Alternative operational strategies for wind turbines in cold climates

Stoyanov, D. & Nixon, J.

Author post-print (accepted) deposited by Coventry University's Repository

Original citation & hyperlink:

Stoyanov, D & Nixon, J 2020, 'Alternative operational strategies for wind turbines in cold climates' Renewable Energy, vol. 145, pp. 2694-2706. https://dx.doi.org/10.1016/j.renene.2019.08.023

DOI 10.1016/j.renene.2019.08.023 ISSN 0960-1481 ESSN 1879-0682

Publisher: Elsevier

NOTICE: this is the author's version of a work that was accepted for publication in *Renewable Energy*. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in *Renewable Energy*, 145, (2020) DOI: 10.1016/j.renene.2019.08.023

© 2019, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

This document is the author's post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.

1 Alternative Operational Strategies for Wind Turbines in Cold Climates

- 2 D. B. Stoyanov and J. D. Nixon*
- 3 Faculty of Engineering, Environment and Computing
- 4 Coventry University, 1 Gulson Road, Coventry, CV1 2JH, UK
- 5 *corresponding author, E-mail: jonathan.nixon@coventry.ac.uk; Tel: 024 7765 3151
- 6

7 Abstract

Around a guarter of the global wind energy capacity is operating in cold climates, where ice accretion can 8 damage wind turbines, cause safety concerns and reduce power output. In this paper, alternative 9 operational strategies to reduce ice build-up and increase power output are studied. The alternative 10 strategies are achieved by making tip-speed ratio (TSR) modifications both during and after an icing event. 11 To compare different TSR strategies, the concept of an energy payback time is outlined, which is used to 12 13 determine when an alternative strategy outperforms a turbine's normal design strategy. The method is demonstrated using the NREL 5 MW reference wind turbine for twelve different icing conditions, 14 encompassing different temperatures, wind speeds, droplet diameters and liquid water contents. The 15 results indicate that for short and severe icing events, an alternative TSR strategy will start producing more 16 energy than a conventional design strategy within 0.5-2.5 hours after icing and decrease ice accumulation 17 18 by approximately 25-30% per blade. The method presented in this study will enable more effective 19 operational control strategies to be deployed for minimising ice-induced power losses and ice accretion at wind farms located in cold climates. 20 Kev Words: Ice accretion; Wind Power; Wind Energy; Tip-Speed Ratio (TSR); Aerodynamics; Icing events. 21

22

- 24
- 25
- 26
- 27
- 28
- 29

30	Nomencla	ture	
31	Variables		
32	а	Axial induction factor	(-)
33	a'	Tangential induction factor	(-)
34	С	Aerofoil chord length	(m)
35	Ср	Power coefficient	(-)
36	E	Energy	(MWh)
37	LWC	Liquid water content	(kg.m⁻³)
38	М	Mass	(kg)
39	MVD	Median volume diameter	(m)
40	Pw	Wind power	(W)
41	r	Blade radius	(m)
42	Т	Temperature	(°C)
43	t	Time	(h)
44	TSR	Tip-speed ratio	(-)
45	V	Wind speed	(m.s ⁻¹)
46			
47	Greek		
48	ρ	Air density	(kg.m⁻³)
49	ω	Rotor Rotational Speed	(rad.s ⁻¹)
50			
50			
51	Subscripts		
50 51 52	Subscripts Al	After icing	
51 52 53	Subscripts Al Dl	After icing During icing	
50 51 52 53 54	Subscripts AI DI EPB	After icing During icing Energy payback	
50 51 52 53 54 55	Subscripts AI DI EPB M	After icing During icing Energy payback Modified operational strategy	/
50 51 52 53 54 55 56	Subscripts AI DI EPB M R	After icing During icing Energy payback Modified operational strategy Reference operational strategy	у У
50 51 52 53 54 55 56 57	Subscripts AI DI EPB M R rel	After icing During icing Energy payback Modified operational strategy Reference operational strate Relative to the blade	ду /
50 51 52 53 54 55 56 57 58	Subscripts AI DI EPB M R rel	After icing During icing Energy payback Modified operational strategy Reference operational strate Relative to the blade	ду /
50 51 52 53 54 55 56 57 58 59	Subscripts AI DI EPB M R rel Acronyms	After icing During icing Energy payback Modified operational strategy Reference operational strate Relative to the blade	ду /
50 51 52 53 54 55 56 57 58 59 60	Subscripts AI DI EPB M R rel Acronyms AoA	After icing During icing Energy payback Modified operational strategy Reference operational strate Relative to the blade	д у /
50 51 52 53 54 55 56 57 58 59 60 61	Subscripts AI DI EPB M R rel Acronyms AoA BEMT	After icing During icing Energy payback Modified operational strategy Reference operational strate Relative to the blade Angle of attack Blade element momentum th	y gy ieory
50 51 52 53 54 55 56 57 58 59 60 61 62	Subscripts AI DI EPB M R rel Acronyms AoA BEMT CC	After icing During icing Energy payback Modified operational strategy Reference operational strategy Relative to the blade Angle of attack Blade element momentum the Cold climate	/ gy neory

65 1 Introduction

By the end of 2017, the global wind energy capacity was approximately 540 GW [1]. Nearly a guarter of the 66 installed capacity is expected to be at risk of icing due to cold climate (CC) conditions [2]. Locations 67 classified as CCs are typically characterised by a high wind resource availability [3]. However, in such 68 conditions, the efficiency of wind turbines can be severely compromised by the prevalence of icing, 69 70 reducing power output [4-7], causing structural damage and decreasing wind turbines' life span [7,8]. Ice induced power losses can be extremely variable depending on location, wind turbine scale and weather 71 conditions [7,9]. This can make it difficult deciding where to locate a wind turbine and how to operate it in 72 CCs. As a result, annual losses reported for wind turbines in CCs can often reach 20% [5]. 73

Most commercial wind turbine blades are designed as lift generating devices and ice build-up on the aerofoils typically decreases lift and increases drag. This reduction in aerodynamic efficiency is generally well known from previous research on aircraft icing [10-13], and many studies are now focusing on the implications for the wind energy industry.

78 A significant amount of research has been carried out on how ice forms on wind turbines [11,14], impacts power output [5,13,15] and affects structural robustness [14,16]. Thus, it has been established how much 79 more severe icing is for longer icing events, larger water droplet sizes and liquid water contents, smaller 80 chord lengths and higher wind speeds. In addition, it is known that ice thickness increases approximately 81 82 linearly from the root to the tip of the blade when considering a 2D analysis and not accounting for ice 83 shedding [16]. Although more research is needed to substantiate these results and classify them in a useful 84 database, there is a particular need to utilise these findings and search for more efficient approaches to operate wind turbines in icing conditions [17]. An efficient wind turbine operational strategy can minimise 85 annual power losses, prevent structural damage and reduce wind turbine downtime. However, there are 86 only a limited number of studies that have looked at improving wind turbines operational efficiency in icing 87 conditions by applying different tip-speed ratio (TSR) strategies. 88

89 Homola et al. [18] and Zanon et al. [19] investigated the operation of the National Renewable Energy 90 Laboratory (NREL) 5 MW reference wind turbine in icing conditions. Both studies analysed the performance 91 of the wind turbine considering the torque-speed curve and the torque-speed controller. Homola et al. [18] 92 simulated the iced performance of the wind turbine after a one-hour long icing event, operating the wind turbine either by adapting the torque-speed controller to the iced-torques-speed curve or by modifying the 93 94 controller to maintain the TSR at its design value. When examining the wind turbine power curve for the 95 iced blade and bypassing the controller, a 10% higher achievable power output for velocities between 7 and 13 ms⁻¹ was reported, while slightly higher power losses were seen for wind speeds of 3 and 6 ms⁻¹. As 96

97 the study focused on a single icing condition, the authors highlighted the need for further analysis of more 98 severe icing cases. Zanon et al [19] analysed the wind turbine's performance during an active icing period 99 and showed the influence of three different TSR operational strategies on the ice-induced power losses. 100 The study showed how the ice-induced losses can be mitigated by reducing the TSR during an icing event. 101 However, a reduction in the ice-induced power losses, does not necessarily mean that overall energy 102 generation would be increased.

By reducing the TSR during an icing event to minimise ice build-up, the reference TSR could be restored 103 once an icing event ends to improve performance [20]. However, the reference TSR may no longer be the 104 best post-icing event operational strategy due to ice remaining on the blades and changes in aerodynamic 105 behaviour. To determine if gains in energy generation can actually be achieved, a turbine's performance 106 needs to be analysed throughout and immediately after an icing event. This approach could also be used to 107 implement an operational strategy to both reduce ice build-up during an event and maximise post-icing 108 event power output. Moreover, a method for comparing and evaluating different TSR operational strategies 109 is needed and the performance analysis needs to be applied for a wide range of different icing conditions. 110

This study aims to establish a method for evaluating different operational strategies based on tip-speed ratio modifications made both during and after an icing event. This is achieved by introducing the concept of an energy payback time, which is based on the time taken for an alternative TSR strategy to start producing more energy than the reference operational regime after the end of an icing event. By considering a wide range of different icing events, wind speeds and ambient temperatures, the study sets out to determine when an alternative operational strategy should be used to reduce ice build-up during an icing event and increase energy yield once an event ends.

Section 2 specifies the methods used to carry out the study including definition of the icing model, iced blade aerodynamic performance, icing events considered and energy payback parameter based on ice accretion and modified power coefficients. The results and suggestions for further work are discussed in Section 3, and the paper's conclusions are provided in Section 4.

122 2 Method

In this study, three typical icing events are considered to evaluate a number of different operational strategies based on varying tip-speed ratios. Furthermore, each event is tested for three different wind speeds (5, 7 and 10ms⁻¹) and two ambient temperatures (-5 and -10°C). To simulate ice formation during these events, LewINT[®] ice accretion software is used as it is the most widely established tool for generating 2D ice shapes on aerofoils and it has been validated extensively for aircraft icing [21,22]. LewINT[®] is based on source and dipole singularities superposition panel method to obtain flow velocities, which are used to calculate droplet trajectories, aerofoil surface water fluxes and energy balance for the ice shape
calculations. Qblade is utilised for the power performance analysis [23]; it incorporates Blade Element
Momentum Theory (BEMT) for power analysis and XFoil [24] for the aerodynamic analysis, which utilises
vortex and source singularities panel method together with integral boundary layer method. Both methods
have been widely used and allow for relatively low computationally intensive simulations to be carried out.
The wind turbine chosen for the study is the NREL 5 MW reference wind turbine [25], as it is commonly
used in the literature for this type of study.

136 2.1 Ice Accretion Modelling

To reduce the number of required simulations, four sections of the wind turbine blade are modelled to 137 determine the ice accumulation along its length during the icing events. Figure 1 shows the sections, which 138 are considered between the half-span and the full span of the blade: sections A, B, C and D. The distances 139 from the blades centre of rotation are as follows: I_1 is 0.52r, I_2 is 0.65r, I_3 is 0.80r and I_4 is 0.94r with r being 140 141 the local blade radius. The hub radius, L_H, and blade length, L_B, are 1.5 m and 61.5 m, respectively. The 142 aerofoils corresponding to the chosen blade sections are DU 91W225 for Section A, DU 93W21LM for 143 Section B and NACA 64618 for sections C and D. As minimal icing occurs on the inner-blade sections, they have not been considered during the ice accretion simulations [19]. 144

145

Figure 1: Discretised NREL 5 MW blade and the selected 2D sections for ice accretion analysis. The ice formation analysis has been conducted using the 2D aerofoil sections at each of the four discretised locations. Symmetrical ice deposition across the turbine's three blades is assumed with uniform ice geometry for each iced section. The relative speed to the blade sections is calculated using classic BEMT theory, Eq. 1, where V_{rel} is the relative speed to the blade, *V* is the wind speed, ω is the rotational speed of the rotor, *r* is the local blade section radius, and *a* and *a'* are the axial and tangential induction factors, respectively. The ice mass is estimated by using the predefined ice density of 917 kg.m⁻³ in LewINT

152 [21].

$$V_{rel} = \sqrt{(V(1-a))^2 + (\omega r(1+a'))^2}$$
(1)

Using low computationally intensive tools allows for the simulation of a variety of icing events in a relatively short time. However, this does reduce the accuracy of the aerodynamic analyses. XFoil is a twodimensional tool, which incorporates the integral boundary layer equations in the viscous boundary layer and potential flow equations in the outer inviscid region; the two regions are coupled using a viscousinviscid interaction scheme. Due to the use of XFoil and 2D analysis, increased uncertainty is expected for cases where separated flow occurs, e.g. for high angles of attack (AoA) or highly irregular ice shapes.

159 2.1.1 Icing Events Definition

To study wind turbine performance during different in-cloud icing events, encompassing rime, mixed and 160 glaze icing conditions, a number of icing events are defined based on published experimental [26] and field 161 data [27,28]. The different ice modelling parameters that need to be considered include liquid water content 162 (LWC), median volume diameter (MVD) and icing event duration (t_{Event}). Each parameter can vary widely for 163 different locations and especially for different orographic features. In-cloud icing conditions are mostly 164 pronounced in hilly and mountainous terrains, where wind turbine blades can reach the low-level cloud 165 base (300-1200m) during winter months [28]. A typical MVD for in-cloud icing is 20×10⁻⁶m [26], but it can 166 range from 10-35×10⁻⁶m [28]. The LWC is normally 3×10⁻⁴ kg.m⁻³ [26]. and ranges from 0.4-3.5×10⁻⁴kg.m⁻³ 167 [28,29]. Ice events tend to be shorter for larger liquid water contents and size droplets [29,30] and typical 168 durations range from 20 min to 48 hours, while in some cases up to several weeks [29]. 169

During an icing event, wind speed (V) and ambient temperature (T) significantly influence the type of ice 170 171 being accreted. Thus, three icing events (defining LWC, MVD and duration) are chosen along with different wind speeds and ambient temperatures that are most likely to occur. Table 1 shows icing event A (LWC of 172 5×10⁻⁴ kg.m⁻³ and MVD of 25×10⁻⁶m), B (LWC of 3×10⁻⁴ kg.m⁻³ and MVD of 20×10⁻⁶m) and C (LWC of 173 0.4×10⁻⁴ kg.m⁻³ and MVD of 12x10⁻⁶m), which are modelled at different temperatures (-5°C and -10°C) and 174 wind speeds (5, 7 and 10 m.s⁻¹) giving a total of 12 different icing cases. Event A represents the harshest 175 conditions, which typically occur for a relatively short duration, and events B and C are mild and light 176 conditions respectively. 177

Event, V, T	LWC (kg.m ⁻³)	MVD (µm)	Duration, t _{Event} (s)	(V (m.s⁻¹))	T (°C)
A1010	5	25	1	10	-10
A105	5	25	1	10	-5
A710	5	25	1	7	-10
A75	5	25	1	7	-5

Table 1: Definition of icing events A, B and C, at different wind speeds (V) and temperature (T).

A510	5	25	1	5	-10
A55	5	25	1	5	-5
B1010	3	20	4	10	-10
B710	3	20	4	7	-10
B75	3	20	4	7	-5
B510	3	20	4	5	-10
C105	0.4	12	4	10	-5
C1010	0.4	12	4	10	-10

179 2.2 Operational Strategy

The control parameter used in this study is TSR and its setting during (TSR_{DI}) and after (TSR_{AI}) an icing 180 event. The TSR changes can be implemented by either prescribing constant TSR during the event or by 181 adapting the torgue-speed controller to the iced torgue-speed curve [19]. In this work, steady state 182 simulation of the icing process and the aerodynamic effects is considered, similarly to previous research 183 [16,18]. It is assumed that the TSR during icing will remain constant as the icing durations in the current 184 study are short enough and the natural degradation of the TSR will be small [19]. The possible TSR values 185 that can be set are chosen according to the rated (maximum) rotational speed (seldom synchronous and 186 asynchronous generators are operated above their rated speed) and the minimum rotational speed, 187 required for energy generation. Considering the NREL 5 MW generator [25] with a minimum RPM of 670 188 and maximum of 1173.7RPM, the possible TSR limits (TSR_{Min} and TSR_{Max}) for operation can be determined 189 (see Figure 2). The reference TSR design strategy is shown by TSR_R and Figure 2b shows how the 190 191 coefficient of power (Cp) varies at different TSR settings for a non-iced blade. During an icing event, it is 192 assumed that the controller will allow intentional energy yield reduction by reducing the tip-speed ratio. 193 thereby reducing ice accretion and enabling an improved Cp to be obtained once the event finishes [14].

Figure 2a-b: NREL 5 MW refrence wind turbine TSR operational limits defined by the limiting rotational speeds of the electrical generator (a) and how the power coefficent varies at different TSR (b).

194 2.3 Energy payback time

The energy payback time, t_{EPB}, defines how long it will take an alternative modified operational strategy 195 (TSR_M) to start producing more power than the turbine's reference strategy (TSR_R) . Figure 3a depicts the 196 reduction of the instantaneous power output during an icing event by operating with an alternative TSR_{DI}, 197 and the potential for improving performance at the end of an icing event by increasing the TSRAI due to less 198 accreted ice and better power characteristics. To compare a modified and reference operational strategy, 199 the cumulative energy harvested during and after an event needs to be determined (see Figure 3b). The 200 cumulative energy produced during icing, E_{DI} , is found from the available power in the wind, P_{w} , and the 201 power coefficient, Cp, which varies throughout the duration of the icing event and depends on the chosen 202 TSR (Eq. 3). P_W is defined by the air density, ρ , wind speed, V, and wind turbine blade radius, r (Eq. 2). 203

$$P_W = 0.5\rho V^3 \pi r^2 \tag{2}$$

 $\langle \alpha \rangle$

$$E_{DI} = \int P_w C p_{(TSR,t)} dt \tag{3}$$

The assumption is made that for a short period (<48 hours) after the end of an icing event, no significant ice 204 melting or shedding will occur. This assumption is based on the consideration of winter anticyclone weather 205 conditions with low temperatures and wind speeds that could span up to a week or more after an in-cloud 206 207 icing event [31]. The coefficient of power will remain constant, if the assumption is made that the iced blade 208 geometry will not change significantly soon after the end of an icing event. Thus, the cumulative net energy 209 output will be linear as Cp defines the rate of energy yield. The energy produced after an icing event by the 210 reference (E_{ALR}) and modified ($E_{AR,M}$) operational strategies can be represented by equations Eq.4 and Eq. 5, respectively. The rate of cumulative energy after the icing event is calculated in addition to the total 211

energy produced during the icing event (E_{Dl}); $E_{Dl,R}$ and $E_{Dl,M}$ are respectively the cumulative energy produced during the icing event for the reference and modified operational strategies. The time taken for the modified strategy to payback the lost energy during icing is determined when $E_{Al,R}$ equals $E_{Al,M}$; making t_{EPB} the subject of the equation results in Eq. 6. When estimating t_{EPB} , it should be noted that the results are only an indication for the potential effectiveness of an alternative strategy and extremely large values would suggest that alternative solutions to the TSR strategy should be considered and melting and shedding would need to be taken into account to obtain more accurate t_{EPB} values.

$$E_{AI,R} = P_W C_{p(TSR_{AI,R})} t_{EPB} + E_{DI,R}$$
(4)

$$E_{AI,M} = P_W C_{p(TSR_{AI,M})} t_{EPB} + E_{DI,M}$$
(5)

$$t_{EPB} = \left(E_{DI,R} - E_{DI,M}\right) / \left[P_{w}\left(Cp_{\left(TSR_{AI,M}\right)} - Cp_{\left(TSR_{AI,R}\right)}\right)\right]$$
(6)

219

Figure 3a-b: Power output (a) and cumulative energy (b) during and after an icing event for a wind turbine operating with a reference (TSR_R) or modified (TSR_M) tip-speed ratio strategy.

221 3 Results and Discussion

222 3.1 Results

For each icing condition, Cp degradation, ice accumulation, final ice shapes for section D, ice induced 223 power losses, rotor power characteristics, $C_{p}(t)$, at the end of the event and energy payback times are 224 presented in this section. In total 1176 ice shapes were generated for all icing events, with 180 ice shapes 225 per timestep being analysed. Ice mass and Cp degradation were estimated considering all 1176 ice 226 shapes, while the power characteristics and t_{EPB} were analysed investigating the ice shapes at the end of 227 228 the icing events. All final ice shapes at the modelled blade locations are provided in the Supplementary 229 Online Appendix, while in this section only the most heavily iced blade location has been presented 230 (section D. see Figure 1). Ice-induced power losses and total harvested energy before and after an event. 231 considering all modelled blade sections, were the main parameters used for the comparison of alternative TSR_{DI} and TSR_{AI} strategies. Ice mass for each strategy on a single blade is shown, but aeroelastic effects 232 and component loads are beyond the scope of this work as for similar icing conditions it has been shown 233 that the effects on the structural loading from additional ice mass are minimal [14,16]. 234

235 3.1.1 Event A

Event A has been simulated for wind speeds of 10, 7 and 5 ms⁻¹ and ambient temperatures of -10 and 5°C, resulting in 6 cases – A1010; A105; A710; A75; A510 and A55. E.g. A1010 represents the LWC, MVD
and duration defined by Event A in Table 1, occurring with a wind speed of 10 ms⁻¹ and an ambient
temperature of -10°C.

240 The deteoration of Cp for the whole simulated wind turbine rotor and the ice mass accumulation for each blade for all cases of Event A are presented on Figure 4a-f. Alternative viable operational TSRs of 6.5 to 8 241 for wind speeds of 10 and 7 ms⁻¹ (Figure 4a-d) and TSRs of 9 to 10 for wind speed of 5 ms⁻¹ (Figure 4e-f) 242 are shown. TSR values greater than TSR_R for a wind speed of 5 ms⁻¹ are not considered for the analysis, 243 as it would result in a high V_{rel} and ice build-up (see Figure 2a). As the ice accumulation rate is a function of 244 the blade's relative velocity [9,14], less ice deposition is apparent when the ambient temperature increases 245 246 and both the wind speed and the TSR decrease (see Figure 4). The highest amount of accreted ice per blade is 11.5 kg for case A1010; the least is 4 kg for case A55. As the type of ice being formed can change 247 248 from one type to another for the same icing case (rime to glaze) and it can vary along the blade of utility 249 scale wind turbines, the power convergence efficiency does not degrade linearly. Depending on the type of accreted ice and the disturbance of the flow over the blade, the Cp decreases either gradually (A1010, 250 A710 and A510) or more sharply (A105, A75 and A55). 251

(e) Case A510

(f) Case A55

Figure 4a-f: Wind turbine power coefficient degradation and total ice mass accumulation per blade during events A1010 (a), A105 (b), A710 (c), A75 (d), A510 (e) and A55 (f).

Final ice shapes for blade Section D (see Figure 1) are displayed on Figure 5a-f. The ice shapes for A105, A75 and A55 are typical for glaze icing conditions. They are characterised by having a less conformal geometry to the aerofoil contour and the presence of one or two horns [26]. The shapes for A510 are typical for rime ice cases as they are more conformal to the aerofoil geometry. Higher energy losses are 256 expected for glaze and mixed icing conditions [14]. As these shapes produce more complex wall bounded 257 flow, the aerodynamic uncertainties from the simulations tend to be higher, which is represented by the 258 greater Cp fluctuations obtained for events A105, A75 and A55 (Figure 4b, d and f). Higher fidelity analyses over a smaller range of time steps are needed to further investigate these specific flow features and 259 260 fluctuations in the results. For cases A1010, A710 (Figure 5a and c) the ice shapes are representative for 261 mix-type icing, being conformal to the aerofoil contour at first (rime) and subsequently forming horn-like protrusions. The flatter Cp profiles for Events A1010, A710 and A510 (Figure 4a, c and e) are attributed to 262 ice forming normal to the leading edge or on the pressure side of the aerofoil causing less aerodynamic 263 disturbance [10] (see Figure 5a,c and e). 264

(f) Case A55

Figure 5a-f: Ice shapes on Section D for event cases A1010 (a), A105 (b), A710 (c), A75(d), A510 (e) and A55 (f).

Figure 6a-f reveals how setting different TSR values can be used to minimise power losses during icing and 266 maximise performance after an icing event ends. Specifically, the results show the power coefficients of the 267 iced wind turbine at the end of the icing events for different TSR_{DI} values, and subsequent power 268 269 coefficients that can be obtained with a new TSR_{AI} value. As expected, the minimum TSR_{DI} typically provides the best possible post-icing performance, due to less ice having deposited on the rotor blades. 270 The exception is case A710, where the differences between alternative TSRs are negligible due to the 271 272 relatively small accumulation of ice. For example, Figure 6d shows that the turbine could be slowed down 273 to a TSR_{DI} of 6.5 with TSR_{AI} increased to 8 to achieve a power coefficient of over 0.475. These results also 274 highlight how significant the degradation of Cp can be for the TSR_R value of 7.5 (Figure 6a-d) and that 275 restoring TSR_{AI} to 7.5 would improve the power performance after icing in events A1010 and A105. To maximise the power output and minimise the icing losses for a wind speed of 5 ms⁻¹, both TSR_{DI} and TSR_{AI} 276 should be 9 as it provides higher Cp at lower rotor rotational speeds, but the viability of this depends on the 277 278 coupled electrical generator.

Figure 6a-f: Power characteristics of modified tip-speed ratio values after icing events A1010 (a), A105 (b), A710 (c), A75(d), A510 (e) and A55 (f).

The time it would take to replace the lost energy for reducing the TSR during the icing event, t_{FPB}, is shown 279 280 for Event A on Figure 7a-f. It is noticeable how sensitive t_{EPB} is to variations in wind speed, ambient 281 temperature and TSR operational regime. For Event A at wind speeds of 7 and 10ms⁻¹ (Figure 7a-f), the most beneficial TSR_{DI} is 7 with TSR_{AI} set to either 7.5 or 8, which provides energy payback times of around 282 283 0.5-2.5 hours. Interestingly, if the TSR_{AI} was to be restored to the turbines reference speed (TSR_B) of 7.5 284 after event A105, the only TSR_{DI} and resulting characteristics that could replace the lost energy would be 285 TSR6.5_{DI}. For event cases A510 and A55, Cp is improved for a reduced TSR value both during and after 286 the icing events, so there is no energy payback, and this suggests that the reference design strategy could 287 be improved for non-icing conditions. As a result, the energy payback time appears negative in Figure 7e 288 and 7f.

Figure 7a-f: Energy payback time for different tip-speed ratio after icing (TSR_{AI}) values for events A1010 (a), A105 (b), A710 (c), A75(d), A510 (e) and A55 (f).

290 3.1.2 Event B

In comparison to Event A, the Cp degradation for all Event B cases is more gradual due to a reduced ice 291 292 accretion rate and more conformal ice shapes to the blade geometry (see Figure 8a-h). The sudden Cp 293 drop for B710 and B75 during the first hour of icing is an interesting observation and can be attributed to 294 the way the ice shapes form during the event. As the ice shapes are representative for rime and mixed-type 295 icing, they are conformal to the clean geometry until the thermodynamic equilibrium changes on the air-ice 296 boundary. It is apparent that before the thermodynamic equilibrium changes, the rime shapes during the first hour of icing are characterised by greater leading edge curvature slopes than the ice shapes at the end 297 of the event. Due to the nature of the panel method algorithm, greater curvature slopes lead to reduced 298 accuracy of the analysis. The aerodynamic uncertainties for B710 and B510 indicate ice shapes with 299 increased curvature slopes near the leading edge region occurring during the 3rd hour of icing. This 300 highlights the need for a greater fidelity aerodynamic analysis of such conditions. 301

(g) Case B510

(h) Case B510

Figure 8a-h: Wind turbine Cp deteoration and ice accumulation per blade during events B1010 (a), B710 (c), B75 (e), B510 (g) and ice shapes on section D at the end of events B1010 (b), B710 (d), B75 (f), B510 (h).

The TSR_{AI} power characteristics for shapes produced during Event B cases are not particularly sensitive to 303 304 changes in TSR_{DI}. Figure 9a-d shows that only minimal performance improvements can be achieved after icing by slowing the rotor down during the icing event. Unlike for Event A, only event B75 results in a TSR_{DI} 305 of 6.5 being the preferred option for post-icing operation. Similarly, the minimum TSR_{DI} for event B510 306 provides the most favourable power characteristics after icing. The maximum TSR_{DI} of 8 indicated as the 307 best option for B1010 is likely due to the discrepancies of the aerodynamic analysis and the negligible 308 differences in the aerodynamic performance of the produced ice shapes under these conditions and TSR_{DI} 309 310 values.

(d) case B510

Figure 9a-d: Power characteristics of modified tip-speed ratio values after icing events B1010 (a), B710 (b), B75(c) and B510 (d)

- 311 The minimal performance improvement observed from reducing the TSR_{DI} indicates that the energy
- 312 payback time will be long or unachievable. Reducing to a TSR_{DI} of 7 and increasing to a TSR_{AI} of 7.5 would
- have a long energy recovery time of 6h for B1010, 11.5h for B710 and 8.5h for B75. For TSR6.5_{DI} this

314 would increase to 19.5h, 21.3h and 16h for events B1010, B710 and B75, respectively. For some TSRs, 315 t_{EPB} can reach extreme values (48-200h), which indicates that alternative ice mitigation approach should be 316 considered or, if the power losses are too high, complete shutdown would be advisable. With a TSR_{DI} of 7.5 and 8 having very similar performance profiles for event B1010 and B710 (Figure 9a-b) and TSR8_{DI} 317 slightly underperforming on average-but having a higher Cp at the end of the icing event (see Figure 8a 318 and 8c)-the short energy payback time indicated for TSR8_{DI} on Figure 10a-b should be neglected. During 319 B510, the modified TSR strategies (TSR9_{DI} and TSR9.5_{DI}) provide higher energy yield and less ice-build up 320 than operating at TSR_R resulting in a negative energy payback time. 321

(d) Case B510

Figure 10a-d: Energy payback time for different tip-speed ratio after icing (TSR_{AI}) values for events B1010 (a), B710 (b), B75(c) and B510 (d).

322 3.1.3 Event C

Among Events A, B and C, Event C is characterised by having the lowest values for LWC and MVD and ice accretion rates. With Event C being simulated for a wind speed of 10 ms⁻¹ and ambient temperatures of -5 and -10°C, two cases are presented: C1010 and C105. Due to small ice build-up and shapes (approximately 0.15 to 0.4 kg for different TSR_{DI} values), the power losses are no greater than 1% over the duration of the 4-hour icing events. In addition, the ice shapes are located on the pressure side of the leading edge of the blade (see Figure 11), leading to increased drag but minimal changes in lift [10].

From the energy payback time analysis, it can be concluded that the best option for operation for event C is to maintain operation at the reference TSR_R (i.e. 7.5). Energy payback time for all alternative operational strategies is relatively high for Event C, as there are minimal changes in *Cp* for different TSR_{DI} values (Figure 12a-b) and the ice deposition is low. For instance, by setting the TSR_{DI} to 7 and then operating at a TSR of 7.5 the energy recovery time would be either 24h (A105) or 14h (A1010) (see Figure 13a-b).

Figure 11a-d: Wind turbine Cp deteoration and ice accumulation per blade during events C1010 (a) and C105 (c) and ice shapes on section D at the end of events C1010 (b) and C710 (d).

Figure 12a-b: Power characteristics of modified tip-speed ratio values after icing events C1010 (a) and C105 (b).

Figure 13a-b: Energy payback time for different tip-speed ratio after icing (TSR_{AI}) values for events C1010 (a) and C105 (b).

336 3.2 Further Work

As there are many different icing events that can last for a few hours to several days, the viability of the different operational strategies proposed in this study still needs further investigation. The current analysis utilised XFoil, which enabled the aerodynamic performance of a large number of different ice shapes to be analysed with relatively low computational effort. However, the suggested ideal tip-speed ratio strategy for each event highly depends on the accuracy of the predicted aerodynamic penalties caused by ice build-up. In this study, the aerodynamic performance predictions are more reliable and accurate for the generated ice shapes without extreme irregularities and high curvature at the leading edge. Therefore, for the analysis of icing events leading to more irregular shapes, higher fidelity tools, such as Navier-Stokes equationbased solvers, are required.

A predictive model based on XFoil, or another tool that combines a panel method and integral boundary layer equations, could be developed to inform wind turbine controllers in real time, which would have significant benefits for wind farm operations. However, detection of ice accretion on wind turbines remains a challenge. This study has also highlighted some of the uncertainties and limitations of the panel method, so further work will be carried out to experimentally characterise and investigate them in more detail, so that improved predictive algorithms can be developed in the future.

The approach taken in this study of determining an energy payback time for different TSR operational 352 strategies was found to be useful for both comparing the effectiveness of different strategies and indicating 353 354 when normal operation can be maintained, or a different ice mitigation technique would be needed (e.g. an anti/de -icing system). Additional research will be carried out to evaluate the energy requirements to size 355 356 and evaluate potential net energy gains/losses of using an anti-icing system in comparison to the alternative TSR strategies investigated for the events proposed in this study. Moreover, it will be interesting 357 to consider how the model for predicting energy payback time can be modified to consider ice reduction 358 mechanisms - such as melting, shedding and sublimation. If modelled, the ice mass would reduce after an 359 icing event and the Cp would tend towards its clean blade value. However, this would be dependent on the 360 weather conditions and the structural vibrations. In addition, the estimated energy payback times could be 361 shorter if the ice deposition for an alternative operational strategy reduced faster than the ice accumulated 362 for TSR_{DLR}, but further investigations are required to accurately model this. The model could also be 363 extended do determine which strategy is the most effective when vibration and structural analysis is 364 incorporated. The viability of a TSR strategy would depend on the wind turbine type, local weather 365 parameters and structural damage limitations. As rotational speed would actually decrease on variable-366 speed and variable-pitch wind turbines due to ice formation, a further improvement to the model could be 367 achieved by modelling the transient behaviour of the TSR during ice build-up. This will be particularly 368 369 beneficial when analysing long severe icing events.

370

371 4 Conclusion

This paper examined the effectiveness of rotational speed modifications for the NREL 5 MW reference wind turbine during icing conditions. The turbine was simulated for three icing events, three wind speeds and two ambient temperatures, resulting in 12 different cases. To compare the effectiveness of each strategy, an energy payback time parameter was modelled to determine when slowing a wind turbine down during an 376 icing event would provide overall more energy than a conventional strategy. The obtained results 377 suggested that alternative strategies for mitigating ice losses, realised by tip-speed ratio modifications, are most effective for short and severe icing events. For LWC of 5×10⁻⁴ kg.m⁻³ and MVD of 25×10⁻⁶m, the 378 energy that is lost due to reducing the tip-speed ratio can be recovered within 0.5-2.5 hours post-icing 379 event, thereby reducing the power losses from 7% to 23% and ice mass accreted on each blade from 20% 380 to 30%. However, for longer and milder events, the energy recovery time is significantly longer (around 10-381 28h) suggesting the reference design strategy should be maintained. Additionally, the possibility for 382 applying the TSR modification strategies should be considered carefully, as only limited ice mass would be 383 acceptable due to structural constraints. Furthermore, the need for higher fidelity analysis tools is apparent 384 for longer icing events, with XFoil being more effective for modelling short rime and glaze icing conditions, 385 which do not result in severe horn-like shapes. Where previous wind turbine icing studies have tended to 386 focus on just ice-induced power losses, this study has demonstrated the importance of considering a wind 387 turbine blade's power characteristics and energy production throughout an icing event and performance 388 once an icing event ends. The energy payback time method presented can identify which tip-speed ratio 389 modifications can be used during and after an icing event, provided local meteorological conditions can be 390 accurately predicted. Thus, this work will be of significant interest to wind turbine operators working in cold 391 392 climate locations.

393

394 Figures and table

Figure 1: Discretised NREL 5 MW blade and the selected 2D sections for ice accretion analysis.

Figure 2a-b: NREL 5 MW refrence wind turbine TSR operational limits defined by the limiting rotational speeds of the electrical generator (a) and how the power coefficent varies at different TSR (b).

Figure 3a-b: Power output (a) and cumulative energy (b) during and after an icing event for a wind turbine operating with a reference (TSR_R) or modified (TSR_M) tip-speed ratio strategy.

Figure 4a-f: Wind turbine power coefficient degradation and total ice mass accumulation on a single blade during events A1010 (a), A105 (b), A710 (c), A75 (d), A510 (e) and A55 (f).

402 Figure 5a-f: Ice shapes on Section D for event cases A1010 (a), A105 (b), A710 (c), A75(d), A510 (e) and 403 A55 (f).

Figure 6a-f: Power characteristics of modified tip-speed ratio values after icing events A1010 (a), A105 (b),
A710 (c), A75(d), A510 (e) and A55 (f).

Figure 7a-f: Energy payback time for different tip-speed ratio after icing (TSR_{AI}) values for events A1010

407 (a), A105 (b), A710 (c), A75(d), A510 (e) and A55 (f).

- Figure 8a-h: Cp deteoration and ice accumulation during events B1010 (a), B710 (c), B75 (e), B510 (g) and
- ice shapes on section D at the end of events B1010 (b), B710 (d), B75 (f), B510 (h).

- Figure 9a-d: Power characteristics of modified tip-speed ratio values after icing events B1010 (a), B710 (b), 410 B75(c), B510 (d) and B55 (e). 411 Figure 10a-d: Energy payback time for different tip-speed ratio after icing (TSR_{AI}) values for events B1010 412 (a), B710 (b), B75(c) and B510 (d), 413 Figure 11a-d: Cp deteoration and ice accumulation during events C1010 (a) and C105 (c) and ice shapes 414 on section D at the end of events C1010 (b) and C710 (d). 415 Figure 12a-b: Power characteristics of modified tip-speed ratio values after icing events C1010 (a) and 416 C105 (b). 417 Figure 13a-b: Energy payback time for different tip-speed ratio after icing (TSR_{AI}) values for events C1010 418 419 (a) and C105 (b). 420 Table 1: Definition of icing events A, B and C, at different wind speeds (V) and temperature (T). 421 422 References 423
- 424 [1] Anon, Global Wind Report, GWEC. (2018) 16-60.
- [2] V Lehtomaki, Emerging from the cold, Wind Power. 2019 (2016) 1 <u>https://www.windpowermonthly.com/article/1403504/emerging-cold</u>.
- [3] G Fortin, J Perron, A Ilinca, Behaviour and Modeling of Cup Anemometers under Icing Conditions,
 IWAIS. 11 (2005) Montreal.
- [4] A Krenn, PJ Jordaens, M Wadham-Gagnon, N Davis, N Clausen, V Lehtomaki, et al., Wind Energy in
 Cold Climates Available Technologies report, (2016).
- [5] RE Bredesen, R Cattin, N Clausen, N Davis, PJ Jordaens, Z Khadri-Yazami, et al., Wind Energy
 Projects in Cold Climates, (2017).
- [6] V Turkia, S Huttunen, T Wallenius, Method for estimating wind turbine production losses due to icing,(2013).
- [7] O Parent, A Ilinca. Anti-icing and de-icing techniques for wind turbines: Critical review, Cold Regions
 Science and Technologies. 65 (2011) 88-96.
- [8] N Dalili, A Edrisy, R Carriveau. A Review of Surface Engineering Issues Critical to Wind Turbine
 Performance, Renewable & Sustainable Energy Reviews. 13 (2007) 428-438.
- [9] L Battisti, Chapter 4 Icing Process, Wind Turbines in Cold Climates, Springer, Switzerland, 2015, pp.177-248.
- [10] M Bragg B., A Broeren P., L Blumenthal A. Iced-airfoil aerodynamics, Progress in Aerospace Sciences.
 (2005) 323-362.

- [11] B Tammelin, M Cavaliere, H Holttinen, C Morgan, H Seifret, K Santti, Wind Energy Production in Cold Climates (WECO), (2000).
- [12] T Laakso, I Baring-Gould, M Durstewitz, R Horbaty, A Lacroix, E Peltola, et al., State-of-the-art of wind energy in cold climates, (2010).
- [13] B Tammelin, H Seifret, Large Turbines Go into Cold Climate Regions, EWEC 2001. Copenhagen(2001).
- [14] M Etemaddar, M Hansen, T Mo. Wind turbine aerodynamic response under atmospheric icing conditions, Wind Energy. 17 (2012) 241-265.
- [15] N Davis, AN Hahmann, N Clausen, M Zagar, Icing Impacts on Wind Energy Production, DTU. (2014).
- [16] L Hu, X Zhu, C Hu, J Chen, Z Du. Wind turbine ice distribution and load response under icing
 condition, Renewable Energy. 113 (2017) 608-619.
- 454 [17] R Cattin, Icing of Wind Turbines, Elforsk. 12:13 (2012) 23.
- [18] M Homola, M Virk, M Nicklasson, P J. Performance losses due to ice accretion for a 5 MW wind turbine, Wind Energy. 15 (2012) 379-389.
- [19] A Zanon, M Gennaro De, H Kuhnelt. Wind energy harnessing of the NREL 5 MW reference wind
 turbine in icing conditions under different operational strategies, Renewable Energy. 115 (2018) 760-772.
- [20] D Brillembourg, Turbines Under Atmospheric Icing Conditions Ice Accretion Modelling,
 Aerodynamics, and Control Strategies for Mitigating Performance Degradation, Wind Energy. 20 (2013)
 601-617.
- 462 [21] W Wright, User's Manual for LEWICE Version 3.2, (2008).
- 463 [22] W Wright B., Validation Results for LEWICE 3.0, (2005).
- 464 [23] D Marten, J Wendler, Qblade Guidelines, (2013).
- [24] M Drela, XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils, Low Reynolds
 Number Aerodynamics. (1989).
- [25] J Jonkman, S Butterfield, W Musial, G Scott, Definition of a 5-MW Reference Wind Turbine of Offshore
 System Development, (2009).
- [26] G Poots, Ice and Snow Accretion on Structures, 1st ed., Research Studies Press, Exeter, 1996.
- [27] MC Pederson, H Sorenson, N Swytink-Binnema, B Martinez, T Condra. Measurements from a cold
 climate site in Canada: Boundary conditions and verification methods for CFD icing models for wind
 turbines, Cold Regions Science and Technologies. 147 (2018) 11-21.
- [28] S Cober G., G Isaac A., J Strapp W. Aircraft Icing Measurement in East Coast Winter Storms, Journal
 of Applied Meteorology. 34 (1994) 88.

- [29] F Lamraoui, G Fortin, R Benoit, J Perron, C Masson. Atmospheric icing impact on wind turbine
 production, Cold Regions Science and Technologies. 100 (2014) 36-49.
- [30] W Lewis, A Flight Investigation of the Meteorological Conditions Conducive to the Formation of Ice on
 Airplanes, National Advisory Committee for Aeronautics. 1393 (1947) 25.
- [31] L Chen, B Tan, G Kvamsto Nils, M Johannessen Ola. Winter cyclone/anticyclone activity over China
- and its relation to upper tropospheric jets, Tellus AL Dynamic Meteorology and Oceanology. 66 (2014).