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Abstract 
To investigate potential high organisational level impacts of persistent organic pollution in 

the wetlands in the Sydney Olympic Park (SOP) remediated site, the benthic 

macroinvertebrate assemblages of seven wetlands within SOP and two off-site reference 

wetlands were examined. Sediment cores were collected, stained and preserved from each 

study site and the macroinvertebrates identified to the appropriate taxonomic level (Class, 

Order, Family, Subfamily). Data were analysed for taxon richness and macroinvertebrate 

abundance and multivariate techniques were used to identify chemical/physical 

characteristics of the sediment, which were important influences on the differences in the 

assemblage between study sites. Macroinvertebrate abundance was highly variable between 
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study sites and taxon richness was low across all sites. Oligochaetes, nematodes, ostracods 

and chironomids were the most common taxa found and were the most important in 

influencing differences between the macroinvertebrate assemblages among the study sites. 

Sediment grain size and chemical characteristics of the sediments (�PAH, �PCB, TCDDeq 

and heavy metal concentrations) were important in separating the study sites based on taxon 

richness and abundance. Canonical correspondence analysis separated the macroinvertebrate 

assemblages at newly two created wetlands from those at other study sites including the 

urban reference sites. Increased sediment POP contamination (particularly as measured 

TCDDeq and �DDT concentrations) is a likely contributor in excluding pollution sensitive 

taxa and, therefore, alterations to benthic macroinvertebrate assemblages. Further, the 

influence of TOC suggests the significance of catchment inputs in contributing to changes in 

macroinvertebrate assemblage. The SOP remediation led to the establishment of wetlands 

with benthic communities representative of those expected in urban wetlands. 

 

Keywords: Remediated site, macroinvertebrate, POPs, benthic community, 

 

Introduction 

Fine and coarse scale changes to a macroinvertebrate assemblage can indicate changes in the 

health of a wetland. Decreased overall taxon richness (or simply decreased richness in the 

sensitive taxa) may result from physico-chemical stress (e.g., Sandin and Johnson 2000; 

Hodkinson and Jackson 2005), chemical stress (Wallace et al. 1996; Hickey and Clements 

1998; Sandin and Johnson 2000) or the introduction of exotic species (Stenroth and Nystrom 

2003). Decreased macroinvertebrate abundance may be associated with seasonal effects 

(Boulton et al. 1992), site-specific physical characteristics (e.g., Quinn and Hickey 1990) or 

severe pollution (e.g., Burt et al. 1991; Hirst et al. 2002). 

 

Exposure of benthic organisms to persistent organic pollutants (POPs) such as organochlorine 

pesticides (OCPs), polychlorinated biphenyls (PCB), polycyclic aromatic hydrocarbons 

(PAHs) and polychlorinated dibenzo-p-dioxins  (PCDDs; e.g., 2,3,7,8-TCDD) can have 

important ecological consequences. Since POPs rapidly bind to fine sediment (Gustafsson et 

al. 1997) and are slow to exchange with surficial waters (Achman et al. 1996; Persson et al. 

2005) sediments and pore water are likely sites for exposure of these contaminants to biota. 
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Bioconcentration in benthic organisms is usually high (Neely et al. 1974; Schrock et al. 1997; 

Thoman and Komlos 1999; Magnusson et al. 2006) and biomagnification, therefore, likely. 

The acute toxicity of POPs to benthic organisms can be high with targeted (e.g., 

organochlorine insecticides) and non-targeted effects (e.g., Mayer et al. 1977; Reynoldson 

1987; Phipps et al. 1995; Boese et al. 1998) and exposure can cause changes to invertebrate 

diversity and abundance. 

 

Assessment of benthic macroinvertebrate communities is a useful tool for the assessment of 

the ecological health of aquatic ecosystems linked to remediated sites and restoration 

projects. In particular, the rate of recruitment of macroinvertebrate taxa to a wetland in the 

post-remediation period has been used to assess continuing remediation success (e.g., Nelson 

and Roline 1996; LeFevre and Sharpe 2002; Simon et al. 2006). 

 

Sydney Olympic Park (SOP) is a remediated site (425 Ha) situated in an urban residential and 

light commercial area of Sydney (Fig 1). Prior to remediation of the site, soils and sediments 

contained high concentrations of OCPs (ΣDDT: 0.7 mg / kg), ΣPAHs (430 mg / kg), 

ΣPCDD(F)s (316 mg / kg), and ΣPCB (14 mg / kg) (Laginestra et al. 2001) in many cases 

exceeding the Australian interim sediment quality guidelines (ISQG) trigger values (Ying et 

al. 2009). During the main remediation program (1992 to 1999) a number of wetlands was 

created on the site while some were remediated and others were left as remnant. Still others 

were remediated prior to the main program (Laginestra et al. 2001) (Table 1). Chemical and 

biochemical analysis have described the current POP contamination in some of the wetlands 

within SOP (Rawson et al. 2009; Ying et al. 2009). There were measurable concentrations of 

�PAHs, �PCBs, and TCDDeq in the wetlands of the Park and while these were generally 

toward the lower end of concentrations measured at remediated sites elsewhere in the world 

they still, in some cases, exceeded of the ISQG trigger value for these compounds (Ying et al. 

2009). Metal (particularly lead and zinc) concentrations were also commonly above the ISQG 

trigger values (Ying et al. 2009). 

 

The aim of this study was to investigate the effects of POP contamination on the long-term 

establishment of healthy benthic macroinvertebrate communities in created, remediated and 

remnant wetlands resulting from a very large remediation program (Sydney Olympic Park, 

Australia). It was hypothesised that wetlands with high concentrations of sediment POP 
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contamination would have benthic communities with lower taxon diversity and lower 

abundance relative to reference sites. 

  

Materials and Methods 

Study Sites and Sample Collection 

Seven wetlands were studied within SOP (Boundary Ck, Narawang 22, Northern Water 

Feature, Bicentennial Park, EWQCP, SWQCP, Wharf Pond) and two reference sites were 

chosen outside the Park (Upper Colo, a pristine site, and Macquarie University, an urban 

impacted site) (Table 1, Fig 2).  Physico-chemical characteristics of these sites have been 

described elsewhere (Rawson et al. 2009) as have the sediment POP and metal concentrations 

(Ying et al. 2009) and the aqueous and sediment 2,3,7,8-TCDD equivalence (TCDDeq) 

(Rawson et al. 2009). Sediment cores (75 cm2) were collected from 5 random locations (over 

60m2) within each study site in February 2007. The top 15 cm of each core was excised, and 

preserved with borax buffered formalin containing 5 ml/L Rose Bengal stain. These were 

transferred on ice to the laboratory and stored at 4oC.  

 

Sample Processing 

Each sample was rinsed to remove as much formalin as possible and washed through 1 mm 

and 250 �m mesh sieves. The animals retained from each mesh size sub-samples and those 

removed after examination under a dissecting microscope were preserved in 70% ethanol. 

Preserved animals were sorted into coarse taxonomic groups before identification to lower 

levels. All arthropods were identified to Family level while other non-arthropod groups were 

identified to the appropriate taxonomic level. Based on Resh and McElvray (1993) 

identification to Family level for all arthropods was considered sufficient to detect broad 

differences in the benthic communities in this study. Further, with very low taxon richness at 

this level for most study sites, lower taxonomic identification of individuals was not 

considered advantageous. Taxon richness and overall macroinvertebrate abundance were 

calculated for each study site based on the average content of the sediment cores. Initially 

three cores for each site were examined and where variability in abundance was high (i.e., 

patchy distribution) additional cores were sorted and the macroinvertebrates identified as 

above. 
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Data Analysis 

Differences between study sites based on (log-transformed) taxon richness and abundance 

(per m2) were examined using a single factor ANOVA (after confirming that the data fitted 

the assumption of homogeneity of variances). A similarity matrix (comparing all samples 

containing invertebrates) based on the Bray-Curtis similarity index (4th root transformed data) 

was constructed and a multivariate analysis of similarity (ANOSIM) used to investigate 

differences between macroinvertebrate assemblages noted under examination with a non-

metric multidimensional scaling ordination (PRIMER v6). A hierarchical clustering 

procedure was run to show within and between study site similarities and similarity profile 

permutation (SIMPROF) tests indicated the level of similarity required to detect significant 

differences between samples (PRIMER v6). A similarity percentages (SIMPER) routine was 

used to examine which species were important in driving the differences between 

macroinvertebrate assemblages which had been separated by the ordination SIMPROF and 

clustering routines. All multivariate analyses were conducted using the PRIMER statistical 

software (PRIMER v6). Canonical correspondence analysis (CCA) on the data was 

conducted to investigate the influences of selected environmental variables (pH, Total 

Organic Carbon (TOC), �DDT, �PCB, �PAH concentrations, sediment 2,3,7,8-TCDD 

equivalence (TCDDeq) concentrations and sediment heavy metal concentrations from Ying et 

al. 2009) on individual taxa and benthic macroinvertebrate assemblages at the study sites 

(MSVP version 3.13p) except Upper Colo which was removed due to inherent differences 

between this study site and others in terms of the type of wetland (lotic, sandy substrate, 

geographic separation). To examine whether environmental factors influenced taxon richness 

or abundance a multiple regression was conducted including the potential predictors TOC, 

inorganic carbon, sediment grain size composition, sediment pH, sediment conductivity and 

concentrations of �PAHs, �PCBs, heavy metals, �DDT and TCDDeq in the sediment. 

  

Results 

Thirty-two macroinvertebrate taxa were identified in the sediment cores from the study sites. 

Of these five were benthic infauna and six were benthic epifauna (Table 2). A further 18 taxa 

may spend some time in intimate contact with the benthos (e.g., benthic foraging, detrital 

feeding organisms) and were probably epifaunic at the time of collection (Table 2). Three 

taxa are generally not considered to be in intimate contact with the benthos but have been 
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included in the analysis as they were likely to have been foraging on the surface of the 

benthos at the time of collection. 

 

There were significant (p<0.05) differences in both macroinvertebrate abundance and taxon 

richness between some of the study sites (Fig 3). This was apparent even over the small 

spatial scale of the study sites within Sydney Olympic Park (SOP). Macroinvertebrate 

abundance was variable both between and within study sites. The largest within-site 

variability was at EWQCP where abundance was between 2800 and 104 133 animals.m-2 (a 

37-fold difference). The lowest variability measured was at Upper Colo, the pristine reference 

(1.5-fold difference). The highest average abundance was at Macquarie University (121 366 

animals.m-2) and the lowest was at Upper Colo (10 399 animals.m-2) (Fig 3). At Upper Colo, 

overall abundance was significantly (p<0.05) less than that at Macquarie University, 

Boundary Ck., Narawang 22 and the Wharf Pond and at SWQCP abundance was 

significantly (p<0.05) less than that at Macquarie University (Fig 3). 

 

Macroinvertebrate taxon richness was low across all study sites ranging from an average of 

4.5 taxa at Boundary Ck. to 12 taxa at Narawang 22. Taxon richness was significantly 

(p<0.05) higher at Narawang 22 than at Boundary Ck., Bicentennial Park, Macquarie 

University, Upper Colo and SWQCP. EWQCP, Northern Water Feature and Wharf Pond all 

had intermediate taxon richness (Fig 3). 

 

The models for predicting of benthic macroinvertebrate abundance included positive 

coefficients for sediment grain sizes between 500 and 1000 �m, pore water metal 

concentration, sediment �DDT concentration and negative relationships for sediment bound 

metals and �PAH concentration (r2 = 1.000) (Table 3). A multiple regression model for 

predicting macroinvertebrate taxon richness in the study sites gave negative relationships (r2 

= 0.999) for sediment TCDDeq and �PCB concentrations and sediment grain sizes between 

187 and 250 �m (Table 3).  

 

The nMDS ordination indicated that the macroinvertebrate assemblages at Narawang 22, 

Upper Colo and the Northern Water Feature are somewhat separated from the other study 

sites on the basis of a Bray-Curtis similarity index (Fig 4). However, there is considerable 

overlap between these groups as shown by the clustering procedure (Fig 5). Further, the 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7 
 

similarity profile permutation (SIMPROF) tests show that above a similarity distance of 

46.5% macroinvertebrate assemblages from individual cores were significantly (p<0.05) 

differentiated. This distinguished three groups of individual cores; Narawang 22 was 

separated from all study sites while Upper Colo was linked with one core each from the 

Northern Water Feature and SWQCP and all remaining cores constituted a third group. 

Analysis of similarity (Table 4) indicated that macroinvertebrate assemblages were 

significantly (p<0.05) different from each other but that the pattern was not obvious. 

Macroinvertebrate communities at Narawang 22 and Upper Colo were different from all 

other study sites. The macroinvertebrate community at Macquarie University was 

significantly (p<0.05) different from that at Narawang 22, Upper Colo and SWQCP. 

SIMPER analysis of the contribution of individual taxa to the dissimilarity between 

macroinvertebrate assemblages revealed the importance of four common taxa and a number 

of rare taxa (Table 5). In particular, the lack of common taxa (Oligochaeta, Chironominae, 

Ostracoda, Nematoda) separated the assemblages at Upper Colo from those at other study 

sites and the presence of rare taxa (including Baetidae, Caenidae, Leptophlebidae, Cladocera 

and Ceratopogonidae) at Narawang 22 separated the assemblages at this wetland from that of 

the other wetlands (Table 5). Table 5 illustrates the differences between the 3 groups of sites 

identified by the SIMPROF routines in Figure 5 with Boundary Ck representing the sites 

grouped together (other pairwise comparisons have been removed for clarity). 

 

The CCA separated the macroinvertebrate assemblages at Narawang 22 and Northern Water 

Feature from those at other study sites along an axis which was correlated with decreasing 

levels of contamination, in particular concentrations of �DDT and TCDDeq (Fig 6). 

Decreasing TOC was also important in describing the separation of these sites. The 

separation of the sites other than Narawang 22 and Northern Water Feature was along a 

second axis which was less correlated with contamination. The taxon centroids indicated that 

Narawang 22 and Northern Water Feature had higher numbers of rare taxa while the other 

wetlands lacked these taxa. 

 

Multiple regression analysis indicated that the abundance of Chironominae was negatively 

affected by sediment �PAH concentrations but positively affected by sediment grain sizes 

between 250 and 500 �m (Table 3). Differences in nematode abundance were negatively 

affected by sediment TCDDeq concentrations and oligochaete abundance was positively 
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affected by sediment TCDDeq concentrations and negatively affected by sediment grain sizes 

between 1000�m and 5000�m. There were no significant predictors for the abundance of 

ostracods (Table 3). 

 

Discussion 

Urban wetlands generally have reduced benthic macroinvertebrate taxon richness (Hall et al. 

2001; Shutes 1984) represented by taxa that are tolerant to urban contaminants (Whiting and 

Clifford 1983). Compared to similar pristine wetlands, taxa commonly not found in urban 

wetlands include odonates, trichopterans, ephemeropterans and plecopterans, while 

oligochaetes, nematodes and chironomids often dominate urban benthic communities (Lenat 

and Crawford 1994; Hall et al. 2001). The common taxa found in this study were those 

expected for degraded urban habitats with all wetlands having abundant tolerant taxa. 

However, a few wetlands contained pollution sensitive taxa such as trichopterans and 

ephemeropterans. Only Narawang 22 and Northern Water Feature within SOP contained 

odonates and ephemeropterans but in very low numbers while trichopterans were moderately 

abundant only at Narawang 22. While these are not strictly benthic dwellers they can be 

benthic foragers and are, therefore, intimately associated with the benthos.  

 

The times required for macroinvertebrates to recruit to created and newly remediated 

wetlands depend on a number of factors including organism life-history (e.g., generation time 

and dispersal strength) and the distance to a refuge or a number of refugia (Niemi et al. 

1990). In lotic systems drift is an important source for recruitment (Nelson and Roline 1996) 

and increases in taxon richness after remediation can occur quickly if there are upstream 

seeding sites (Simon et al. 2006). The two urban lotic sites included in the current study 

(Macquarie University and Boundary Ck) have highly degraded upstream reaches located in 

highly urbanised land. It is unlikely that taxon rich regions exist upstream of either wetland. 

This will contribute to decreased taxon richness at these wetlands. 

 

In lentic sites, only highly aerially dispersive organisms (dipterans, odonates and 

ephemeropterans) are likely to recolonise these wetlands quickly. SOP is located in the highly 

urbanised Sydney metropolitan area and there are few nearby undisturbed wetlands. The 

wetland with the highest taxon richness (Narawang 22) is located adjacent to the Newington 

Nature Reserve, which may contain refugia for rare taxa. In their meta-analysis of post-
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disturbance recovery times Niemi et al. (1990) broadly described that (in lotic systems) 

dipterans were the first insect colonisers, followed by ephemeropterans, then trichopterans 

and finally plecopterans. The lack of the latter order in these wetlands may indicate slow 

recruitment to newly remediated wetlands or that conditions were unsuitable for its survival. 

The time taken for recovery to pre-disturbance taxon richness in lotic wetlands is generally 

less than 12 months (Simon et al. 2006) but where the disturbance is extreme this can be 

extended significantly. In the case of the SOP wetlands, given the high degree of disturbance 

it is possible that the recovery process is incomplete but given the time interval (8 years) this 

is considered unlikely. 

 

Within the study sites, assemblage patchiness was high, particularly in terms of abundance 

(37-fold difference between cores at EWQCP). It is unclear whether the patchiness recorded 

in this study was due to habitat patchiness (often high: Downes et al. 1993; Heino et al. 

2004), or chemical pollutant patchiness (also often high: Johnson and Larsen 1985; Swartz et 

al. 1989; Feng et al. 1998; Koh et al. 2004). Correlation between contamination and benthic 

community measures in a patchy environment has been recorded over very small spatial 

scales (<500m) (Stark et al. 2005) and thus the effects of contaminant heterogeneity cannot 

be ruled out here.  

 

In a study of post-remediation recolonisation, den Besten and van den Brink (2005) found 

that that differences between the sites were likely due to differences in sediment 

characteristics. In the current study, sediment grain size was important in predicting 

chironomid and oligochaete abundances (and total macroinvertebrate abundance). Benthic 

habitat is dependent on interstitial pore size and, therefore, sediment grain size. Most of the 

wetlands in the current study had sediment which was dominated by fine sand to silt, (62.5 - 

250 µm) the exception being Upper Colo which had a much larger proportion of medium 

sand (>250 µm) (Rawson et al., 2009). The proportion of fine sediment is generally positively 

correlated with total organic carbon therefore a site (such as Upper Colo) with a lower 

proportion of fine sediment will likely have lower total organic carbon content. This will 

restrict the prevalence of macroinvertebrates using sediment TOC as a food source and hence 

impact the entire macroinvertebrate assemblage.  

 

The different assemblage at the pristine reference site Upper Colo (low abundance of 

common taxa) is therefore likely due to differences in sediment type but also to its 
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geographic separation from the other study sites (about 100 km) and its different wetland 

characteristics (a lotic system) with concomitant sediment differences (dominated by sand as 

opposed to silt). At Narawang 22 the different assemblage (increased abundance of both 

common and rare taxa) appears indicative of the reduced concentrations of organic 

contaminants at this site (Rawson et al. 2009; Ying et al. 2009), suggesting that these rare 

taxa are sensitive to this type of pollution.  

 

Canonical Correspondence Analysis separated the macroinvertebrate assemblages at 

Narawang 22 and Northern Water Feature (the sites with the highest taxon richness) wetlands 

along an axis, representing a gradient of decreasing sediment TCDDeq, �DDT contamination 

and TOC. The influence of increasing TCDDeq and concentrations of the pesticide DDT and 

its metabolites (�DDT) was to reduce the occurrence of rare taxa at the study sites. While the 

acute toxicity of TCDD and other aryl hydrocarbon receptor (AhR) ligands to benthic 

invertebrates is not particularly high (West et al. 1997), there is evidence to suggest they can 

cause significant chronic effects in even the most pollution tolerant taxa (Lotufo 1998b; 

Hwang et al. 2004) and may reduce taxon richness in the long-term by excluding sensitive 

taxa. Many studies have shown the tendency of TCDD and other AhR ligands to 

bioaccumulate in benthic organisms (e.g., West et al. 1997; Froese et al. 1998; Lotufo 1998a; 

Timmermann and Andersen 2003). These two processes (reduction of taxon richness and 

bioaccumulation of toxicants) are likely to have negative impacts on the health of vertebrate 

consumers (e.g., fish and birds) and must be considered together. TOC is usually high in 

wetlands affected by urban catchments and catchment land-use can be an important predictor 

of sediment contaminant load (Hoffman et al. 1984). The strength of the influence of TOC on 

the macroinvertebrate assemblages in the study sites indicates that catchment input is 

important in restricting the occurrence of some taxa. These results are of importance in the 

context of remediation since it appears that reductions in contamination and TOC result in the 

recruitment of more rare taxa. Variation between the macroinvertebrate assemblages at 

wetlands other than Northern Water Feature and Narawang 22 was mainly along an axis 

which poorly correlates with the contaminant variables included in the analysis. This suggests 

the importance of other factors (e.g., physico-chemical characteristics, habitat variety) in 

influencing the macroinvertebrate assemblages in these wetlands. The cores from the urban 

reference site, Macquarie Uni, were spread throughout the analysis (not separated from the 
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remediated sites) demonstrating that none of the remediated sites were different from the 

expected state of an urban wetland.  

 

Pratt et al. (1981) described the disruption to macroinvertebrate communities due to runoff 

from urban catchments and Lenat and Crawford (1994) showed that the taxon richness within 

the orders Ephemeroptera, Plecoptera and Trichoptera was reduced in urban wetlands subject 

to urban runoff. Taxa within these orders (the EPT index) are considered relatively sensitive 

to a range of stressors (e.g., changes in water quality) and relatively insensitive to natural 

disturbances (e.g., changes in flow regime) leading to their wide use as an indicator of 

wetland health. In the current study no Plecoptera were recorded. Only three families of 

Ephemeroptera and five families of Trichoptera were found and, in general, these were at the 

wetlands (Narawang 22 and Northern Water Feature), which were least subject to urban 

catchment inputs. 

 

The SOP wetlands were subject to a variety of remediation histories. Some were remnant 

(Wharf Pond), others were remediated either pre-1991 (Boundary Ck.) or created post -1991 

(e.g., EWQCP) (Laginestra et al. 2001). There was no clear trend between remediation 

history and macroinvertebrate community. Nor was there a trend between contamination 

history and macroinvertebrate assemblage. The Northern Water Feature is situated on land 

previously contaminated with PCBs and dioxins (Laginestra et al. 2001) while SWQCP is 

situated on land that did not require remediation. Yet these sites are separated on the basis of 

the presence of rare taxa at the Northern Water Feature. It is unlikely that differences between 

the macroinvertebrate assemblages are the result of incomplete remediation or variation in 

remediation efficacy.  

 

Differences in habitat variety were observed at the study sites. At Boundary Ck there is a 

stand of emergent macrophytes (Phragmites australis) with no riparian vegetation or 

submerged macrophytes. SWQCP and EWQCP are surrounded by a riparian zone (Casuarina 

spp.) and a significant littoral region with emergent macrophytes (Baumea articulata, P. 

australis) while Narawang 22 has a benthic cover of submerged macrophytes, emergent 

macrophytes (B. articulata) in the littoral zone and some riparian vegetation. While sampling 

at each study site attempted to cover a representative portion of the wetland to account for 

small-scale patchiness, the absence of healthy riparian, littoral and submerged vegetation at 

many of the study sites may contribute to a reduction of variety in the benthic habitat. This 
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may influence the macroinvertebrate assemblages present at the study sites particularly in 

terms of taxon richness. 

   

The highest taxon richness was in the created wetland Narawang 22 indicating that sufficient 

time has passed to allow the establishment of a healthy benthic invertebrate community and 

to allow effective monitoring across the wetlands of the site. As Narawang 22 is primary 

wading bird and frog habitat, it is essential that a healthy invertebrate population is 

maintained. This area is regularly subject to inundation as a result of stormwater amelioration 

action (Laginestra et al. 2001) allowing some recruitment from upstream. However, it is also 

regularly drained in an attempt to control mosquitofish populations in the wetland. The 

results suggest that inundation is sufficient to allow recruitment and drainage does not cause 

long-term depauperation of the benthic community. This wetland should be designated as a 

reference site to benchmark taxon richness in future monitoring of macroinvertebrate 

communities in SOP wetlands.   

 

Conclusions 
While there was variation in the current POP concentrations between the study sites, there 

was no observable correlation with diversity or abundance. The benthic macroinvertebrate 

communities inhabiting the wetlands of Sydney Olympic Park (SOP) were consistent with 

those expected in urban wetlands (low taxon diversity and an abundance of tolerant taxa) as 

represented by the urban reference site Macquarie Uni. This indicates the success of the 

remediation in returning these highly contaminated wetlands to a condition expected for an 

urban wetland in Sydney. Only one wetland (Narawang 22) had noticeably high taxon 

richness and this study site was adjacent to remnant bushland. On the other hand, wetlands 

without nearby recruitment sources (those with degraded upstream catchments in urban 

surrounds) are likely to maintain depauperate invertebrate communities. While it is possible 

that the SOP wetlands are still undergoing the establishment of a healthy benthic community 

following their remediation or creation, this is considered unlikely as eight years has passed 

since the remediation. There may also be an influence of differences in habitat diversity 

between the wetlands, which could affect taxon richness. However, given the strength of the 

canonical correspondence analysis (CCA) relationship, increased sediment POP 

contamination (particularly as measured TCDDeq and �DDT concentrations) is a likely 
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contributor in excluding pollution sensitive taxa and, therefore, alterations to benthic 

macroinvertebrate assemblages. Further, the influence of TOC suggests the significance of 

catchment inputs in contributing to changes in macroinvertebrate assemblage. 
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Fig 1 Location of Sydney Olympic Park (shaded area) in the Sydney metropolitan area. The solid circle shows 
the location of the Sydney central business district. 
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Fig 2 Map of benthic invertebrate sampling sites in Sydney Olympic Park. 1. Wharf Pond, 2. Narawang 22, 3. 
EWQCP, 4. Northern Water Feature, 5. Bicentennial Park, 6. SWQCP, 7. Boundary Ck. 
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Fig 3 Mean (± SEM) Species richness (top) and abundance (bottom) of benthic macroinvertebrates (m-2) at 
Sydney Olympic Park and key reference sites. Letters represent significantly different homogeneous subsets 
(columns with the same letter are not significantly different) at α = 0.05. 
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Fig 4 Non-metric multi dimensional scaling (nMDS) ordination plot of SOP and reference sites using all benthic 
macroinvertebrate data. Contours show significantly (p<0.05) similar groups as defined by similarity profile 
permutations (SIMPROF). 
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Fig 5 Dendogram of similar samples based on benthic macroinvertebrate assemblage. Fourth-root transformed 
data were analysed by Bray-Curtis similarity. The dashed vertical line represents the Bray-Curtis similarity 
value above which divergence is not significant as determined by similarity profile permutation tests 
(SIMPROF) at α = 0.05. 
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Fig 6 Canonical correspondence analysis ordination for macroinvertebrate assemblages at SOP and reference 
study sites. Vectors representing environmental variables are scaled x3. TOC = Total Organic Carbon. PCB, 
DDT and PAH values are summed analyte concentrations. + denotes centroids for major taxa influencing the 
significant dissimilarity between Narawang 22 and other wetlands. Nem. = Nematoda, Ost. = Ostracoda, Olig. = 
Oligochaeta, Chir. = Chironominae, V. = a group of rare taxa including Baetidae, Caenidae, Culicidae, 
Odontoceridae, Orthocladinae. 
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Table 3 Results of multiple regressions on macroinvertebrate community data using physical and chemical 
characteristics of the sediments as predictors. Individual taxa are those that regularly influenced the pairwise 
differences between the sites (SIMPER). The direction of the relationships is denoted as + (positive relationship) 
and – (negative relationship). 

 
 

 
 

  F p-value Predictors r2 

Abundance 3551.5 0.000 

Grain size <1000��m, >500��m (+) 
Pore Water Metals (+) 

Sediment Metals (-) 
��DDT (+) 
�PAH (-) 

1.000 

Taxon 
Richness 948.63 0.000 

Sediment TCDDeq (-) 
�PCB (-) 

Grain size <250��m, > 187.5��m (-) 
0.999 

Chironomidae 24.45 0.03 Grain size <250��m, >187.5��m (+) 
�PAH (-) 0.952 

Nematoda 58.931 0.000 Sediment TCDDeq (-) 0.959 

Oligochaeta 37.255 0.001 Sediment TCDDeq (+) 
Grain size <1000�m, >500�m (-) 0.937 

Ostracoda   No significant Predictors  

Table



Table 4 Matrix of pairwise comparisons of macroinvertebrate assemblages at Sydney Olympic Park (SOP) and 
reference study sites using ANOSIM. Significantly (p<0.05) different values in bold.  

 

 
 

 BC EWQ NWF N22 BP WP MCU UPC SWQ 
Boundary Ck 
(BC)  0.03 0.02 0.03 0.02 0.03 0.06 0.03 0.03 
EWQCP 
(EWQ)   0.03 0.03 0.11 0.09 0.06 0.03 0.20 
Nth Water Feat 
(NWF)    0.02 0.01 0.02 0.06 0.01 0.02 
Narawang 22 
(N22)     0.03 0.03 0.03 0.03 0.03 
Bicent. Pk 
(BP)      0.03 0.06 0.03 0.11 
Wharf Pond 
(WP)       0.06 0.03 0.03 
Macquarie Uni 
(MCU)        0.03 0.03 
Upper Colo 
(UPC)         0.10 
SWQCP 
(SWQ)          

Table



Table 5 Relative contribution of the main taxa influencing pairwise dissimilarity between study sites. All pairs 
of study sites represented are significantly (p<0.05) different from each other. Contribution to dissimilarity is 
represented categorically; + signifies greater abundance of taxa in study site (a), - signifies greater abundance of 
taxa in study site (b). 1 symbol > 5%, 2 symbols >6%, 3 symbols >7%, 4 symbols >8%, 5 symbols >9%, 6 
symbols >10%. Boundary Ck is included as a representative of the main group of study sites separated by 
similarity profile permutations (SIMPROF). Other pairwise comparisons have been omitted for clarity. 

Study Site (a) Narawang 22 �     Upper Colo �  Narawang 22 �  
Study Site (b) Upper Colo Boundary Ck Boundary Ck 
Average 
Dissimilarity (%) 65.72 46.9 56.88 

Chironominae + + + + +  + + + + 
Ostracoda + + + + - - - - - - + + 
Oligochaeta + + + - - - - - - - - - - - 
Nematoda + + + + + - - - - - - + 
Leptophlebidae + +  + + 
Cladocera   + 
Caenidae +  + + 
Baetidae + +  + + 
Copepoda + +  + + + 
Tanypodonidae  + + + + + +  
Ceratapogonidae  + + + 
Hirudinea  - - - -  
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