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Mitigating Bit-Synchronization Errors in
Huffman-Coding-Aided Index Modulation

Ye Liu and Justin P. Coon, Senior Member, IEEE

Abstract—When utilizing all subcarrier activation patterns
(SAPs) in the combinatorial index modulation (IM) scheme,
existing techniques either fail to realize the maximum throughput
enhancement or fail to address the bit-level synchronization issue
(or error propagation) due to the variable-length nature of the
index-domain codebook. To address these drawbacks, we propose
using Huffman coding for IM together with two constellation
mappings for the bandpass modulation. The proposed scheme
induces no signal overhead and is applicable when the index-
domain codebook has the maximum encoding rate. Simulations
demonstrate the effectiveness of the proposed scheme in mitigat-
ing bit-level synchronization errors.

I. INTRODUCTION

As a special case of permutation modulation [1], index
modulation (IM) is a technique for multicarrier communica-
tion systems, e.g., orthogonal frequency-division multiplexing
(OFDM), where the subcarrier activation patterns (SAPs) carry
part of the information. By activating a fraction of all subcarri-
ers, IM can improve the throughput of the multicarrier system
and may reduce the peak-to-average power ratio (PAPR).
Among many possible designs of mapping information to
SAPs (e.g., [2], [3], [4]), the combinatorial approach in [4],
commonly referred to as OFDM-IM, stands out due to its
relatively high throughput and good error performance.

When encoding a fixed number of bits in the index domain,
[4] is not always able to utilize all SAPs, which does not
realize the full potential of IM in throughput enhancement
and can lead to catastrophic errors at the decoder. To utilize
all SAPs, [5] and [6] propose variable-length coding for the
index domain messages, and the same technique is potentially
applicable to systems other than OFDM [7]. However, it is
not clear from [5] and [6] what is the maximum encoding
rate, i.e., at most how many bits are encoded into an SAP
on average, of such a variable-length code. Therefore, the
maximum throughput gain of Huffman-coding-aided OFDM-
IM versus conventional OFDM-IM remains to be revealed.

Moreover, bit-level synchronization errors1 arise when the
index codebook encodes bit sequences of variable lengths.
The synchronization issue is, however, not addressed by [6].
The same issue is mitigated in [5] at the cost of reducing the
throughput of an OFDM symbol, which limits the benefit of
utilizing all SAPs to removing catastrophic errors only.

This work aims to mitigate bit-synchronization errors when
enhancing the index-domain encoding rate via variable-length
codes. Specifically,
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1Also referred to as error propagation.

1) We point out the properties of the binary trees that lead
to index codebooks of maximum encoding rate, where
we assume a maximally entropic information source
in the index domain. We show that the design in [5]
is equivalent to Huffman codebooks that maximize the
encoding rate.

2) By observing that an index codebook of maximum
encoding rate encodes bit sequences of at most two
different lengths, we propose using two constellations
for the bandpass signals to distinguish the lengths of
the index domain messages. Such an approach has the
benefit that no signal overhead is added to the system.

Simulation results show that the proposed constellation adapta-
tion can harvest the throughput gain thanks to Huffman coding
with improved bit error rate (BER) performance compared to
OFDM-IM for certain system settings.

II. SYSTEM MODEL

Consider an OFDM system with N subcarriers realized
by a size-N discrete Fourier transform and its inverse. To
implement the combinatorial IM scheme [4], first, the N sub-
carriers are divided into G groups, each containing n = N/G
subcarriers. Then, k out of n subcarriers in each group are
activated. Assume an M-ary constellation is applied to the
activated subcarriers. Also, let p1 denote the number of bits
carried in the index domain, and let p2 denote the number
of bits carried by the constellation symbols mapped onto the
activated subcarriers. The scheme in [4] constructs an index
codebook between the index-domain message and the SAPs
that gives a throughput of p1 + p2 bits per OFDM symbol,
where p1 = G ·

⌊
log2

(n
k

) ⌋
, p2 = kG · log2(M), and

(n
k

)
is

the binomial coefficient. The floor function b·c appears in p1
because we cannot encode a fraction of one bit in a digital
system. Therefore, D :=

(n
k

)
−2blog2 (

n
k)c SAPs are left unused.

In the next section, we apply binary-tree based coding
to utilize all

(n
k

)
SAPs. Such a technique has been briefly

discussed by [5] and [6], but there is a lack of understanding
on what is, and how to achieve, the maximum encoding rate
of the technique, which is clarified in the next section.

III. BINARY-TREE INDEX CODEBOOK

In this section, we show that certain Huffman codebooks
maximize the encoding rate of the index codebook.

A. IM through Huffman Coding

The ability to map variable-length bit sequences to symbols
makes Huffman codes suitable for utilizing all

(n
k

)
SAPs in
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Fig. 1. A possible index codebook construction by the Huffman approach
when n = 4 and k = 2. The number inside each node (square) is the
probability used to facilitate the Huffman procedure. The sets beneath the
leave nodes represent the SAPs, i.e., {1, 2} means that the first and the second
of the four subcarriers are active. The bit sequences under the SAPs are the
index domain messages that are encoded by the latter.

IM, where
(n
k

)
may not be a power of two. To design an

index codebook that includes all SAPs, we construct a binary
tree Th with

(n
k

)
leaves, where each leaf represents an SAP.

Let pi denote the probability that is assigned to the ith leaf,
where i = 1, 2, ...,

(n
k

)
and

∑(nk)
i=1 pi = 1. An internal node of

Th is obtained by merging two nodes that carry the lowest
probabilities among all existing nodes that have not been
subjected to merging; see [8] for more details.

After the tree construction, a bit is assigned to each of the
edges, such that the two edges that share the same parent node
cannot have the same bit value. The bit sequence encoded by
the ith SAP is obtained by reading the bits along the path from
the root to the ith leaf; Fig. 1 shows a particular example.

The probability that the ith SAP is used is equal to the
probability that the bit sequence along the edges that link the
root of Th and the ith leaf is observed when the encoder reads
the information bits. For a maximally entropic information
source2, the probability that the ith SAP occurs is 0.5 raised
to the power of the depth of the ith leaf.

Remark 1. The probability pi is assigned to direct the
Huffman coding procedure and should not to be confused with
the probability that the ith SAP occurs during transmissions.

B. Throughput Enhancement in the Index Domain

We now analyze the throughput gain in the index domain
by applying Huffman coding compared to the OFDM-IM
approach in [4]. We do so by calculating the encoding rate
of the involved schemes in the index domain.

For the OFDM-IM approach in [4], because all SAPs encode⌊
log2

(n
k

) ⌋
bits, the index-domain encoding rate is

r =
⌊
log2

(
n
k

)⌋
. (1)

Let di denote the depth of the ith leaf of Th . Then, using
Huffman coding, the probability of observing the length-di bit
sequence encoded by the ith SAP is 0.5di , and the encoding
rate of the index codebook constructed by Th is

rh =
∑(nk)

i=1
0.5di di . (2)

2A maximally entropic information source emits independent bits, where
each bit has a probability of 0.5 of being either zero or one.
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Fig. 2. Throughput gain of IM per n-subcarrier against conventional OFDM.
In the legend, ‘IM’ means the scheme in [4] and ‘IM-H’ means Huffman-
coding-aided IM with index-domain encoding rate r∗

h
. (a) M = 2. (b) M = 4.

To see how to maximize rh , we relax the integer constraint on
di and take the derivative of rh with respect to di , i.e.,

∂rh
∂di
= −

ln (2) di − 1
2di

{
≥ 0, if di ≤ 1/ln(2),
< 0, otherwise. (3)

Because di only takes nonnegative integer values, (3) indicates
that we should keep di as small as possible for all i to
maximize rh . Then, to construct a binary tree with

(n
k

)
leaves of

minimum depth, we can choose any D out of 2blog2 (
n
k)c leaves

of a perfect binary tree and attach 2 child nodes to each of the
chosen D leaves. This coincides with the design in [5], and is
also equivalent to Huffman coding when pi =

(n
k

)−1 for all i;
see Appendix A for the equivalence between [5] and Huffman
coding. Therefore, the maximum encoding rate of Huffman
coding, denoted as r∗

h
, is obtained when Th has 2D leaves of

depth r + 1 and
(n
k

)
− 2D leaves of depth r , i.e.,

r∗h =
((

n
k

)
− 2D

)
· 0.5r · r + 2D · 0.5r+1 · (r + 1)

=r ·
[(

2r+1 −

(
n
k

))
· 0.5r +

(
0.5r

(
n
k

)
− 1

)
·

r + 1
r

]
. (4)

Fig. 2 shows the throughput gain per n-subcarrier obtained by
Huffman coded OFDM-IM and conventional OFDM-IM [4]
compared to conventional OFDM. A 12.5% gain is achieved
by using Huffman coding when M = 2, n = 4, and k = 2.

IV. MITIGATING SYNCHRONIZATION ERRORS

The variable-length nature of the Huffman coded IM intro-
duces bit-level synchronization errors in the information bit
sequence at the receiver output. For example, if a transmitted
SAP that encodes r bits is detected incorrectly, such that the
detector believes that another SAP encoding r+1 bits was sent,
then one extra bit is erroneously inserted into the bit sequence
at the detector output, which may significantly increase the
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error events of the bits that follow the inserted bit. Coding
techniques that correct synchronization errors exist [9], but
significant rate loss may incur when applying them to correct
synchronization errors in the context of this work.

Observe that the bit-level synchronization errors, when
using a Huffman codebook with maximum encoding rate, can
be eliminated if the detector knows whether r bits or r + 1
bits are encoded by a transmitted SAP. To inform the detector
about this information without any extra control signals, we
propose choosing one of two different constellations for any
group of n subcarriers according to the number of bits encoded
by the corresponding SAP. Specifically, let S denote the set of
all possible

(n
k

)
SAPs, and let Sshort and Slong denote the sets

of SAPs that encode r bits and r + 1 bits, respectively. Then,
the transmission signal of a group of n subcarriers is taken
from either Xshort , Sshort ×M

k
short or Xlong , Slong ×M

k
long,

whereMshort andMlong are the bandpass constellations when
the SAP encodes r bits and r + 1 bits, respectively. At the
receiver, maximum likelihood (ML) detection can be applied
to perform joint detection on the transmitted SAP and the
signals modulated on the active subcarriers, where only the
signals from Xshort and Xlong are tested for their likelihoods.

For combinatorial OFDM-IM [4] with Huffman coding, the
above constellation adaptation can be applied by settingMshort
as M-ary phase-shift keying (PSK)3, and then rotating Mshort
by π/M to obtainMlong. Fig. 3(a) illustrates the constellation
adaptation for M = 2 and M = 4. For ease of reference, we
abbreviate the proposed scheme as OFDM-IM-H2C, where
“H2C” stands for Huffman coding with 2 Constellations.

Let Pins be the probability that an SAP carrying r bits is
decoded as an SAP carrying r + 1. Also, let x and y denote
the transmission symbols on a group of n subcarriers and the
corresponding received symbols, respectively. Assuming PSK
signaling with unit power and an additive white Gaussian noise
channel, where y = x + z and z ∼ CN(0, 2σ2In×n), we have

Pins =Pr{x ∈ Xshort} · Pr{x̂ ∈ Xlong and | |y − x| |2 > | |y − x̂| |2}

=0.5r M−k ·
∑

x̂∈Xlong
Pr{| |y − x| |2 > | |y − x̂| |2}

=0.5r M−k ·
∑

x̂∈Xlong
Pr

{
2<{(x − x̂)∗ · z} < −||x − x̂| |2

}
=0.5r M−k ·

∑
x̂∈Xlong

Pr {ε < −0.5| |x − x̂| |} (5a)

≤0.5r−1D · Q
(
(
√

2σ)−1
)
, (5b)

where Q(·) is the Q-function, (·)∗ denotes conjugate trans-
pose, ε ∼ N(0, σ2), (5a) follows because <{(x − x̂)∗ · z} ∼
N(0, | |x − x̂| |2σ2), and (5b) follows because the Euclidean
distance between any x ∈ Xshort and any x̂ ∈ Xlong is at least
two. A similar upper bound on the probability that an SAP
carrying r + 1 bits is decoded incorrectly as an SAP carrying
r , denoted as Pdel, can be obtained as

Pdel ≤ 0.5r+1
[(

n
k

)
− 2D

]
· Q

(
1
√

2σ

)
. (6)

3We skip the discussion for high-order modulations such as quadrature
amplitude modulation, because comparing to conventional OFDM, OFDM-
IM improves the throughput only when the modulation order is low.

(a) (b)

Fig. 3. PSK constellation adapted for the Huffman-coding-aided OFDM-IM to
mitigate bit-level synchronization errors. Circles represent signals of Mshort,
and triangles represent signals of Mlong. (a) M = 2. (b) M = 4.

Equation (5a) suggests that the proposed scheme mitigates
bit-level synchronization errors by enlarging the Euclidean
distance between a codeword in Xshort and a codeword in Xlong.

V. SIMULATION RESULTS

The BERs of conventional OFDM, the OFDM-IM [4], the
OFDM-IM with Huffman coding (OFDM-IM-H), the scheme
in [5], and the proposed OFDM-IM-H2C are plotted against
signal-to-noise ratio (SNR) in Fig. 4, where a Huffman code-
book with maximum encoding rate is used when applicable,
and ML detection is applied to all the schemes. For the scheme
in [5], when M = 2, we always modulate the symbol ‘+1’
onto the last active subcarrier in a group of n subcarriers
if the corresponding SAP encodes r + 1 index-domain bits.
Also, for OFDM-IM-H2C, we count the bit errors in the index
domain and the non-index domain separately by 1) splitting
the input/output bit stream into two corresponding bit streams
and 2) counting the bit errors in each domain as εs+εe, where

1) εs is the length difference between the encoded bit
sequence and the decoded bit sequence in the corre-
sponding domain, and,

2) εe is the number of bits in disagreement when comparing
the encoded bit sequence and the decoded bit sequence
by discarding the last εs bits of the former or the latter
such that the two sequences have the same length.

Fig. 4(a) suggests that when applying Huffman coding to
the OFDM-IM without treating the bit-level synchronization
issue, a huge loss in error performance is observed (e.g., about
4-5 dB loss in terms of SNR at a BER of 10−3). However,
by applying the proposed constellation rotation method, the
BER performance of the OFDM-IM-H2C becomes very close
to that of conventional OFDM-IM in the high-SNR region,
because the bit-synchronization errors have been reduced as
shown in Fig. 5. This shows that the proposed scheme can
improve the throughput without sacrificing much of the BER
compared to OFDM-IM. Fig. 4(b) shows that the proposed
OFDM-IM-H2C, when compared to all benchmarks, can have
better throughput and lower BER in certain IM settings. The
results in Fig. 2(b) and Fig. 4(c) suggest that M = 2 is of
primary interest for (Huffman-coding-aided) OFDM-IM.

VI. CONCLUSION

We formally characterized the index codebooks based on
Huffman coding that maximize the encoding rate in the index
domain. When applying such an index codebook, to mitigate
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Fig. 4. BER performance comparison in 10-tap Rayleigh fading channel with
16 cyclic prefixes. (a) M = 2, G = 32, n = 4, and k = 2. (b) M = 2, G = 16,
n = 8, and k = 4. (c) M = 4, G = 21, n = 6, and k = 5.
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bit-level synchronization errors, we proposed using two con-
stellations for the bandpass signals to inform the receiver of
the length of the index domain message without any signal
overhead. Simulation results demonstrated that the proposed
constellation adaptation scheme allows one to harvest the
throughput gain brought by Huffman coding without degrading
much of the error performance.
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APPENDIX A
EQUIVALENCE BETWEEN THE HUFFMAN PROCEDURE AND

THE EXTENSION OF THE PERFECT BINARY TREE

In [5], an index codebook is constructed by first selecting
any D leaves from a perfect binary tree with 2blog2 (

n
k)c leaves

and then attach two child nodes to each of the selected leaves.
This results in a tree with the following properties, i.e.,

1) the tree is a full binary tree,
2) there are

(n
k

)
leaves, and

3) a leaf has a depth of either
⌊
log2

(n
k

) ⌋
or

⌈
log2

(n
k

)⌉
.

The tree obtained by the Huffman coding approach, when as-
suming the

(n
k

)
source symbols happen with equal probability

(i.e., p1 = p2 = · · · = p(nk) =
(n
k

)−1), also satisfies the above
three properties, because

1) every internal node has two child nodes so that the tree
is full and binary, and the Huffman approach begins with(n
k

)
leaves;

2) if the heights of subtrees that are subject to merging are
either L or L+1, where L is a non-negative integer, then
the Huffman approach will not merge two subtrees with
heights (L + 1). This ensures that the depths of any two
leaves cannot differ by two or more.

As a result, the index codebook construction method in [5]
is equivalent to the Huffman coding procedure described in
Section III when p1 = p2 = · · · = p(nk) =

(n
k

)−1.
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