates (r, φ, z), including the aforementioned material functions:

1
r
∂r (rur) +

1
r
∂φuφ + ∂zuz = 0, (3.3)

Dtur −
u2
φ

r
+

1
ρm

∂rp =
1
r
∂r (rντ̃rr) +

1
r
∂φ (ντ̃rφ) + ∂z (ντ̃rz)−

1
r
ντ̃φφ,

Dtuφ +
uruφ
r

+
1
ρm

1
r
∂φp =

1
r2
∂r
(
r2ντ̃φr

)
+

1
r
∂φ (ντ̃φφ) + ∂z (ντ̃φz) , (3.4)

Dtuz +
1
ρm

∂zp =
1
r
∂r (rντ̃zr) +

1
r
∂φ (ντ̃zφ) + ∂z (ντ̃zz) +

ρm − ρ
ρm

g,

ρmcp,mDtT =
1
r
∂r(Λr∂rT ) +

1
r2
∂φ(Λ∂φT ) + ∂z(Λ∂zT ). (3.5)

Here, Dt denotes the substantial derivative, p the pressure, and ur, uφ, and uz the radial,
azimuthal, and vertical velocity component, respectively. The tensor τ̃ is defined via the
deviatoric stress tensor τ by τ̃ = τ/(ρmν). All other variables have their usual meaning
and were already introduced in the previous section.

Non-dimensional equations, solved numerically, are obtained by using the physical pa-
rameters the radius R, the buoyancy velocity

√
gαmR∆, the temperature difference ∆,

and the various material properties at the mean temperature, i.e. νm, Λm, ρm, as refer-
ence scales. In line with this, the reference time is given by R/

√
gαmR∆ and the refer-

ence pressure is ρmgαmR∆. The control parameters for our simulations are essentially
the Rayleigh and the Prandtl number defined at the mean temperature Tm,

Ra = Ram =
αmg∆H3

κmνm
, Pr = Prm =

νm
κm

. (3.6)

For the time being, we restrict ourselves to cylindrical Rayleigh–Bénard cells with an
aspect ratio of Γ = 2R/H = 1. We also introduce an alternative aspect ratio γ = R/H =
0.5 for later convenience.

As boundary conditions for the temperature, we impose adiabaticity of the lateral wall,
and the top and bottom plate being isothermal, i.e., they have a constant dimensionless
temperature T̂t = −0.5 and T̂b = 0.5, respectively. The hat indicates dimensionless
quantities, but will be dropped for clarity in the following. As boundary conditions for
the velocity, we apply impermeability and no-slip conditions at the walls. All boundary
conditions are completed by setting a periodicity of 2π in the φ-direction.

3.3. Resolution

The high Prandtl number (Pr = 2547.9) puts severe constraints on the temporal and
spatial resolution, making glycerol very challenging from a numerical point of view.

First of all,the instabilities due to momentum diffusion are damped much faster than
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the instabilities in the temperature, and the system reacts almost instantaneously to tem-
perature fluctuations. Thus, the temperature scales are much smaller than the velocity
ones. As a result, the time to reach equilibrium and to gain reliable statistics is at least
one order of magnitude longer, i.e., several thousand dimensionless time units.

Second, the system is known to be dominated by single plumes, also in the centre
of the cell, which then occasionally cross the whole cell, as shown in figure 2. They
also become thinner with increasing Ra, requiring a sufficient resolution not only in the
boundary layers (BLs) but also within the bulk. Furthermore, the viscous boundary layer
becomes much thicker than the thermal one and eventually saturates at a certain value
(Grossmann & Lohse 2001; Breuer et al. 2004; Schmalzl et al. 2004). This cannot be
described within the theory of mesh requirements proposed by Shishkina et al. (2010).
We decided to take the criterion from Shishkina et al. (2010) for the mesh size in the
Prandtl–Blasius type boundary layer and apply it to the whole domain and, moreover,we
divided the required mesh size by a safety factor of 2 to consider NOB effects, i.e., all
cells are smaller than

hBL =
1
2

[
2−3/2a−1E−3/2Nu−3/2H

]
(a ≈ 0.482, E ≈ 0.982). (3.7)

An estimation of the constants a and E can be found in Shishkina et al. (2010); the
Nusselt number Nu, however, is an output parameter and we have to estimate it. We
refrained from using the experimental data by Zhang et al. (1997) because all of their
measurements were made for strongly varying Prandtl numbers and only for a range
between 8.2×106 and 6.1×108. Instead, we used the scaling laws suggested by Grossmann
& Lohse (2000, 2001, 2002) as the best available estimate of the value of the Nusselt
number. Remarkably, our glycerol simulations cross three regimes within a comparatively
small range of Rayleigh numbers: I∞, Iu, and IIIu (see table 1). Thus while for lower
Rayleigh numbers the infinite Prandtl number assumption is a valid approximation,
this becomes less true with increasing Ra. The Nusselt number calculated using the
Grossmann–Lohse theory NuGL, the herewith a priori requested resolution hBL/H, and
the number of nodes in the radial, azimuthal, and vertical direction, are given in table
1. In addition we also show the actual maximal grid size in the boundary layers h/H,
as well as the Nusselt number obtained in our OB simulations NuDNSOB . Further details
regarding the heat flux, including but not limited to the Nusselt number and its scaling,
are discussed in section 4.7. Because of the very fine meshes we were allowed to distribute
our nodes equidistantly and made use of this for Ra = 107, 108 and 109. For smaller Ra,
we used non-equidistant meshes where the nodes were clustered in the vicinity of the
walls.

For Ra = 109, the maximal mesh size in the boundary layers is slightly smaller. How-
ever, a grid resolution study for the Ra = 109 simulation was also conducted, and re-
vealed that the NuDNS obtained agrees well with the one obtained on a coarser grid
with 192× 512× 384 nodes (see table 1). We also verified our grid resolution with an a
posteriori analysis, i.e., that the vertical grid spacing hz is everywhere smaller than the
smallest relevant length scale, the (non-dimensional) Batchelor length

ηB = γ−9/8Pr−1/8Ra−3/8ε−1/4
u , (3.8)

with the dimensionless kinetic energy dissipation rate

εu = γ−3/2Pr1/2Ra−1/2|∇u|2. (3.9)

The maximal value of the ratio hz/ηB is also given in table 1. It is less than or equal to 1.0
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Ra regime NuGL hBL/H NuDNSOB h/H max(hz/ηB) Nr × Nφ × Nz

105 I∞ 4.7 57.6× 10−3 3.88± 0.01 14.1× 10−3 0.41 32× 64× 64
106 I∞ 7.6 19.9× 10−3 8.84± 0.02 12.3× 10−3 0.96 32× 64× 64
107 Iu 13.2 8.33× 10−3 17.62± 0.13 7.81× 10−3 1.04 64× 128× 128
108 Iu 25.6 3.00× 10−3 33.92± 0.61 2.60× 10−3 0.76 192× 512× 384
109 IIIu 52.9 0.99× 10−3 65.38± 1.24 2.60× 10−3 1.60 192× 512× 384
109 IIIu 52.9 0.99× 10−3 65.76± 0.74 1.30× 10−3 0.83 384× 1024× 768

Table 1. Rayleigh number Ra, the regime and Nusselt number NuGL according to the Gross-
mann–Lohse theory (Grossmann & Lohse 2000, 2001, 2002, see section 4.7 for details), the
Nusselt number for the OB cases obtained in our simulations NuDNSOB , the requested maximal
cell size in the BLs hBL/H, according to equation (3.7), and the actual one h/H, the maxi-
mal value of the ratio of the vertical mesh width to the Batchelor length max(hz/ηB), and the
number of nodes Nr, Nφ, Nz in the radial, azimuthal, and vertical direction, respectively.

for the whole computational domain and for all considered cases. These considerations
show that our grid resolution has indeed been chosen properly.

4. Discussion of the flow under OB and NOB conditions
Rayleigh–Bénard convection is studied most often in low and moderate Prandtl number

fluids, for example, air (Pr = 0.7) and water (Pr = 4.38). However, the flow in large
Prandtl number fluids differs greatly from the flow at lower Prandtl numbers at the same
Rayleigh number (see e.g. Wagner et al. 2012). This can be realised at first glance by
looking at the instantaneous flow fields in figure 2.

We now discuss the results from a total of 17 simulations, that is, Ra ∈ {105, 106, 107,
108, 109}, each under OB conditions and the NOB condition ∆ = 40 K. For Ra = 106

we additionally performed NOB simulations for ∆ ∈ {10 K, 20 K, 30 K, 50 K, 60 K, 70 K,
80 K}. For all simulations we started temporal averaging when the flow had statistically
converged. As the criterion for this, we waited for the radial and azimuthal averaged Nus-
selt number to be constant along the vertical coordinate after an appropriate averaging
time. In general, this meant at least five thousand time units, but rather typically ten
thousand time units before initiating and several thousand time units of actual statistical
averaging. Thus, the statistical data for the higher ∆, i.e. 60 K–80 K, and higher Ra, i.e.,
108 and 109, were obtained within 1000 to 3000 time units, and for lower ∆ and Ra,
within more than 3000 and up to 10 000 time units.

4.1. Flow structures and plume dynamics

Following the classification by Krishnamurti & Howard (1981); Busse (1978); Getling
(1998), and Manga & Weeraratne (1999), the flow behaviour in Rayleigh–Bénard con-
vection can be distinguished into steady, unsteady, plume-dominated, transitional, and
turbulent. Except for the fully turbulent case, our simulations covered all these flow
regimes. The visualisation of the spatial structures can be used with relative ease as a
method for distinguishing between the different states. Another criterion for categoris-
ing them is to use the probability density functions (PDFs), which will be discussed in
section 4.4.

We present the instantaneous temperature fields for Ra ∈ {105, 106, 107, 108, 109}
in figure 2, and in addition, the time averaged temperature and velocity fields for the
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Figure 3. Time-averaged temperature fields with overplotted velocity field for Ra = 105 (first
column), Ra = 107 (second column) and Ra = 109 (third column). The pictures are arranged in
the following manner: the first and second row show the OB case, (a)–(c) is the plane where one
convection roll or large scale circulation, respectively, is found (abbreviated by LSC), (d)–(f)
the central vertical plane perpendicular to it (LSC⊥); the third and the fourth row show the
NOB case, again (g)–(i) is the plane of the LSC and (j)–(l) the plane LSC⊥.
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representive cases of Ra = 105, 107, and 109 in figure 3 under both OB and NOB
conditions with ∆ = 40 K.

For our lowest Rayleigh number, Ra = 105, and under OB conditions, we find a single
convection roll. The time averaged 2D slices reveal a plane with one large roll and tiny
counter-rotating secondary rolls at its edges. In the vertical plane perpendicular to it, four
equally sized smaller convection rolls develop. The time averaged and the instantaneous
flow fields are virtually the same. The temporal variation is only on a long time scale
and we can speak of a three-dimensional flow with quasi-steady behaviour. A similar
superposition of two roll patterns has been referred to as bimodal convection by Busse
(1978), however, the sense of rotation of these patterns relative to each other is opposite
to that reported by Busse (1979) for high Pr fluids. This disagreement might be an
effect of the finite size of our cell. Under NOB conditions, the flow structures are similar,
but the perfect top–bottom symmetry, typical for OB cases, is broken. We do not only
obtain a clearly visible increase of the bulk temperature, but also a shifting of the large
convection roll away from the centre. In the instantaneous flow field, we can also see that
partially even the downwelling flow has a positive temperature, T > 0. Hence, the four
rolls in the plane perpendicular to the large convection roll are arranged in a different
manner. The upper two rolls are less extended in size and their centres are shifted closer
to the cylinder axis, while the lower rolls are situated closer to the walls.

With increasing Rayleigh number, the flow becomes gradually unsteady and plumes
start to rise from the boundary layers. Generally, they keep on being connected to their
boundary layers where they are formed, until they reach the opposite cold or hot wall.
However, the plumes become thinner with increasing Ra and thus also the number of
emitted plumes increases. Their persistency is attributed to the domination of the diffu-
sion of momentum over the diffusion of heat.

For Ra = 106 and 107, single isolated plumes emerge. In the OB case, time averaging
reveals three lengthy rolls extending in the vertical direction with very small rolls between
them at the top and bottom. This three roll structure resembles the flow developing at
higher aspect ratios and lower Prandtl numbers. An example for Pr = 0.7 and an aspect
ratio of Γ = 10 was shown by Shishkina & Wagner (2006). A similar structure was also
detected by Silano et al. (2010) for slightly different parameters, Pr = 103, Ra = 108

and Γ = 0.5. Under NOB conditions the flow is distorted similar to the case of Ra = 105:
again the centre temperature is higher, we find warm down going plumes, and the large
scale structures are arranged asymmetrically. In fact, one of the three rolls is much larger
than the other two. Therefore, we can find a plane where it resembles a typical large scale
circulation (LSC). However, in the plane perpendicular to it (LSC⊥), the corresponding
four-roll structure is missing. The 3D field confirms as well that the structure is more
complex.

At Ra = 108 and Ra = 109, the highest Rayleigh numbers we could attain, we find
a system where the velocity of the plumes and large-scale structures are comparable,
leading to the impression that the flow is only governed by plumes, which cross the
Rayleigh–Bénard cell almost unaffected. Thus, it seems reasonable to call this a plume-
dominated regime. This was also described by Breuer et al. (2004) and Schmalzl et al.
(2004). But even at Ra = 109, the majority of plumes are still connected to their thermal
boundary layers: only a few detach from them. While the instantaneous fields have very
distinct features, as pictured in figure 2 for Ra = 108 and 109, the time averaged flow fields
are very similar to the ones obtained for lower Pr at the same Ra. They unambiguously
show an LSC. Again in the NOB case the overall flow pattern within the cylinder is more
complex, but the general feature, i.e. the LSC is still present. Apparently, this behaviour
has not been found in the 2D simulations by Sugiyama et al. (2007), neither in the OB
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nor in the NOB case. Hence, 3D simulations are necessary to capture all the relevant
flow structures, especially for NOB effects. Our findings are also more consistent with
the results of the experiments for Ra = 2.3 × 108 by Zhang et al. (1997), although all
plumes stayed connected with their boundary layer and the LSC was easier to recognise
in the experiments. The reason for this disagreement is probably the about half as large
Pr in their case.

We would also like to emphasize that during averaging, we could neither find any
reversals of the LSC nor any noticeable shifting of the azimuthal angle of the large scale
structures. While all the presented flow fields display a clearly chaotic behaviour, the
transition range to a fully developed turbulent flow extends up to Ra ≈ 1012 when using
the criterion based on the average Kolmogorov length as a typical length scale for the
coherent structures.

Many of the asymmetries obtained in the NOB cases can be ascribed to the different
viscosities in the cold top and hot bottom layers. That is, the lower viscosity at the warm
bottom makes the plumes more prone to leave the bottom layer and they are also more
mobile, i.e., faster. The cold plumes from the top have the exact opposite behaviour:
they are very viscous and thus rather remain within the cold top boundary layer. Or
alternatively, one could say that the plumes emanating from the cold top layer move
more slowly and hence, they remain much longer in contact with the ambient medium
in the bulk and heat up on their way down. These asymmetric plume dynamics have
a significant influence on the entire flow behaviour and, in particular, on the boundary
layers and the temperature profiles. This will be explained in more detail in the following
sections.

4.2. Mean temperature profiles and thermal boundary layers
Figure 4 presents the time and r–φ plane averaged mean temperature profiles under OB
and NOB conditions. Figure 4(a) shows the profiles for different Ra under OB and under
NOB conditions, each time for ∆ = 40 K. In figure 4(b) the Rayleigh number is kept
constant at Ra = 106 and various NOB conditions, i.e., ∆, are shown.

At the beginning of our simulations, all profiles exhibited an overshoot adjacent to the
BLs. Schmalzl et al. (2004), amongst others, observed this feature already at Pr = 100
for Ra = 106, and suggested that this is a feature of the high Prandtl number. In our
case, however, both under OB and NOB conditions, those overshoots disappeared in the
course of our simulations. Thus, we think that this intermediate phenomenon is rather an
indicator that the statistical equilibrium state has not been reached yet. Nonetheless, in
the profiles for Ra = 105 and Ra = 106, seen in figure 4 (a)–(b), some non-monotonicity
persists due to the occuring structures (cf. figure 10) in this still quasi-steady regime and
is not expected to disappear after even longer averaging times. We will follow up on this
in section 4.5.

The most prominent feature that distinguishes the NOB profiles from the OB ones is
the higher temperature in the bulk. The deviation of the centre temperature Tc from the
arithmetic mean temperature will be treated in detail in section 4.3. Furthermore, the
NOB profiles always lie above the corresponding OB profiles, i.e., they bend more towards
the plate temperature close to the top and further away from the plate temperature close
to the bottom, in comparison to the OB profiles. It is more easily visible when looking at
the second derivative where the profiles are normalised by the maximum absolute value
of the second derivative of the corresponding OB profile,

κ =
1

max |κOB|

〈
∂2T

∂z2

〉
r,φ,t

, (4.1)



12 S. Horn, O. Shishkina and C. Wagner

−0.5 0.0 0.5
〈T 〉 r,ϕ,t

0.0

0.5

1.0

z/
H

(b)

OB
∆ = 20 K
∆ = 40 K
∆ = 60 K
∆ = 80 K

−0.5 0.0 0.5
〈T 〉 r,ϕ,t

0.0

0.5

1.0

z/
H

(a)

Ra = 10 5

Ra = 10 6

Ra = 10 7

Ra = 10 8

Ra = 10 9

−1.4 0.0 1.4
0.0

0.5

1.0

z/
H

(d)

OB
∆ = 20 K
∆ = 40 K
∆ = 60 K
∆ = 80 K

−1.7 0.0 1.7
0.0

0.5

1.0

z/
H

(c)

Ra = 10 5

Ra = 10 6

Ra = 10 7

Ra = 10 8

Ra = 10 9

κ κ

Figure 4. (a)–(b) Mean temperature profiles, i.e., the temperature averaged in time t and in
every r–φ plane. (c)–(d) Curvature of the temperature profiles normalised to the OB value,
as defined by equation (4.1). The black dashed vertical lines mark the points where |κ| = 1.
The left panels (a) and (c) correspond to varying Ra and the dashed lines indicate the OB
case and the solid lines the NOB cases for ∆ = 40 K. The right panels (b) and (d) corre-
spond to a constant Ra = 106 and each time the OB case and various NOB conditions, i.e.,
∆ ∈ {20 K, 40 K, 60 K, 80 K}.

seen in figures 4(c) and (d). Close to the top plate we have |κ| < 1 and close the
bottom one we have |κ| > 1. This behaviour is enhanced with increasing ∆ as well as
with increasing Ra. A similar result was obtained for water by Ahlers et al. (2006). The
reason lies in the larger heat conductivity Λ at the bottom and the smaller Λ at the top.
Since the heat flux has to be same at both boundaries, the temperature profiles have to
compensate for this.

Associated with the profiles are the different thicknesses of the boundary layer . The
thermal boundary layer thicknesses λθt and λθb are defined by means of the profile’s slope
at the top (z = H) and bottom plate (z = 0), and are thus called the slope thicknesses.
That is, the distance from where the tangent to the mean temperature profile at the top
or bottom, respectively, intersects with the isoline of the centre temperature Tc,

λθt =
(
∂〈T 〉r,φ,t

∂z

∣∣∣∣
t

)−1 (
Tt − Tc

)
, (4.2)

λθb =
(
∂〈T 〉r,φ,t

∂z

∣∣∣∣
b

)−1 (
Tc − Tb

)
. (4.3)

The ratio of the top to bottom BL thickness, χθλ = λθt /λ
θ
b , is given in figure 5. It is

practically independent of Ra, but increases with increasing ∆, i.e., the top thermal
boundary layer is always thicker than the bottom one, λθt > λθb . For the highest considered
temperature difference, ∆ = 80 K, the top BL is about 2.5 times thicker.
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Figure 5. (a) Ratio of the top to bottom thermal (χθλ) and viscous (χuλ) BL thicknesses, for
constant ∆ = 40 K, as functions of Ra. The dashed line indicates the point where the top and
bottom BL have the same thickness, i.e, χλ = 1. (b) Similar to figure (a) but for constant
Ra = 106, as functions of ∆.
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Figure 6. The centre temperature Tc vs. ∆ for a fixed Ra = 106, the predictions from the models
of Wu & Libchaber (1991), Zhang et al. (1997), Manga & Weeraratne (1999), and Ahlers et al.
(2006), and the results from 2D simulations by Sugiyama et al. (2007) are plotted as well.

4.3. Centre temperature Tc
One of the best known, and also best analysed, NOB phenomena is the deviation of
the temperature in the centre Tc from the arithmetic mean temperature Tm. Our three-
dimensional DNS showed that for a temperature difference of ∆ = 80 K, the centre
temperature can be up to 15 K higher than under OB conditions.

There exist several models to predict the change of Tc, amongst others there are the
ones by Wu & Libchaber (1991), Manga & Weeraratne (1999), and Ahlers et al. (2006).
The comparison of the model predictions to our DNS data is shown in figure 6. Most of
the models considered here are essentially based on the following ideas. In the centre of
the cell, the heat is almost solely transported by convection, but in the boundary layers
by conduction, since there the velocity approaches zero. Because the total dimensionless
heat flux, i.e., the Nusselt number Nu, is the sum of the convective and conductive heat
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fluxes, qconv and qcond,

Nu = qconv + qcond = (RaPrγ)1/2 〈uzT 〉 − γ−1

〈
Λ
∂T

∂z

〉
, (4.4)

it needs to be constant due to energy conservation. The temperature gradient is zero in
the bulk, hence the mean temperature 〈T 〉r,φ,t only changes within the boundary layers,
and thus the total temperature drop ∆ is the sum of the temperature drops within the
top and the bottom boundary layers:

∆ = ∆t + ∆b. (4.5)

Obviously, the ratio

χ∆ =
∆t

∆b
(4.6)

equals one under OB conditions, but in the NOB case this is no longer true. It will prove
to be convenient to combine these two equations and express the two temperature drops
as follows:

∆t =
χ∆

1 + χ∆
∆, (4.7)

∆b =
1

1 + χ∆
∆. (4.8)

In the thermal boundary layers the heatflux is given by conduction, hence

qcond = Λt̄
∆t

λθt
= Λb̄

∆b

λθb
⇒ κt̄

∆t

λθt
= κb̄

∆b

λθb
. (4.9)

The indices t̄ and b̄ here and in the following denote that the quantity is taken at the
interpolated temperatures (Tt+Tc)/2 and (Tb+Tc)/2. The latter equality in (4.9) results
from the fact that ρ and cp are assumed to be constant over the cell. In our opinion, a
better prerequisite is the exact relation at the plates, i.e.,

qcond = Λt
∆t

λθt
= Λb

∆b

λθb
⇒ κt

∆t

λθt
= κb

∆b

λθb
. (4.10)

Nonetheless, Wu & Libchaber (1991) used (4.9), since the latter equation (4.10) results
in a greater deviation from their experimental data for all their Tc models. We came to
the same conclusion with our numerical data.

In the first model, they assume that the boundary layer Rayleigh number is the same
at the top and bottom,

Ra t̄ = Ra b̄ ⇔ αt̄g∆tλ
3
t

κt̄νt̄
=
αb̄g∆bλ

3
b

κb̄νb̄
. (4.11)

Their second proposed model follows the scaling model of Castaing et al. (1989) and
assumes that the velocity scales w of the plumes are equal,

wt̄ = wb̄ ⇔ gαt̄∆tλ
2
t

νt̄
=
gαb̄∆bλ

2
b

νb̄
. (4.12)

These scales are based on the balance between the buoyancy force gα∆ and the viscous
force νw/λ2. The third model will yield the same result, and is again based on the
aforementioned scaling model, but this time assuming the same temperature scales Θ
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Figure 7. (a) The left panel shows different ratios of top to bottom quantities, the BL Rayleigh
numbers χRa , the plume velocity scales χw, and the temperature scales χΘ as functions of Ra
for the NOB simulations with ∆ = 40 K. (b) The right panel shows the same quantities but as
functions of ∆ for fixed Ra = 106. The dashed line corresponds to χ = 1 in each case.

within the boundary layers,

Θt̄ = Θb̄ ⇔ κt̄νt̄
gαt̄λ

3
t

=
κb̄νb̄
gαb̄λ

3
b

. (4.13)

All these assumptions can be checked against our DNS data. Figure 7 presents the ratios

χRa =
Ra t̄
Ra b̄

, χw =
wt̄
wb̄

and χΘ =
Θt̄

Θb̄

. (4.14)

We find that in the case of glycerol and the ranges of Ra and ∆ considered here, none
of the assumptions is perfectly fulfilled. Wu & Libchaber (1991), however, found that at
least the ratio χΘ of the third model was constant in their experiments conducted for
low-temperature helium gas, while the assumptions for the first and second model did
not hold.

Even though none of the required conditions are perfectly met, the models give a good
prediction of the actual Tc for glycerol. We can complete equations (4.5) and (4.9) now
with either equation (4.11), (4.12), or (4.13), and uniquely calculate the ratio χ∆,

χ∆,1 =
(
αb̄νt̄
αt̄νb̄

)1/4(
κb̄
κt̄

)1/2

, (4.15)

χ∆,2/3 =
(
αb̄νt̄
αt̄νb̄

)1/3(
κb̄
κt̄

)2/3

. (4.16)

All of the material properties still depend on χ∆, but with the help of the polynomial
functions of the material properties these equations can be easily solved numerically.
Herewith, and using equations (4.7) and (4.8), the centre temperature Tc can be calcu-
lated:

Tc = Tt + ∆t = Tb −∆b. (4.17)
The difference Tc − Tm for the three models is shown for different ∆ in figure 6.

Zhang et al. (1997) used a two-dimensional steady-state boundary layer model with
three main assumptions. First, the plumes transport not between the thermal top and
bottom layer but only from the walls to the mixing region between the layers. Second,
Tc is adjusted, so that the fluxes at the top and bottom are equal, and third, the viscous
stress is constant within the thermal sublayer. Then the laminar two-dimensional thermal
boundary layer equation is solved numerically. The result yields Tc as a function of both Tt
and Tb. However, they only took into account the temperature dependency of the viscosity
and not the thermal diffusivity. Zhang et al. (1997) also gave another approximation for
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the third model of Wu & Libchaber (1991) consistent with their BL theory. Using an
exponential dependency of the viscosity, i.e., ν(T ) ∝ exp(−cT ), c = 0.087, and again
leaving all the other material properties constant, they found the fit

Tc =
∆
2

tanh(c∆/12). (4.18)

They also conducted experiments and measured the centre temperature. Certain points
for their BL model, the tanh fit (4.18) and the experimental data are shown in figure 6 as
well. In their experiments the mean temperature Tm varied strongly, between 24.55◦C and
64.75◦C, and hence, so did the Prandtl number, between approximately 600 and 8000.
As consequence, the scatter of Tc is large. Thus, we distinguished between Pr > 1200
and Pr < 1200. The data points for higher Pr show a very good agreement with our
three-dimensional DNS data. On the contrary, the lower Pr data yield a lower Tc.

Manga & Weeraratne (1999) investigated Rayleigh–Bénard convection in corn syrup
which has a comparable high Prandtl number between 103 < Pr < 106 and a similar
temperature-dependent viscosity. By also considering an exponential dependency of the
viscosity, assuming that Nu scales with the Péclet number Pe = PrRe with Nu ∝ Pe−1/3

and that the temperature drop within the convecting region is ∆/2 (which is equivalent
to using Tt̄ and Tb̄), they found the following relation for the centre temperature,

Tc =
∆

1 +
(
νt

νb

)−1/6
+ Tt, (4.19)

also presented in figure 6.
Ahlers et al. (2006) used a similar approach to Zhang et al. (1997), but extended the

Prandtl-Blasius BL theory also for a temperature-dependent diffusivity κ. In figure 6 we
extended it for ∆ up to 80 K to get a better impression of the actual validity of this
approach for higher temperature differences, for which also most of the measurements of
Zhang et al. (1997) had been performed. The comparison with the experimental and our
DNS data revealed that the 2D boundary layer models overestimate the actual Tc. The
rather poor agreement—at least in comparison to its very successful application in the
case of water—can be explained easily. As already pointed out by Sugiyama et al. (2009)
the main deviation is caused by plume emission. However, in the case of glycerol, this
happens not only close to the walls, but indeed everywhere on the plates, making the
Prandtl–Blasius BL theory less applicable. The discrepancy gets worse due to the fact
that the plumes stay connected to their BLs.

Finally, we also show in figure 6 the data from the two-dimensional simulations by
Sugiyama et al. (2007). Their data are lower than ours, even though we have chosen
the same Pr . Assuming that the scatter in the experimental data is indeed caused by
different Pr , it seems to us that two-dimensional simulations are insufficient for obtaining
an accurate value of Tc.

In conclusion, the model of Wu & Libchaber (1991) based on the same velocity or tem-
perature scale in the top and bottom boundary layer (equations (4.12)–(4.13)) predicts
Tc the best out of all the considered models, with a standard deviation of 0.4 K.

4.4. Probability density functions of the temperature
Figure 8(a) presents the volume-weighted probability density functions (PDFs) of the
time averaged temperature for the whole cell. In the OB cases, the most likely temper-
ature is the arithmetic mean temperature Tm, while in the NOB cases the most likely
temperature is close to Tc. The change of the PDFs, i.e., the shift to the right, is also
associated with the presence of thermal BLs with different thicknesses. Figure 8(b) shows



On non-Oberbeck–Boussinesq effects in glycerol 17

−0.5 0.0 0.5
〈T 〉 t

10−2

10−1

100

101

102

−0.5 0.0 0.5
〈T 〉 t

10−1

100

101

102

−5 0 5
(〈T 〉 t − Tc)/Trms

10−2

10−1

100

101(a)

P
D

F

Ra = 10 5

Ra = 10 6

Ra = 10 7

Ra = 10 8

Ra = 10 9

(b)

P
D

F

OB
∆=20K
∆=40K
∆=60K
∆=80K

(c)

P
D

F

OB
∆=20K
∆=40K
∆=60K
∆=80K

Figure 8. Probability density functions (PDFs) of the time averaged temperature for the whole
volume. (a) Different Ra, the dashed line indicates the OB case, the solid line the NOB case
with ∆ = 40 K. (b) Constant Ra = 106, shown are the OB case and four different NOB cases.

the PDFs for a constant Ra but varying ∆; the PDFs become more asymmetric and the
maximum peak is shifted to higher temperatures.

Following the classification of Manga & Weeraratne (1999), we can herewith also dis-
tinguish between the different styles of convection. If the distribution is Gaussian, then
we expect the flow to be quasi-steady. If the distribution is exponential, then we are in
the turbulent regime. However, for high Prandtl number fluids, these curves have super-
imposed on them a persisting peak caused by the plumes (cf. e.g. Manga & Weeraratne
1999). Thus, for Ra = 105 the PDF is Gaussian, while with increasing Ra the plumes
become more predominant, resulting in a more and more prominent peak. When Ra is
increased further (Ra & 109), the background starts to resemble an exponential distri-
bution and the plume-induced peak starts to gradually vanish. For the fully developed
turbulent regime, we expect the shape of the PDFs to become completely exponential.

4.5. Wind profiles and viscous boundary layers
The very distinct large scale structures occurring in glycerol can also be detected by
looking at the profiles of the radial and vertical velocity components and the rms velocity
fluctuations. The rms velocity fluctuations, or turbulence intensities, are defined by

urms =
(
〈u2〉t − 〈u〉2t

)1/2
, (4.20)

where u denotes one of the three velocity components, ur, uφ or uz.
We show the radial and vertical velocity profiles for 105 6 Ra 6 109 under OB and

the NOB condition ∆ = 40 K in figure 9(a), and likewise for Ra = 106 and various
NOB conditions ∆ = 20 K, 40 K, 60 K and 80 K in figure 9(b). The radial profiles are
obtained by averaging uz(r, φ, z) in time and along φ and z and are thus functions of the
radial position, i.e., 〈uz〉φ,z,t(r). Similarly, the vertical profiles are obtained by averaging
ur(r, φ, z) in time and along r and φ and are thus functions of the vertical position, i.e.,
〈ur〉r,φ,t(z). The radial profiles can generally be considered to be relevant for the wind
along the plates, whereas the vertical profiles are relevant for the wind being parallel to
the bottom and top plate.

However, the flow patterns for glycerol are more complex than just a single LSC with
cornerflows, thus the profiles’ appearance does not resemble the one detected at lower
Pr . That means we cannot find small negative or positive values in the vicinity of the
walls caused by cornerflows, but instead we find several maxima in the vertical profiles,
and not all the radial profiles are zero at the centre line of the cylinder. Furthermore, as
can be seen in figure 2 and 3, there is an upwelling structure approximately in the centre
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Figure 9. (a) Mean profiles of the radial velocity ur(z) and the vertical velocity uz(r) for
different Ra. The dashed lines indicate the OB, the solid lines the NOB cases with ∆ = 40 K.
(b) Similar to (a), but for constant Ra = 106 and different NOB cases, i.e., ∆, as well as under
OB conditions. (c) Mean profiles of the radial rms velocity ur,rms(z) and the vertical rms velocity
uz,rms(r) for different Ra. The dashed lines indicate the OB, the solid lines the NOB cases with
∆ = 40 K. (d) Similar to (d) but for Ra = 106 and different NOB cases, i.e., ∆, as well as under
OB conditions.

of the cylinder for 106 6 Ra 6 108, under both OB and NOB conditions. Thus, close to
the bottom plate, the radial flow is direct inwards, i.e. 〈ur〉r,φ,t < 0, feeding the central
structures, and then when reaching the top, the flow is consequently, directed outwards,
i.e., 〈ur〉r,φ,t > 0.

The major difference in the NOB case is, that the vertical profiles are bent further
away from the plate near the top, and closer towards it near the bottom compared to
the OB profiles, i.e., exactly the opposite from the case for the temperature profiles. The
reason is the different boundary layers, where also the largest variations of the material
properties occur. But generally, we cannot find a clear trend in which way the profiles
are modified under NOB conditions. This is especially evident in the case of Ra = 106.
For ∆ = 20 K the velocity 〈uz〉φ,z,t(r = 0) is close to zero and lower than in the OB case,
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while for higher temperature differences ∆ the velocity at the centre line is higher than
in the OB case. The vertical profiles show a similar peculiar behaviour.

To understand this, we can look at the instantaneous temperature fields for OB con-
ditions and various NOB conditions, figure 2(b), (g) and 10. Depending on the imposed
∆, a different number of cells develop, whose shapes are also clearly influenced by the
cylinder wall. While for ∆ = 20 K only two cells are present, a large one filling almost
the whole cylinder and a very small one adjacent to it, the number of cells increases with
∆. Thus, there are three cells for ∆ = 40 K, four for ∆ = 60 K, and five for ∆ = 80 K.
Remarkably, also under OB conditions, three cells develop, the same as for ∆ = 40 K.
Except for ∆ = 20 K, we always find a coherent structure in the middle of the cell with
a strong velocity component uz directed upwards, explaining the different behaviours.

To further analyse why a different number of cells develops we need to examine the
viscous boundary layers. However, the slope criterion (e.g. Wagner et al. 2012) turned out
to be inapplicable in the case of glycerol. Especially for higher ∆, the velocity profiles
bend so much away from the top plate, as depicted in figure 9(b), that the top BL
thickness would be much thicker than H/2, which is not realistic. Thus, we decided to
define the thickness of the viscous boundary layer as the vertical distance from the top
and bottom plate, respectively, where the temporally averaged radial rms velocity profile
〈ur,rms〉r,φ,t reaches the first maximum,

λut = max
(
z| ∂〈ur,rms〉

∂z =0

)
, (4.21)

λub = min
(
z| ∂〈ur,rms〉

∂z =0

)
. (4.22)

The viscous boundary layers are thicker than the thermal ones, but show a similar asym-
metry when NOB effects come into play. The reason for the asymmetry is that ∂ν/∂T < 0,
and thus we have a thinner viscous boundary layer at the bottom and a thicker one at
the top, which also induces correspondingly different thermal BLs. The ratios of top to
bottom boundary layers, χuλ = λut /λ

u
b , as function of Ra and ∆ are displayed in figure 5.

χuλ virtually does not depend on Ra, but increases with ∆, and reaches a maximum value
of about 4.5 for ∆ = 80 K. The dependence of the ratio on ∆ shows certain discontinu-
ities, which agree with the points where one more cell appears, and thus implies a close
connection. The increase of χλ means that the top boundary layer becomes thicker while
the bottom one does not decrease in the same measure. We hypothesize, that this is the
source of the different flow phenomenology, i.e., the different number of cells, occurring
for different ∆: the effective volume where convection takes place and hence the effective
aspect ratio is modified, and consequently the flow phenomenology.

Figure 9(c) and (d) show the rms profiles for the velocity components normal to the
walls and parallel to it, 〈ur,rms〉r,φ,t(z) and 〈uz,rms〉r,φ,t(r), again for various Ra and
under OB and NOB conditions and for Ra = 106 and various ∆, respectively. In the
OB case there is a jump of two orders of magnitude between 106 and 107 in both rms
values, consistent with our qualitative observation that starting from Ra = 107 plumes
are emitted in a more random manner. Furthermore, the fluctuations in the velocity are
higher in all NOB cases.

Alternatively, we also introduce wind profiles based on the specific kinetic energy
similar to Sugiyama et al. (2009),

UE =

√
1
2

(
u2
r + u2

φ + u2
z

)
. (4.23)

They are presented in figure 11. Since they combine all velocity components, these profiles
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(a) ∆ = 20 K (b) ∆ = 60 K (c) ∆ = 80 K

Figure 10. Instantaneous temperature isosurfaces for Ra = 106 under various NOB conditions,
(a) ∆ = 20 K, (b) ∆ = 60 K, (c) ∆ = 80 K. Shown are ten isosurfaces, evenly spaced between
the minimal and maximal value, i.e. pink indicates (dimensionless) temperatures above zero
and blue temperatures below zero. The corresponding temperature fields for OB conditions and
∆ = 40 K can be seen in figure 2(b) and (g).
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Figure 11. Energy based wind profiles as function of r and z. (a) For different Ra. The dashed
lines indicate the OB, the solid lines the NOB cases with ∆ = 40 K. (b) Similar to (a), but for
constant Ra = 106 and different NOB cases, i.e., ∆, as well as under OB conditions.

are rather global and give a good overall impression. Hence they should be less sensitive
to the actual developing flow modes, but still be sensitive to NOB effects. Indeed, the
profiles have similar asymmetries to the ones presented in figure 9, but in figure 11(b)
some of the peculiarities of the NOB case Ra = 106 and ∆ = 20 K disappear, i.e., the
profiles at the top z/H = 1 are arranged in sequence with ∆ away from the upper plate
and the profiles at the bottom z/H = 0 are arranged in sequence closer to the lower
plate.

4.6. Reynolds number
With our knowledge about the wind profiles, we can now analyse one important outcome
parameter of Rayleigh–Bénard simulations, the Reynolds number Re. Its definition in-
cludes a characteristic velocity, length and viscosity scale. A reasonable choice for the
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characteristic length scale is the cylinder’s height H, while the characteristic viscosity
and the characteristic velocity are less evident and are to be determined. They can be
chosen differently and thereby crucially influence the value of Re. The Reynolds number
expressed within our chosen reference dimensions is

Re =
URa1/2γ1/2

νPr1/2
. (4.24)

We have analysed the Reynolds number Repl, based on the absolute peak value of the
time averaged vertical velocity,

U = Upl = max |〈uz〉t|, (4.25)

representing a maximal plume speed, as suggested by Silano et al. (2010), and the
Reynolds number ReE , based on the volume averaged specific kinetic energy,

U = UEtot =

√〈
1
2

(
u2
r + u2

φ + u2
z

)〉
V,t

, (4.26)

as was done by Sugiyama et al. (2009). Since the increased centre temperature leads to a
smaller viscosity in the bulk, we also distinguish between Rec defined with the viscosity
νc and Rem defined with the viscosity νm.

As shown in figure 12 (b), the absolute value of Repl is always greater than ReE . But
there is only a minor influence of the different reference viscosities νm and νc for ∆ = 40 K
and the phenomenological behaviour is almost unaffected by it. However, Repl and ReE

differ not only in magnitude, but also in their scaling behaviour. We have performed
power-law fits, Re = cReγ , in the range of 105 6 Ra 6 109 for all defined Reynolds
numbers and the results are shown in the legend of figure 12(a). We have also calculated
the effective scaling in this range according to the Grossmann–Lohse theory (see esp.
Grossmann & Lohse 2002; Ahlers et al. 2009), i.e., we have solved

(Nu − 1) Ra Pr−2 = c1
Re2

g
(√

Rec

Re

) + c2Re3, (4.27)

Nu − 1 = c3Re1/2Pr1/2

[
f

(
2aNu√

Rec

g
(√

Rec

Re

))]1/2

(4.28)

+c4Pr Re f
(

2aNu√
Rec

g
(√

Rec

Re

))
with the coefficients a = 0.482, Rec = 1.041, c1 = 8.685, c2 = 1.441, c3 = 0.462,
c4 = 0.013, and the crossover functions

f(x) = (1 + xn)−1/n and g(x) = x (1 + xn)−1/n (n = 4). (4.29)

The resulting curve under OB conditions is shown as well.
For ReE , simple power laws are appropriate to capture the scaling of Re within the

range of Ra considered. The 1-σ uncertainty estimates of the fit are at most 2% and
there is no significant difference in the scaling exponents of ReEOB, ReEm, and ReEc . On
the other hand, Repl does not obey a power law. We clearly see that a linear fit on a
double-logarithmic scale does not reflect the behaviour of Repl with Ra. Indeed, this is
also obtained within the framework of the Grossmann–Lohse theory, which even yields
the approximate magnitude. The corresponding scalings for ReplOB, Replm, and Replc are
given in figure 12(b), showing that here the 1-σ uncertainty estimates are about 7%.
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Figure 12. (a) Reduced Reynolds number Re/Ra0.5 as function of Ra, based on the the maximal
plume velocity Repl and the specific kinetic energy ReE . Each defined in two ways: with the
viscosity at Tm and with that at Tc, denoted by the index m and c, respectively. The dashed
line shows the corresponding fitted power laws and the resulting scaling is shown in the legend.
The black line shows the effective Grossmann–Lohse scaling for this range under OB conditions.
(b) Similar to (a), showing Repl and ReE under various NOB conditions as function of ∆ for
Ra = 106. The black asterisks show Re based on the Grossmann–Lohse theory evaluated for
Prc and Rac.

105 106 107 108 109

Ra

0

1

2

3

R
e N

O
B

 /R
e O

B

Repl
m /Repl

OB

Repl
c /Repl

OB

ReE
m /ReE

OB

ReE
c /ReE

OB

(a)

0 20 40 60 80
∆ [K]

0

1

2

3

4

5

6

R
e N

O
B

 /R
e O

B

Repl
m /Repl

OB

Repl
c /Repl

OB

(αc /αm)1/2 νm /νc
ReGL

c /ReGL
OB

ReE
m /ReE

OB

ReE
c /ReE

OB

(b)

Figure 13. Ratio ReNOB/ReOB for the Reynolds numbers as defined in figure 12. The dashed
line marks where ReNOB = ReOB. (a) ReNOB/ReOB versus Ra for ∆ = 40 K (b)ReNOB/ReOB
versus ∆ for Ra = 106. The green crosses show the ratio assuming that Re scales with the
free-fall velocity, (αc/αm)1/2νm/νc as suggested by Sugiyama et al. (2009). The black asterisks
shows the ratio based on the Grossmann–Lohse theory, evaluated for Prc and Rac and for their
respective values under OB conditions, Prm and Ram.

Remarkably, the NOB data agree much better, even within the uncertainty, with the
Grossmann–Lohse theory than the OB data. We assume that our scaling is significantly
influenced by the occurring coherent structures. Other deviations might be caused by
the fact that the Grossmann–Lohse theory assumes a single wind amplitude originating
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in the LSC, that furthermore needs to be uniform throughout the Rayleigh–Bénard cell,
while we have more complex spatial flow structures.

Figure 12(b) presents Re as a function of ∆ for constant Ra = 106. Due to the reduced
viscosity νc in the bulk, the deviation between the two curves for Rem and Rec becomes
considerably larger with increasing ∆. By evaluating them for the material properties at
Tc, equivalent to using Rac and Pr c, a general agreement of ReGLc with Replc and the
principal dependence on ∆ can be obtained, especially for higher ∆.

Figure 13 shows the dependence of the ratios of the NOB to the OB Reynolds numbers
on Ra and ∆. For constant ∆ = 40 K, see figure 13(a), the data appear just scattered.
However, as seen in figure 13(b), for Ra = 106 and varying ∆, they follow a clear in-
creasing trend. Replc is most sensitive to NOB effects, for ∆ = 80 K the Reynolds number
is 6 times higher than in the OB case; ReEm is least sensitive to NOB effects, being
only 1.5 times higher in that case. Assuming that UEtot is similar to the free-fall velocity√
αg∆H, Sugiyama et al. (2009) obtained that the ratio ReENOB/ReEOB should be propor-

tional to (αc/αm)1/2νm/νc. This is a very rough estimate, being equivalent to a scaling
of Re ∝ Ra1/2Pr−1/2. Nonetheless, the agreement with our obtained DNS data is satis-
factory. A refinement of this method would be to use the scaling relations proposed by
Grossmann & Lohse (2002). Indeed, this predicts the ∆ dependence better, especially
for higher ∆.

4.7. Heat transfer and Nusselt number scaling
The dimensionless heat flux, expressed in terms of the Nusselt number Nu, equation (4.4),
is another important output parameter. High Prandtl number fluids distinguish them-
selves by a strong convective heat transfer. With our definition of the BLs in equations
(4.2)–(4.3), the Nusselt number in the NOB case is given by the exact relation

NuNOB =
H

λθt + λθb

κt∆t + κb∆b

κm∆
, (4.30)

as was shown by Ahlers et al. (2006). This equation looks similar to the well-known
equation in the OB case,

NuOB =
H

2λOB
, (4.31)

and a straightforward calculation then yields for the ratio of the NOB to the OB Nusselt
number

NuNOB
NuOB

=
2λOB
λt + λb

κt∆t + κb∆b

κm∆
= FλF∆. (4.32)

The factors Fλ and F∆ and their product are displayed in figure 14. In the case of
glycerol, the heat conductivity Λ, or in our case, equivalently the heat diffusivity κ, de-
pends only very weakly on the temperature. Thus F∆ ' 1 for our considered temperature
range. The important factor for the deviation of the Nusselt number rather originates
from Fλ and not from F∆ as in the case of water, this was also found by Sugiyama et al.
(2007) and was implicitly assumed by Zhang et al. (1997). Since we are neither steady
nor turbulent, but always plume-dominated or transitional, the Nusselt number depends
in a strongly non-linear way on ∆ and Ra due to the complex and distinct flow patterns.
In the two-dimensional simulations by Sugiyama et al. (2007), this non-linear behaviour
of Nu with ∆ was found as well. But evidently, the flow patterns are different under
these circumstances. For all our considered combinations of Rayleigh numbers Ra and
temperature differences ∆, the deviations are more pronounced in the three-dimensional
case.
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Figure 14. Nusselt number ratio NuNOB/NuOB = FλF∆ and its contributing factors Fλ and
F∆. Shown are our 3D DNS data as well as the 2D data from Sugiyama et al. (2007). (a) Fλ ·F∆,
Fλ and F∆ versus Ra for ∆ = 40 K. (b)FλF∆, Fλ and F∆ versus ∆ for Ra = 106. The dashed
line corresponds to F = 1.
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Figure 15. (a) Reduced Nusselt number Nu/Ra0.3 as a function of Ra under OB (purple
triangles) and NOB conditions with ∆ = 40 K (blue diamonds). The Nusselt number is evaluated
as a plane average, i.e., the vertical heat flux, and the errorbar indicates the standard deviation of
the constant Nu profile along z. The experimental data from Zhang et al. (1997) (green crosses)
are also shown, however, we would like to point out that first, Pr varied between approximately
600 and 8000, second, their Nusselt number is based on a constant κ, i.e., Nu = H/(λθt + λθb).
The black line shows the effective scaling for the OB case, according to the Grossmann–Lohse
theory, equations (4.27)–(4.28). (b) Nu as a function of ∆ under NOB conditions for constant
Ra = 106 and varying ∆. The dashed line indicates the OB value.

Figure 15(a) we finally also presents Nu as a function of Ra under OB and NOB
conditions, including the scaling predicted by Grossmann & Lohse (2000, 2001) and the
experimental data by Zhang et al. (1997). The effective exponents can be found in the
legend. While the scaling practically does not change under NOB conditions, and the
agreement with the experiments is remarkably good considering the different Prandtl
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numbers, the Grossmann–Lohse theory slightly underestimates the Nusselt number. The
reason might be that the available experimental data to fix the constants in this regime
are rather sparse, making scaling predictions less accurate.

5. Concluding remarks
Compared to the plethora of available data for low Prandtl number fluids, the data

for high Prandtl number fluids are still rather sparse. To improve our understanding
of Rayleigh–Bénard convection, especially with regard to a comprehensive theory, more
experiments and numerical simulations in the regime of high Prandtl numbers are not
only desirable but also necessary. In the present paper, Rayleigh-Bénard convection of
glycerol with Pr = 2547.9 was investigated in a cylindrical cell of aspect ratio unity. We
focused our attention on the influence of NOB effects, since under ambient conditions the
validity range of the OB approximation is severely violated for glycerol. For that purpose,
we advanced our OB code (Shishkina & Wagner 2005) by implementing temperature-
dependent material properties. We performed three-dimensional DNS in a range of 105 6
Ra 6 109 for OB conditions and NOB conditions between 10 K 6 ∆ 6 80 K, resulting in
a total of 17 different simulation setups. We compared our results to what is, as far as we
know, the only available experimental data by Zhang et al. (1997, 1998), and numerical
(but only two-dimensional) data of Sugiyama et al. (2007).

The developing flow patterns in glycerol for lower Ra resemble the behaviour of lower
Pr and higher Γ, i.e., we observe several cells. The number of cells, moreover, depends
on the imposed ∆. However, for large enough Rayleigh numbers, i.e., Ra & 108, we find
a typical LSC as in Γ = 1 and Pr = O(1) Rayleigh–Bénard convection. This behaviour
could not be reproduced in two-dimensional simulations. While these simulations are
useful to investigate qualitatively the properties of the three-dimensional flow, three-
dimensional DNS are evidently necessary to resolve its full topology.

Under NOB conditions, the perfect symmetry with respect to the horizontal midplane
is broken. One of the most remarkable features then is the higher centre temperature.
The deviation Tc − Tm is as large as 15 K for ∆ = 80 K. The obtained Tcs agree per-
fectly well with the experiments, when only the experimental points for Pr > 1200 are
considered. For lower Pr , the experimentally obtained centre temperatures are lower.
The two-dimensional simulations by Sugiyama et al. (2007) yielded a lower Tc than our
three-dimensional ones, even though the same Pr was considered in their case. We also
compared our results with the predictions of the theoretical and empirical models by
Wu & Libchaber (1991); Zhang et al. (1997); Manga & Weeraratne (1999), and Ahlers
et al. (2006). While the 2D boundary layer models by Zhang et al. (1997) and Ahlers
et al. (2006) overestimate the actual Tc, due to the plume emission all over the plate
and the not always existing LSC, the models by Wu & Libchaber (1991), based on the
same temperature or velocity scales in the boundary layers, predict Tc very well with a
standard deviation of 0.4 K.

Furthermore, we analysed the temperature and velocity profiles. Due to the strongly
varying viscosity and heat conductivity close to the heating and cooling plates, the tem-
perature profiles bend towards the plate near the cold top plate and farther away from it
near the hot bottom plate, whereas the situation for the velocity profiles is the other way
round: they bend farther away from the top plate and closer to the bottom plate. This
also induces different thermal and viscous boundary layer thicknesses. The top boundary
layers are always thicker than the bottom ones. Their ratio is up to 2.5 for the thermal
and up to 4.5 for the viscous boundary layers.

The two important output parameters of Rayleigh–Bénard convection, the Reynolds
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number Re and the Nusselt number Nu, were investigated as well. In the parameter
range considered, Re is always higher and Nu is always lower under NOB than under
OB conditions. We evaluated Re for different choices of the characteristic velocity, i.e.,
based on the total volume averaged kinetic energy UEtot and the plume velocity Upl, and
for different choices of the characteristic viscosity, i.e., the mean and the centre viscosity
νm and νc. The absolute value of Re is highly sensitive, but the scaling with Ra is only
slightly sensitive, to the choice of the characteristic scales. For Ra = 106 and ∆ = 80 K,
the Reynolds number defined with Upl and νc is up to 6 times higher than in the OB
case. This increase can be described with satisfactory accuracy by the Grossmann–Lohse
theory based on Rac and Pr c. The Nusselt number Nu is influenced in a non-linear way by
NOB effects, and more strongly than was suggested by the two-dimensional simulations.

The scaling of Nu with Ra shows no significant difference between NOB and OB
conditions, i.e., NuOB ∝ Ra0.305 and NuNOB ∝ Ra0.298. The NOB scaling is in excellent
agreement with the experimental data.

The authors acknowledge support by the Deutsche Forschungsgemeinschaft (DFG)
under grant SH405/2-1. Furthermore, the authors would like to thank the Leibniz-
Rechenzentrum (LRZ) in Garching for providing computational resources on the national
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REFERENCES

Ahlers, G., Brown, E., Fontenele Araujo, F., Funfschilling, D., Grossmann, S. &
Lohse, D. 2006 Non-Oberbeck-Boussinesq effects in strongly turbulent Rayleigh-Bénard
convection. J. Fluid Mech. 569, 409–445.

Ahlers, G., Fontenele Araujo, F., Funfschilling, D., Grossmann, S. & Lohse, D. 2007
Non-Oberbeck-Boussinesq Effects in Gaseous Rayleigh-Bénard Convection. Phys. Rev. Lett.
98, 054501.

Ahlers, Guenter, Grossmann, Siegfried & Lohse, Detlef 2009 Heat transfer and large
scale dynamics in turbulent rayleigh-bénard convection. Reviews of Modern Physics 81 (2),
503.
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