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Abstract: Rechargeable magnesium ion batteries have recently received considerable attention as
an alternative to Li- or Na-ion batteries. Understanding defects and ion transport is a key step in
designing high performance electrode materials for Mg-ion batteries. Here we present a classical
potential-based atomistic simulation study of defects, dopants and Mg-ion transport in Mg6MnO8.
The formation of the Mg–Mn anti-site defect cluster is calculated to be the lowest energy process
(1.73 eV/defect). The Mg Frenkel is calculated to be the second most favourable intrinsic defect and
its formation energy is 2.84 eV/defect. A three-dimensional long-range Mg-ion migration path with
overall activation energy of 0.82 eV is observed, suggesting that the diffusion of Mg-ions in this
material is moderate. Substitutional doping of Ga on the Mn site can increase the capacity of this
material in the form of Mg interstitials. The most energetically favourable isovalent dopant for Mg is
found to be Fe. Interestingly, Si and Ge exhibit exoergic solution enthalpy for doping on the Mn site,
requiring experimental verification.
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1. Introduction

Rechargeable batteries based on divalent metals such as magnesium, calcium and zinc are being
considered as alternatives to Li-ion and Na-ion batteries as they exhibit higher volumetric capacity and
redox reactions (more than one electron) [1–3]. Among these, Mg-ion battery technology has attracted
significant attention due to the high abundance of Mg, the stability of Mg in the atmosphere and the
higher melting point of Mg as compared to Li, ensuring that Mg is safer relative to Li [4–7].

Development of novel cathode materials for Mg-ion batteries is a key challenge as the diffusivity
of Mg2+ ions is slower in solid state cathode materials due to the strong ionic interaction of Mg2+ ions
with surrounding anions. The low diffusivity results in poor reversible capacity, high voltage hysteresis
and low power output. Owing to the difficulty of Mg2+ intercalation, a limited number of electrode
materials such as MgMSiO4 (M = Fe, Co and Mn) [8–10], MgxV2O5 [11], MgFePO4F [12], spinel
sulphides [13], molybdenum chalcogenides [14,15], MgCo2O4 [16] and “Chevrel” Mg2Mo6O8 [15]
have been reported in the literature.

“Defective rock salt phase” Mg6MnO8 has been recently proposed as a potential cathode material
for rechargeable Mg-ion batteries, as this material shows a number of advantages including six Mg
atoms in a formula unit, low-toxicity, high abundance and ease of preparing the pure phase of this
material via solid state reactions [17]. In order to examine the applicability of Mg6MnO8, in Mg-ion
batteries, Lee et al. [17] used experimental nuclear magnetic resonance (NMR) spectroscopy together
with density functional theory (DFT) calculations to characterise the local structure and study the
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magnetic property of Mg6MnO8. Though further electrochemical study by this experimental group is
under way, there are no other experimental reports available in the literature.

Fundamental understanding of Mg6MnO8 can be useful to optimize the performance of this
material. This can be achieved by performing calculations with the aid of well-established atomistic
simulations based on the classical pair-wise potentials. The main aim of the present work is to
provide valuable information to the experimentalist about defect chemistry and diffusion in Mg6MnO8.
In previous studies [18–37], this simulation technique has been successfully applied to a number of
ionic solids including battery materials. Here, we examine defects, Mg-ion diffusion paths together
with activation energies, and favourable dopants on the Mg and Mn site.

2. Computational Methods

Classical pair-wise potential based calculations were performed to examine the most favourable
intrinsic defect, possible long-range Mg-ion migration paths with activation energies, and solution
enthalpies of isovalent and aliovalent dopants. The GULP code [38] was used. This code uses long-range
and short-range forces between ions. The latter arises from electron–electron repulsion and van der
Waals attractive forces. The latter was modelled using the Buckingham potentials (Supplementary
Materials Table S1). The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [39] was used to relax
the ion positions together with the lattice parameters. Defect modelling was performed using the
Mott–Littleton method [40]. This method has been well described in our previous work [18–21]. As the
current simulation is based on the full ionic charge model with dilute limit, the defect enthalpies are
expected to overestimate. However, the trend would be the same.

3. Results

3.1. Crystal Structure of Mg6MnO8

The crystal structure of Mg6MnO8 (lattice parameters a = b = c = 8.3818Å and α = β = γ = 90◦) was
reported by Taguchi et al. [41]. This structure is considered a defect rock salt phase with Fm3m space group
symmetry. Both Mg2+ and Mn4+ ions form six bonds with six adjacent O2− ions forming octahedrons (refer
to Figure 1). The quality of the classical potentials used in this study (refer to Supplementary Materials
Table S1) was validated by performing geometry optimization of bulk Mg6MnO8 under constant pressure
and comparing the calculated lattice parameters with the corresponding experimental values. The present
simulation accurately reproduced the experimental lattice parameters with an error percentage less than
0.6% (refer to Table 1).
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Table 1. Comparison between the experimental and calculated structural parameters of cubic
(
Fm3m

)
Mg6MnO8.

Parameter Calc Expt41 |∆| (%)

a = b = c (Å) 8.4259 8.3818 0.53

α = β = γ (◦) 90.0000 90.0000 0.00

V (Å3) 598.21 588.86 1.59

3.2. Intrinsic Defect Processes

Isolated point defect energies (vacancies and interstitials) are useful in calculating Frenkel and
Schottky reaction energies in Mg6MnO8. These energetics provide valuable information about the
electrochemical behaviour of Mg6MnO8. The following equations (Equations (1)–(8)), written using
the Kröger–Vink notation [42], demonstrate the intrinsic defect processes.

Mg Frenkel : MgX
Mg → V′′Mg + Mg••i (1)

O Frenkel : OX
O → V••O + O′′i (2)

Mn Frenkel : VX
Mn → V′′′′Mn + Mn••••i (3)

Schottky : 6 MgX
Mg + MnX

Mn + 8 OX
O → 6 V′′Mg + V′′′′Mn + 8 V••O + Mg6MnO8 (4)

MgO Schottky : MgX
Mg + OX

O → V′′Mg + V••O + MgO (5)

MnO2 Schottky : MnX
Mn + 2 OX

O → V′′′′Mn + 2 V••O + MnO2 (6)

Mg/Mn antisite (isolated) : MgX
Mg + MnX

Mn → Mg′′Mn + Mn••Mg (7)

Mg/Mn antisite (cluster) : MgX
Mg + MnX

Mn →
{
Mg′′Mn : Mn••Mg

}X
(8)

The calculated reaction energies are reported in Figure 2 (also refer to Supplementary Materials
Table S2). Supplementary Materials Table S3 reports the formulas used to calculate the energies of the

defect processes. The calculations show that the formation of the anti-site cluster
{
Mg′′Mn : Mn••Mg

}X

is the energetically lowest process (1.73 eV/defect). This indicates that the experimental structure
consists of both Mg′′Mn and Mn••Mg defects at the same time in the form of a cluster at high temperatures.
We considered both defects independently (isolated) and the combined energies. This process
(Equation (7)) requires 2.83 eV/defect. The energy difference between the cluster and the isolated form
is −1.36 eV. This exoergic energy is essentially the binding energy of isolated defects. This further
suggests that the isolated defects are not stable and they would combine to form a cluster. In previous
experimental and theoretical studies, this type of defect was observed in a variety of materials,
including Li-, Na- and Mg-ion battery materials [18,29,30,35,43–47]. The Mg Frankel was calculated
to be the second lowest defect energy process (2.84 eV/defect). This process is important for the
vacancy-mediated Mg diffusion in Mg6MnO8. This defect is observed at high temperatures as it
exhibits endoergic reaction energy. The other Frenkel and Schottky defect processes exhibit high
formation energies, suggesting that they cannot be observed at operating temperatures. We considered
the loss of MgO in this material by calculating the MgO Schottky process (Equation (5)). In this process,
V′′Mg and V••O defects are formed in the lattice. The reaction energy for this process is 3.96 eV per defect,
meaning that the loss of MgO is difficult at operating temperatures.
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3.3. Mg-Ion Diffusion

The mobility of Mg-ions with low activation energies makes battery materials promising.
Determination of Mg-ion paths by experiment is often difficult. The current simulation can provide
useful information about migration paths and their activation energies. In a previous work, we used
this methodology to identify diffusion paths and activation energies for a variety of Li- and Na-ion
battery materials [18–37]. Using classical potential simulation, the Li-ion migration path and activation
energy were calculated in LiFePO4 by Fisher et al. [48]. The calculated one-dimensional path along the
[010] direction was later observed precisely in the neutron diffraction experiment [49].

In Mg6MnO8, two Mg–Mg local hops were identified. The first Mg–Mg hop (A) has a distance of
2.98 Å and its corresponding activation energy is 0.82 eV (refer to Figure 3). In the second hop (B), Mg
diffuses with a jump distance of 5.96 Å and activation energy of 3.72 eV. Table 2 reports the Mg–Mg
separations and their activation energies. Figure 4 shows the energy profile diagrams for local hops A
and B. These two local hops were connected to construct three-dimensional migration paths. Three
different long range paths were identified (refer to Table 3). In the first long range path (A→A→A→A),
Mg-ion diffuses in three-dimensional direction (refer to Figure 3). Its overall activation energy is 0.82 eV.
This indicates that Mg-ion diffusion in Mg6MnO8 is moderately fast. In the second path (B→B→B→B),
Mg-ion migrates along the ac plane. The overall activation energy is 3.72 eV meaning that Mg-ion
diffusion along this path is unlikely to occur. The third three-dimensional path (A→B→B→A) consists
of both local hops A and B, and its overall activation energy is 3.72 eV. As mentioned earlier, the strong
ionic interaction of Mg2+ ions with adjacent oxygen ions reduces its mobility in the lattice. Several
approaches, such as reducing the diffusion distance length of Mg2+ ions by synthesising nanostructure
materials and decreasing the charge shielding of Mg2+ ions, have been made to improve the mobility
of Mg2+ ions [50,51].
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Table 2. Calculated Mg–Mg separations and activation energies for the magnesium ion diffusion
between two adjacent Mg sites (refer to Figure 3).

Migration Path Mg–Mg Separation/Å Activation Energy/eV

A 2.98 0.82

B 5.96 3.72Energies 2019, 12, x FOR PEER REVIEW 5 of 9 
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Table 3. Possible long-range Mg-ion diffusion paths and their corresponding overall activation energies.

Long-Range Path Overall Activation Energy/eV

A→A→A→A 0.82

B→B→B→B 3.72

A→B→B→A 3.72

3.4. Dopant Substitution

Substitutional doping on Mg and Mn sites can provide useful information to the experimentalists
regarding properties such as capacity and electronic properties. Here we considered a variety of
aliovalent and isovalent dopants. Aliovalent substitution needed charge compensation and appropriate
defects (interstitials or vacancies) introduced into the reaction equation.

Divalent dopants were first considered on the Mg site. The following reaction equation was used
to calculate the solution enthalpy.

MO + MgX
Mg → MX

Mg + MgO (9)

Figure 5 reports the solution enthalpies of MO (M = Fe, Co, Ni, Zn, Ca, Sr and Ba). The lowest
solution enthalpy (0.01 eV) was calculated for Fe. Co, Zn and Ni also exhibit favourable solution
enthalpies (<0.1 eV), suggesting that they are also promising candidates. This is because the ionic radii
of those four dopants are close to each other. The calculations reveal that synthesis of Mg6−xMxMnO8

(M = Fe, Co, Zn and Ni) can be carried out experimentally. Solution enthalpy increases gradually with
the ionic radius from Ca2+ to Ba2+. The solution enthalpy for Ca is 0.65 eV, meaning that doping is
possible at high temperatures. As both Sr and Ba exhibit high solution enthalpies (>2.70 eV), they are
highly unlikely to take place. This is due to the larger ionic radii of Sr2+ and Ba2+ compared to that of
Mg2+ (0.72 Å).
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Figure 5. Enthalpy of solution of MO, (M = Fe, Co, Ni, Zn, Ca, Sr and Ba) with respect to the M2+ ionic
radius in Mg6MnO8.

Next, we considered a range of trivalent dopants (Al, Ga, Fe, Sc, In, Y, Gd and La) on the Mn
site. This would increase the Mg content in this material in the form of interstitials as described in
Equation (10). This strategy can increase the capacity of this material providing useful information
regarding promising candidate dopants.

M2O3 + 2 MnX
Mn + MgO → 2 M′Mn + Mg••i + 2 MnO2 (10)

We report the calculated solution enthalpies of M2O3 in Figure 6. The most favourable dopant was
found to be the Ga3+. The solution enthalpy for this dopant is 3.05 eV, suggesting that this process takes
place under high temperatures. The possible composition would be Mg6+xMn1-xMxO8 (x = 0.0–1.0).
The actual composition should be determined experimentally. The Fe3+ is the second most stable
dopant. Solution enthalpy increases with ionic radius of the dopants from Ga3+ to La3+ due to the
larger ionic radii of those dopants compared to that of Mn4+ (0.52 Å).
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Finally, tetravalent dopants (Si4+, Ge4+, Ti4+, Sn4+, Zr4+ and Ce4+) were considered on the Mn
site. The solution energy was calculated using the following reaction equation.

MO2 + MnX
Mn → Mx

Mn + MnO2 (11)

Both Si4+ and Ge4+ exhibit exothermic solution enthalpies (refer to Figure 7), suggesting that they
are promising dopants. This is because the ionic radius of Mn4+ is closer to the ionic radii of Si4+ and
Ge4+. Experimental verification is needed for the preparation of Mg6Mn1-xMxO8. In our previous
study [31], we showed that these two dopants could be exothermically substituted on the Mn site in
Li2MnO3. All other dopants exhibit endoergic solution enthalpies. Solution enthalpy increases with
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ionic radius from Si4+ to Ce4+. The solution enthalpy for Ti4+ is 1.19 eV. This indicates that doping is
only possible at high temperatures. The least favourable dopant is Ce4+. As its solution enthalpy is
7.27 eV, it is extremely difficult to carry out doping under normal conditions.
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4. Conclusions

Classical pair potential simulation at the atomic scale was used to provide a detailed understanding
of key issues related to defects, dopants and Mg-ion diffusion in Mg6MnO8. We identified that the key
defect present in this material is the Mg–Mn anti-site. The second most thermodynamically dominant
defect is the Mg Frenkel and this defect is present at high temperatures. The Mg-ion diffusion in this
material is three-dimensional and moderate. The Ga3+ was identified as a promising dopant on the Mn
site to increase the Mg content. Substitutional doping by the Fe2+ on the Mg site is favourable. Exoergic
solution enthalpy was calculated for the substitution of Si4+ and Ge4+ on the Mn site, suggesting
that both dopants are competitive and experimental investigation of synthesizing the composites
Mg6SixMn1-xO8, and Mg6GexMn1−xO8 (x = 0.0–1.0) is of worth.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/12/17/3213/s1,
Table S1: Interatomic potential parameters used in the atomistic simulations of Mg6MnO8. Table S2: Energetics of
intrinsic defect process in Mg6MnO8: Table S3. Calculation formulas for intrinsic and extrinsic defect processes.
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