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ABSTRACT 

 

Purpose: i. To develop an automated measurement technique for the assessment of both the 

form and intensity of physical activity undertaken by children during play. ii. To profile the 

varying activity across a cohort of children using a multivariate analysis of their movement 

patterns. Methods: Ankle-worn accelerometers were used to record 40-minutes of activity 

during a school recess, for 24 children over 5 consecutive days. Activity events of 1.1 s duration 

were identified within the acceleration time trace and compared to a reference motif, consisting 

of a single walking stride acceleration trace, obtained on a treadmill operating at a speed of 4 km 

h
-1

. Dynamic time warping (DTW) of motif and activity events provided metrics of comparative 

movement duration and intensity, which formed the data set for multivariate mapping of the 

cohort activity using a principal component analysis (PCA). Results: The 2-D PCA plot 

provided clear differentiation of children displaying diverse activity profiles and clustering of 

those with similar movement patterns. The 1
st
 component of the PCA correlated to the integrated 

intensity of movement over the 40 min. period whilst the 2
nd

 component informed on the 

temporal phasing of activity. Conclusion: By defining movement events and then quantifying 

them by reference to a motion-standard, meaningful assessment of highly varied activity within 

free play can be obtained. This allows detailed profiling of individual children‟s activity and 

provides an insight on social aspects of play through identification of matched activity time profiles 

for children participating in conjoined play. 

 

Key Words: CHILDREN‟S PHYSICAL ACTIVITY, INERTIAL SENSORS, DYNAMIC 

TIME WARPING, MULTIVARIATE CLUSTERING, ACTIVITY PROFILING. 
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INTRODUCTION 

Physical inactivity is one of the major causes of death worldwide (1) and so exercise and 

activity programmes, designed to avoid sedentary lifestyles, are increasingly prevalent and have 

been shown to reduce risk factors such as type 2 diabetes, heart disease and even some cancers 

(2). For these reasons, it is important for children to develop the healthy habit of frequent 

physical activity (3,4) and considering that children spend a large amount of their day at school, 

recess becomes a natural time to encourage this. A wide range of factors determine children‟s 

propensity for activity (5), however it is clear that good playground design can have a positive 

effect (6,7). There is also a growing realisation that the quality of activity, as reflected in the 

movement competence of individuals is as important as the quantity of exercise undertaken (8,9). 

 

Given this importance of exercise to a healthy lifestyle, detailed and quantitative 

assessment of activity frequency and intensity is a well-established research area (10,11). 

Measurement is often by wearable, inertial sensors (i.e. accelerometers) (12,13), placed at 

various locations on the body (14), to give signals that are proportional to the intensity and 

direction (magnetometer) of movement (15). Whilst the implementation of this technology to 

obtain a faithful record of body acceleration is relatively straightforward, the interpretation of the 

data to inform on activity is more difficult. In particular, the wide range of movements and 

irregular intensity of activity displayed by children during free play (16) present a demanding 

challenge to quantitative analysis. The commonly used metric for assessment of activity is 

„counts‟ – integrated acceleration-magnitude during a defined epoch (17). This gives a ready 

measure that directly correlates to energy expenditure, however it conveys no information on the 

form of movement undertaken and by definition is insensitive to rapid changes in activity level. 
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We therefore present a technique, based on the raw acceleration trace and the use of a 

standardized reference signal - a „movement motif‟, which is a data sequence corresponding to a 

known motion such as a walk step or run stride. The movement motif provides a time-series 

template (18,19) to which movement events within the acceleration trace can be compared, using 

pattern matching implemented with a dynamic time warping algorithm (20). The evaluation of 

activity through analysis of specific movement features and patterns is well established, with 

many variations of machine learning approaches reported (21). The aim in these studies is to 

classify activity into identifiable phenotypes such as walking, running, standing, etc. (22,23). Our 

approach differs in that whilst a reference motif is classified (a walking stride), individual 

movement events are not. We compare rather than classify. This removes any restriction on the 

form of movement, thus avoiding mis-classification errors, whilst maintaining the context that a 

known movement type provides. Each comparison of a movement event with the motif 

quantifies the intensity and duration of the movement relative to the reference point of the motif 

sequence. This provides quantitative assessment of both quantity and form of motion undertaken 

during an activity session. The definition of specific movement categories for traditional pattern 

classification necessitates the use of extended time-sequences (multiple strides) to ensure that 

example sets are uniform enough to describe a single class (17,24–26). In the approach presented 

here there is no such restriction and event-motif comparisons are made with accelerometer time-

sequence data acquired at 40 Hz. Implementation of the technique on children‟s motion data 

obtained from a 40 minute school play period, allows high resolution temporal profiling of their 

activity (27,28). Participant profiling, based on the multi-parameter movement metrics is 

presented and used to assess variation within the cohort (29) and day to day trends across a week 

of measurements. 
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METHODS 

Participants and settings. The study was based on a set of 24 children, whose motion was 

recorded for one school-week (5 days), in a primary school in the U.K., 2 children were absent 

on one of the days and so the total data set included 118 motion records. In the participant 

sample set, 12 of the children were in year 5 and 12 in year 6, 18 children were boys and the 

summary statistics of the cohort are - age 10.5±0.6y, height 1.44±0.09m, mass 39.6±9.5kg, body 

mass index; 18.8±3.1 kg.m
2
. The participants wore ankle-mounted accelerometers during school 

recess for 5 days. The participants‟ BMI, height, weight, gender, and school year were registered and 

the distributions of these metrics were typical for the age group of children. A stadiometer (Holtain, 

Crymych, UK) and digital scales (SECA, Hamburg, Germany) were used to measure stature (to 

the nearest 0.01m) and body mass (to the nearest 0.1kg) respectively, following standard 

procedures. Furthermore, children were classified as either underweight (< 5th percentile) (n = 

1), normal weight (5th to 85th percentile) (n= 16), overweight (> 85th to < 95th percentile) (n = 

5) or obese (≥ 95th percentile) (n= 2). (For more information about the participants, see 

Supplemental Digital Content 1, Appendix – supplementary information, 

http://links.lww.com/MSS/B710). The data were recorded with consent from the legal guardians 

and assent from the children, following the guidelines and policies of the institutional ethics 

committee and the Declaration of Helsinki. 

 

Instruments. The children‟s motion was evaluated during normal time school-time recess (40 ± 

4 min/day) for 5 days. A custom Micro Electro-Mechanical System (MEMS) based device was 

used to measure their physical activity at a frequency of 40 Hz and record it onto a microSD card 

(30). The sensor system incorporated a tri-axial accelerometer with a +/- 16 g dynamic range, 3.9 
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mg point resolution (with an amplitude coefficient of variation of 0.004 at 40hz) (ADXL345 

sensor, Analog Devices). It was housed in a small plastic case and affixed via a Velcro strap to 

the lateral malleolar prominence of the fibula of the right leg (see additional images, 

Supplemental Digital Content 1, Appendix – supplementary information, 

http://links.lww.com/MSS/B710). 

 

Data extraction and analysis. All data handling and analysis was done in the Matlab 2016b 

environment. The total duration of play varied between 42-50 minutes, only the first 40 minutes 

of activity were analyzed, this ensured that all traces studied were of the same duration. The 

methods described in this section were applied to all the children‟s measurements along the five 

days, unless stated otherwise. Data acquired in the radial acceleration axis was selected for 

analysis as this had proven to be highly informative in previous work (30), with information 

being contained on push-off impulse, force of heel and toe impact and angle of leg lift. The raw 

acceleration time signal, with no filtering or smoothing applied, was used in all analyses. The 

extraction of movement metrics is based on the use of a „movement motif‟. This is a short, 1.1 s 

accelerometer sequence from a single stride, taken by a 27 year old male walking on a treadmill 

at a speed of 4 km hr
-1

, with the same sensor system and attachment as used in the children‟s 

play study. This motif sequence, of a known and well understood biomechanical movement, 

provides a standard reference to which all of the children‟s movements can be compared. This 

choice of movement motif was based on a requirement for a known and well understood motion 

pattern that was distinct from those of the children to avoid biasing of any comparative analyses. 

We need a reference that is known and unchanging. This is difficult to obtain from a child as 

there is high variability due to the different states of physical maturity within the chosen age 
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group. Also, the reference comes from outside of the group and so we get a comparison to an 

independent reference rather than self-referencing within the study cohort. Selected sequences of 

the acceleration signal, corresponding to movement events within each child‟s trace, were 

extracted using a threshold demarcation of 1.5 g. Comparison of each movement event with the 

motif was done using the Matlab dynamic time warping algorithm – „dtw’. This provides metrics 

on time difference, t and amplitude difference, d. A full mathematical description of t and 

d is given in the results section. Dimensional reduction of 80 metrics obtained from the time 

dependence of d and clustering of the 24 children into similar groups was done using Matlab 

functions for principal component analysis – „pca’, and dendrogram clustering – „dendrogram’. 

 

EXPERIMENTAL PROCEDURES AND RESULTS 

Signal processing and data extraction. An example of a raw acceleration trace is shown in 

figure 1. This is typical for a child at play, displaying variable and interrupted movement across 

the play session and complex acceleration features at short timescales, with no discernible 

regularity. Commonly used analyses of acceleration data take a time-averaged approach, 

defining „counts‟ and categorizing activity level by the use of signal cut-points (31). In 

implementing time-integration, some knowledge of the form of the movement is inevitably lost. 

To avoid this, we take an alternative approach and implement an event-based analysis that 

highlights the temporal shape of the short, often sub-second, acceleration features. This provides 

metrics that can inform on the type of movement undertaken, with a time resolution that is 

consistent with biomechanical and musculoskeletal control dynamics. The challenge in doing 

this for children‟s play data is to find a robust method for defining motion events within non-

uniform acceleration traces. Our solution is to use a movement „motif‟ – a well understood, 
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standard motion pattern. This sets a reference to which the acceleration signal can be compared, 

and events identified as data sequences with similar amplitude and duration as the motif. 

Essentially the raw acceleration trace is sectioned into events through a loose pattern matching to 

the motif standard. The movement motif is shown in figure 2a and is the acceleration trace from 

a single stride taken by an adult (male, age 27) on a treadmill walking at a speed of 4 km h
-1

. 

Motion events are located using a peak detect algorithm with an imposed peak threshold of 1.5 g 

and a minimum peak-to-peak distance of 40 samples (1 sec.). Thus, a series of short sections 

within the signal trace are identified, within which the acceleration is similar to or greater than 

that imposed when walking. The identification process also ensures that no two events 

temporally overlap. A short trace section with 5 events identified, is shown in figure 2b.  

 

Once motion events have been identified a secondary challenge arises as to how these are 

to be parameterized? As figure 1b shows, they vary considerably in shape, duration and 

magnitude, thus it is difficult to capture this heterogeneity with a tractable number of consistent 

metrics that can be easily extracted. We therefore, choose to characterise each event by 

comparison to the motif rather than by direct measurement of the event acceleration values. Each 

motion event is assessed by asking the question – „how close is it to a walk step?‟. This produces 

correlation metrics that are quantitative, robust and which provide context to the movement 

undertaken. The event to motif correlation is done using a dynamic time warping algorithm (32). 

The dynamic time warping between event and motif signals introduces time steps in the data 

sequence in order to achieve optimum matching between traces (33,34). Basically, the two 

signals are stretched at various time points to create „warped‟ sequences, these stretches are 

imposed in a way that achieves the best match between the pair of traces. Two parameters are 
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extracted from each of these event-motif comparisons – the fractional change in time, t and the 

magnitude of the acceleration difference between the time warped signals, d, measured as the 

mean per sample point. These result from summation over the full trace and are mathematically 

defined as: 

 

   
     

      
   [1] 

   
       

    
   [2] 

                                         
    

                                         
    

 

Where ti and di are the time and amplitude differences respectively (see figure 2c), tmotif is the 

duration of the motif signal and nDTW is the total number of samples in the time warped signals. 

These event parameters can be displayed for a complete activity session in the form of a simple 

scatter plot. The plot obtained from the sample trace in figure 1 is shown in figure 2d. This 

provides an individualized, contextual map of movement and a ready visualization of the child‟s 

activity during play. Each point identifies a movement event, thus their density quantifies the 

amount of activity undertaken and corresponds to the information gathered in a traditional 

approach, where activity counts are recorded. Here, however there is also information on the 

form of each movement, captured in the x and y-coordinate values. The d value gives an 

immediate indication as to the intensity of the movement with the zero point being the reference 

level of walking (~3 METs hr
-1

 for the 4 km hr
-1

 motif (35)). The t value informs on how close 
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the time phasing of acceleration is to a walk step. Values of t > 0 indicate the magnitude of the 

fractional difference in duration of each movement event to that of the walking stride motif. This 

is an absolute number and so does not differentiate between shorter or longer duration. 

Comparison to the motif standard also allows benchmarking of the child‟s activity to that 

undertaken in a controlled environment. The areas outlined in red in figure 2b indicate the range 

of values obtained when the motif is compared to other events in the treadmill-study acceleration 

signal, from which it is extracted. This shows the evolution from walk areas (low t, 3-5 km hr
-1

) 

to running (high t, 9-13 km hr
-1

). The red shaded area centered at zero d is the parameter state 

space covered by multiple step events acquired at 4 km hr
-1

 (i.e. stride-to-stride variability in the 

motif itself). The overlay of data from a staged walk to run exercise of the treadmill (red 

sections) onto the map of the child‟s movement (black circles) provides an immediate visual 

assessment of their activity in the 40 minutes of play. The spread of data gives shows the range 

of activity intensity and indicates the degree of variability compared to the controlled movement 

on a treadmill running through a sequence of set speeds. A number of features are evident in the 

child‟s movement map: i. a majority of low intensity events have greater t values than the motif 

sequence (3-5 km hr
-1

 section), this reflects the shorter stride duration relative to the adult walk 

motif; ii. there is a wide range of movement profile with events (black circles) spanning a 

continuous area that encompasses the 3-13 km hr
-1

 treadmill reference set; iii. there are ultra-high 

intensity outlier events which reflect movement for which the sum acceleration is well above that 

within a gait step produced by an adult running at high speed (13 km hr
-1

). 

 

Multivariate profiling. The extraction of multiple parameters for profiling of children from 

their activity profile was based on the time dependent values of d (figure 3a) as this gave a 
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much greater discrimination that the t metric. The total number of events plus the summed 

value of the positive and negative d metric within a sliding, 2 minute time window provided 80 

measures per child over the 40 minute activity sequence. Dimensional reduction was 

implemented using PCA; the 2-D plot for all 118 activity traces is shown in figure 3b. To 

interpret the PCA plot three regions were identified: L – low axis 1 and 2; M – medium axis 1, 

high axis 2; H – high axis 1, low axis 2 (figure 4a). Representative plots of the acceleration trace 

(magnitude) from each of these regions, are shown in figure 4b-g. Inspection of these shows that 

component 1 of the PCA correlates to activity intensity, measured as mean acceleration over the 

duration of the activity session (Pearson, r = 0.54), (for correlation plot, see Supplemental Digital 

Content 1, Appendix – supplementary information, http://links.lww.com/MSS/B710), whilst 

component 2 reflects differences in the time-staging of activity during play. Closely located 

points in the PCA plot indicate children with highly similar motion variables. 

 

Figure 5a shows an expanded view of the PCA plot (shaded area in figure 4a). The raw 

traces from two children juxtaposed in the PCA plot, indeed confirm that their acceleration 

profiles are highly correlated across the whole of the play duration (figure 5c & d). Dendrogram 

plots provide an alternative to PCA for identifying hierarchical clustering of children based on 

their activity profiles. Figure 5b shows the dendrogram for all traces, sorted into 30 clusters 

using a weighted method with arithmetic mean (WPGMA), operating on the pairwise distance 

matrix between all points in the multivariate space (Euclidean distance). This provides 

information on groups of children with similar activity, e.g. cluster 17 encompasses the children 

shown in the red square on the PCA plot. It also allows quantitative assessment of 

similarity/dissimilarity using the cluster separation metric. 
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Longitudinal study of the PCA plot provides insight on the daily activity patterns of the 

children. As an example, two children with differing patterns of play are shown highlighted in 

figure 6. Child A exhibits highly varied activity profiles with large day-to-day variance in the 

level and the time-pattern of physical motion, whilst child B displays a tight cluster of points 

from consistent daily activity patterns. Analysis of the varying activity profiles across a week 

also point to social influences on play. The extremely consistent play pattern of child B is 

disrupted on the Friday of the study week and they have a much reduced activity level on this 

day. Inspection of the PCA plot shows that the upper left region, in which the Friday play data of 

child B sits, is dominated by a cluster of other data points from Friday activity traces for children 

from the same class. The time-dependent acceleration traces for all of this group show an 

extended period of inactivity between the 15 minute and 25 minute points of the play session 

(see additional figures, Supplemental Digital Content 1, Appendix – supplementary information, 

http://links.lww.com/MSS/B710). Thus, there is strong circumstantial evidence that the altered 

play pattern of child B is due to the influence of their peer group. 

 

DISCUSSION AND CONCLUSIONS 

The aim of this study was to demonstrate automated, quantitative assessment of children‟s 

movement during play. There is a growing appreciation of the importance of the quality of 

activity in developing movement competence (9) and automated assessment of various 

movement tasks, based on signal feature extraction from wearable sensors, has been reported 

(36,37). Recognition and classification of activity type has also been achieved using Machine 

Learning algorithms (38,39). Whilst these approaches provide enhanced metrics on activity, over 

and above simple quantification, they are based on a premise that there exists a stable and 
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recognizable movement pattern associated with each activity category, e.g. walk, run, skip etc. 

For children at play it is debatable whether such pattern standards exist. They exhibit an almost 

unlimited range of movement and even in core motions such as walking will display highly 

varied patterns, both at an individual level in step-to-step variance and at population level in the 

changing walk style across the cohort. In recognition of this we have developed an alternative 

method for activity profiling, based on identifying when movement takes place rather than when 

acceleration is produced. This follows other quantitative techniques in being focused on discrete 

motion events rather than continuous acceleration-based metrics. However, it offers a novel 

alternative when characterizing these events as it implements indirect measurement by 

comparison to a reference standard, rather than direct extraction of data from the child‟s motion 

signal. The advantage here is that because the acceleration patterns displayed by the children can 

be of any form, movement is no longer constrained to fit to a pre-ordained pattern. Benchmarked 

quantification is maintained as the extraction of metrics is always in reference to the known 

motif, which becomes the yardstick for interpretation. 

 

As all metrics stem from comparison to a single motif this approach provides robust data 

that support comparison across a cohort and across different study days. By resolving movement 

into motion-events of short duration the technique also provides multi-parameter descriptions of 

each child‟s play session and this allows multivariate profiling of the cohort. All of the moment-

to-moment detail of the varied play activity is captured and can be mapped, using a dimensional 

reduction algorithm, into a map of all activity profiles. This allows visual inspection of the 

variation or uniformity in activity level and identification of clusters of like-individuals who 

display similar activity patterns. This clustering may also point to social influences upon play, as 
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closely mapped children have very similar acceleration time-traces, and this suggests common 

play during the measured time period. The activity map also shows temporal change across a 

longitudinal study and could be a powerful analysis tool in the case of intervention, where 

coordinate position on the map shows comparative performance between individuals, pre and 

post intervention. 

 

In the work presented the reference standard chosen was a walk step, but other motifs could 

be used to give activity profiling in relation to a running stride, hop step, arm movement or 

similar. It is important to note that the motif determines the values of the extracted activity 

parameters but does not change the form of the measured motion signal. Thus, if an alternative 

motif pattern is used the values of d and t for each event will be different but the density of 

movement events and the comparative relationships between children will be unaltered. In this 

respect the motif acts as a filter through which we view the children‟s movement; changing it 

provides a different perspective of the same underlying activity topography. 
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FIGURE CAPTIONS 

 

Figure 1: a. Typical radial acceleration trace from a child wearing an ankle-mounted sensor for 

a 40-minute play session. b. expanded view of a 5-second play sequence. 

 

Figure 2: a. radial acceleration trace of the walk-step motif. b. short sample of typical 

acceleration trace showing event peaks detected, the motif signal is compared to each of these 

using DTW. c. DTW traces for a motif-event comparison with instantaneous time warps, ti and 

acceleration amplitude difference, di. d. Scatter plot of all events within a single 40 minute 

playground session, d – magnitude of fractional event-to-motif acceleration difference, t – 

fractional extension of signal due to time-warping. Red areas indicate parameter space occupied 

by reference data obtained from participant walking and running on a treadmill with a unit 

incremented speed of 3 to 13 km hr
-1

. 

 

Figure 3: a &b. Time-dependent measures for +’ve d (a) and –‘ve d (b); cumulative 

movement-event count - blue circles, ∑d within 2-minute time window – black bars. c. Motion-

metrics PCA for all children, the day of activity is indicated by the color shading (Monday – red, 

Tuesday – green, Wednesday – blue, Thursday – black, Friday – magenta). 

 

Figure 4: a. Motion-metrics PCA for all children with highlighted areas. b.-g. Typical 

acceleration magnitude traces for children within the highlighted areas of the PCA plot – L (b & 

e), M (c & f) and H (d & g). 
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Figure 5:a. Expanded view of the grey shaded area in PCA plot of figure 3, with similar pair 

(black line) and similar group (red dash line) of children highlighted. b. dendrogram plot 

showing cluster relationships, cluster 17 corresponds to the red-dash highlighted area of the 

PCA plot. c. & d. acceleration magnitude plots for the pair of children highlighted by the black 

outline in the PCA plot. 

 

Figure 6: motion-metrics PCA with daily activity of two children highlighted (child A – red, 

child B – green). Black-filled circles represent Friday activity points of 6 children in same year 

(year 6) as child B. 

 

Supplementary Digital Content 

Physical-activity-playgroung-Appendix.docx 
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APPENDIX: supplementary information and additional data-plots 

 

1. Table of health and fitness statistics for the 24 participants. 

 

Table 1. 

Self-assessed Health and Fitness scores range from 1 (poor) to 5 (excellent). BMI classification - 

UW (underweight), NW (normal weight), OW (overweight), or OB (obese). 

 

Child Mean Acceleration 

(arb. units) 

Coefficient of Variation Self Health Self Fitness Gender BMI % BMI Class 

1 6,627 0,086 1 2 F 98 OB 

2 10,082 0,181 4 4 F 42 NW 

3 10,034 0,256 5 5 M 55 NW 

4 8,191 0,137 5 4 M 59 NW 

5 8,340 0,271 4 5 F 50 NW 

6 12,059 0,398 5 5 M 51 NW 

7 10,862 0,373 4 3 M 89 OW 

8 8,621 0,279 3 5 M 94 OW 

9 10,890 0,199 4 5 M 61 NW 

10 6,112 0,231 2 2 M 96 OB 

11 12,349 0,399 5 5 M 37 NW 

12 7,537 0,212 5 4 M 86 OW 

13 8,087 0,212 5 4 M 41 NW 

14 10,705 0,135 4 5 M 26 NW 

15 9,491 0,261 4 5 M 14 NW 

16 11,283 0,232 4 5 M 71 NW 

17 9,830 0,385 5 5 M 81 NW 

18 13,036 0,062 4 5 M 59 NW 

19 11,837 0,308 4 4 M 60 NW 

20 6,653 0,516 1 1 M 98 OB 

21 10,062 0,188 4 2 F 92 OW 

22 11,376 0,227 4 3 F 35 NW 

23 9,343 0,416 4 5 F 56 NW 

24 7,292 0,392 4 5 M 89 OW 
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2. Images and placement of the movement sensor. 

 

 

Placement on the lateral malleolar prominence of the fibula of the 

right leg 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Device sensor board with housing and 

battery 

  

4 cms 
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3. Correlation of PCA component and activity level.  

 

Mean acceleration, averaged over the 40 minute play session, for all 118 data sets and the 

corresponding values for Principal Component Axis 1 (see figure 3c in paper). 

 

 

 
 

Correlation plot of mean acceleration versus PCA component 1. 
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4. Additional raw-data traces from the 5-day longitudinal study. 

Acceleration data traces, acquired on Friday of the study week for the cluster of year 6 children 

identified in the PCA plot. Black-filled circles and number identifiers indicate the 6 children. The 

data points for child 6, for all 5 days are identified by green-filled circles. 

 
PCA plot in figure 6 of paper - re-presented. 

 
 

child 6 

 
 
  

child 2 child 4 

child 7 child 8 

child 9 child 11 
Friday acceleration traces corresponding to the children identified in the PCA plot 

11 
2 

4 
7 

8 
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