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ABSTRACT

We investigate the role of nonlinear feedback by α-quenching, flux losses, and feedback by differential rotations in dynamo.
Specifically, by studying the nonlinear dynamo model analytically and numerically, we unfold how frequency p of magnetic field,
magnetic field strength |B|, and phase φ are influenced by different types of nonlinear feedback in the limit of a very weak mean
and/or fluctuating differential rotation. We find that p and φ are controlled by both flux losses with no influence by α-quenching when
there is no back reaction because of fluctuating differential rotation. We find a similar effect of poloidal flux loss and toroidal flux
loss on p and |B| in the absence of a back reaction of shear. Their effect becomes totally different with the inclusion of this back
reaction. Detailed investigations suggest that toroidal flux loss tends to have more influence than poloidal flux loss (with or without
α-quenching) in the presence of fluctuating shear. Furthermore, the effect of α-quenching is boosted when combined with toroidal
flux loss, indicating that the dynamic balance of dynamo is optimized in the presence of both α-quenching and flux loss. These results
highlight the importance of nonlinear transport coefficients and differential rotation in the regulation of a dynamo.
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1. Introduction

Over the decades it has been revealed through high-resolution
observations that the magnetic field on the solar surface is very
structured, consisting of small-scale, rapidly changing magnetic
fields, which seem to emerge randomly and are highly variable.
At the same time, solar magnetic field shows a remarkable de-
gree of organization on a global scale, displaying the butter-
fly diagrams and polarity reversal with quite a regular cycle of
22 years. These observations can be understood in terms of the
amplification of magnetic field by inductive motion of a conduct-
ing fluid in the framework of magnetohydrodynamics (MHD)
(e.g., Krause & Rädler 1980) by using a nonlinear dynamo the-
ory. Specifically, the coexistence of regular and complex be-
haviour of solar magnetic field can be due to the dynamic bal-
ance among various nonlinear interactions. It is thus important
to understand the role of nonlinear interaction in the regulation
of dynamo.

To understand the nonlinear dynamo process, dynamical sys-
tems are the simplest tools because they have the capability of
exhibiting complex dynamics as (control) parameters of the sys-
tem change. A notable study of dynamo was previously done by
Weiss et al. (1984) by using dynamical model, who illustrated
in detail the transition from regularity to chaos as the control
parameter (the so-called dynamo number) varies. In particular,
Jones et al. (1985) were able to explain the existence of aperi-
odic magnetic cycle in a dynamical system given by complex
Lorenz system, even without an explicit stochasticity (e.g., in
parameters, external forcing, etc.).

Based upon the traditional α − Ω dynamo (Parker 1955;
Moffat 1978; Parker 1979), the dynamo number in this work,
which controls the efficiency of dynamo action, is proportional
to the product of α and Ω effects, which generate a toroidal field
from a poloidal field by cyclonic convection (α effect) and a
poloidal field from a toroidal field by shearing (Ω effect).

There is also a dynamical model (Charbonneau 2005) based
on flux transport dynamo (another popular dynamo model),
which involves the global transport of the magnetic fields via
meridional circulations, as well as buoyant rise in magnetic
flux (Dikpati & Charbonneau 1999; Rempel 2006). Weiss et al.
(1984) explained the existence of aperiodic magnetic cycles us-
ing a simple parameterized model. Since then, various studies
have revealed that with a certain set of conditions, low-order
models are able to capture the basic behaviour of solar and stellar
magnetic fields (Tobias et al. 1995; Weiss et al. 2001; Mininni
et al. 2001; Pontieri et al. 2003; Wilmot-Smith et al. 2005; Passos
& Lopes 2008; Lopes & Passos 2009, 2011). A continuous effort
has been devoted to further developing dynamo models to ex-
plain interesting properties of solar magnetic activity, as well as
solar differential rotational profile, uncovered by high-resolution
observational data (Yoshimura 1975, 1978; Jepps 1975; Ivanova
& Ruzimikin 1977).

To understand the effect of various nonlinear interactions that
could be important in the evolution of stellar rotation and mag-
netic fields over the course of spin-down, we revisit a simple
parameterized dynamo model that can serve as a full dynamo
model. In fact, the observations of the evolution of magnetic
fields and rotation of other stars of different ages with differ-
ent rotation rates have been providing us with valuable informa-
tion about the relation among rotation, differential rotation, and
magnetic activity, which can be utilized to test a dynamo the-
ory against observations for improvement, which can work not
only for the Sun but also for other solar-type stars with differ-
ent rotation rates. The exploration of the relation between mag-
netic activity and rotation for a broad range of rotation rates is,
however, a very challenging problem and cannot be done practi-
cally by full MHD simulations owing to the required computa-
tional demand (e.g., the resolution of a broad range of length
and time scales, etc.). An illustrative theoretical model for a
minimal number of key quantities is thus valuable for gaining
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insight into this problem. This is particulary the case in view of
the limitations inherent in any model (e.g., in parameterizations
of transport coefficients in MHD simulations). We note that a
simple parameterized model has attracted a lot of attention for
fusion plasmas as a useful model for understanding regulation
and bifurcation (L-H transition), which is crucial for improving
plasmas (Zhu et al. 2013; Malkov et al. 2009; Kim & Diamond
2003).

The main purpose of this paper is to present detailed anal-
ysis of nonlinear dynamo models to elucidate the effect/role of
various nonlinear interactions that have been proposed in pre-
vious works and thus to identify self-regulatory behaviour in a
viable solar/stellar dynamo model that can explain observations.
To this end, we first examine the nonlinear effect through nonlin-
ear transport coefficients (α-quenching and flux losses) and feed-
back of differential rotation on frequency p and magnetic field
strength |B|. Our focus would be the feedback mechanism of the
Lorentz force on α-effect, differential rotation and the enhanced
magnetic dissipation through flux losses. Considering observa-
tions, we then demonstrate that regulation by the “near” balance
between the (nonlinear) generation and destruction of the mag-
netic fields is a desirable property of a successful model. In par-
ticular, this dynamic balance leads to the almost linear increase
in frequency with rotation rate, flattening of magnetic energy
for high rotation, and quenching in total shear consistent with
observation.

The remainder of this paper is organized as follows. In
Sect. 2, we introduce our model. The detailed analysis of
this model is provided step by step in Sects. 3 to 5: Sect. 3
discusses nonlinear effects through transport coefficients and
Sect. 4 (Sect. 5) focuses on nonlinear effects through mean (fluc-
tuating) differential rotation. We explain the implications of our
results, together with key observational data in Sect. 6. Section 7
contains the conclusions.

2. Model equations

The nonlinear dynamo model under investigation is the dynam-
ical system consisting of the seven coupled ordinary differential
equations (ODE) (Sood & Kim 2013; Weiss et al. 1984),

(∂t + F2)A = 2DB,where D =
D0

F1
, (1)

(∂t + F3)B = i(1 + w0)A − 1
2

iA∗w, (2)

(∂t + ν0)w0 =
1
2

i(A∗B − AB∗), (3)

(∂t + ν)w = −iAB, (4)

which are given in a dimensionless form. Here, A is the poloidal
magnetic flux, B is the toroidal magnetic field, w0 and w are
mean and fluctuating differential rotations with zero and twice
the frequency of A and B, respectively, which are generated by
a nonlinear back reaction of A and B. Poloidal magnetic field A,
toroidal magnetic field B, and fluctuating differential rotation w
are complex, whereas mean differential rotation w0 is real. The
complex conjugate of A is represented by A∗. We note that in
these dimensionless units, the total mean differential rotation is
given by 1 + w◦ = ΔΩ

Ω
; thus, mean differential rotation w0, due

to the back reaction, appears with a negative sign to reduce the
total shear from 1 to 1 + w0 < 1. This is because the differ-
ential rotation is inhibited by the tension in the magnetic field
lines via Lorentz force (i.e., causing the quenching ofΩ-effect.).

Viscosity of mean and fluctuating differential rotations are rep-
resented by ν and ν0, respectively, which are considered to be
constant.

The parameter D in Eq. (1) involves the dynamo number
D0 ∝ αΩ, which is the key (dimensionless) control parameter.
And F1, F2, and F3 are “nonlinear” transport coefficients, de-
fined as

F1 = 1 + κ1|B|2,
F2 = 1 + λ1|B|2,
F3 = 1 + λ2|B|2,
where κ1, λ1, and λ2 are constant parameters; F1 represents the α
source term (i.e., helicity by the magnetic field) due to the back
reaction by magnetic field that was studied in previous works
including Pouquet et al. (1976) and Kleeorin et al. (1982). The
enhanced magnetic dissipation through the loss of toroidal and
poloidal magnetic fluxes is represented by F2 and F3, respec-
tively, which removes magnetic flux from the region in which the
dynamo operates. We note that this is totally different from the
assumption of reduction in magnetic dissipation used in some
previous works. In this model, we assume that α is a parameter
that increases with rotation as α ∝ Ω based on an αΩ dynamo,
but we envision that α captures other physical mechanisms
that increase linearly with Ω. Therefore, dynamo number D0 is
scaled with rotation rate Ω as D0 ∝ Ω2 (Sood & Kim 2013).The
proportionality constant between D0 and Ω2 is taken to be unity
in the paper for simplicity. In this paper, our model focuses
on the dynamic balance through F1 − F3. Other possible feed-
back, such as the Malkus-Proctor effect (1975) or Λ-quenching
(Kitchatinov et al. 1994), will be left for future work. It is impor-
tant to note that according to our non-dimensionlization, physi-
cal poloidal magnetic field A is obtained by dividing our dimen-
sionless poloidal magnetic flux A in Eqs. (1)−(4) by rotation Ω.

Expecting the regulation in a nonlinear dynamo model,
which can weaken (suppress) the chaotic solution, we make an
ansatz for the finite-amplitude solution to Eqs. (1)−(4) in the fol-
lowing system

A = aeipt, B = bei(pt+ φ), w = ca2e2ipt, (5)

where a > 0 and b > 0 are assumed to be positive real; c is a
complex constant; p is real angular frequency; φ is the phase dif-
ference between toroidal b and poloidal a magnetic fields. Using
finite amplitude solution of these forms in Eqs. (1)−(4) gives us
the following five relations among a, b, φ, p, and w0

−p2 + F2F3 =
−(2p2 + F2ν)εa2

2(4p2 + ν2)
, (6)

(F2 + F3)p = 2D − pa2

ν0
+

(2F2 − ν)pεa2

2(4p2 + ν2)
, (7)

w0 =
−pa2

2ν0D
, (8)

a =
2Db√
p2 + F2

2

, (9)

tanφ =
p

F2
, (10)

where D = D0
F1

, F1 = 1+ κ1b2, and F2,3 = 1+λ1,2b2. In the above
equations, ε is the parameter tracking the presence of fluctuating
shear w as

ε =

{
1, w � 0,
0, w = 0.
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Therefore, when there is no fluctuating shear (ε = 0),
Eqs. (6), (7) are simplified as

p = ±√F2F3, (11){
(F2 + F3) +

4D2
0b2

ν0F2
1 F2

2(F2 + F3)

}
F1

√
F2F3 = 2D0, (12)

where Eqs. (11) and (9) were used in obtaining Eq. (12). It is
worth noting that neglecting nonlinear terms in the above equa-
tions (i.e., F1 = F2 = F3 = 1, w0 = 0) gives the linear dispersion
relation for the onset of bifurcation as p = 1 and φ = π/4.

Interestingly, Eq. (11) shows that the frequency p of the mag-
netic field is determined by the dissipation of both the magnetic
fields, given by the geometric mean of F2 and F3. Thus p can
increase with b due to the enhanced magnetic dissipation given
by F2 = 1 + λ1b2 or F3 = 1 + λ2b2. In contrast, p is not influ-
enced by α-quenching (F1), demonstrating different effects on
the frequency p of α-quenching (F1) and of flux losses (F2,3).
The flux losses F2 and F3 determine the phase φ between b and a
as φ =

√
F3/F2; that is, when the toroidal flux loss F3 is stronger

(weaker) than poloidal flux loss F2, it removes b more (less) ef-
ficiently than a, increasing (decreasing) the phase φ between b
and a. w0 in Eq. (8) clearly shows that the sign of w0 is nega-
tive definite, always reducing the total mean differential rotation
1 + w0 < 1. Explicit examples of these behaviours are presented
in the following Sects. 4, 5 through the detailed analysis of fi-
nite amplitude solution by taking the different limits of F1, F2,
and F3 as well as w0, w → 0. This will elucidate the role of
α-quenching, flux losses, mean and fluctuating differential ro-
tation in self-regulatory behaviour of magnetic activity/cycle.
Analytical predictions in Sects. 3−4 are then accompanied by
the confirmation by numerical simulations. Specifically, for the
numerical parts of our paper, we solve Eqs. (1)−(4) by time-
stepping for all complex variable A, B, w, and w0 using ν = 0.5,
ν0 = 35.0 for different values of D0 between 1−400 (See Sood
& Kim 2013 for more details). We also note that for the numer-
ical simulations, the values of the parameters κ1, λ1, and λ2 are
assumed to have the same value, κ1 = λ1 = λ2 ≡ λ = 2.5.

3. Nonlinear effects through transport coefficients

The α-effect and flux losses are the crucial transport coefficients,
capturing the overall effects of small (unresolved) turbulence.
The feedback of growing magnetic fields alters the value of
these transport coefficients, making them dependent on mag-
netic fields. These nonlinear transport coefficients provide a way
for a dynamo to self regulate. To understand the self regulation
through these transport coefficients, it is imperative to investigate
the case in the limit of a very weak mean or fluctuating differen-
tial rotation by assuming w0, w → 0. The relevant Eqs. (8)−(12)
are then

p = ±√F2F3, (13)

(F2 + F3)F1

√
F2F3 = 2D0, (14)

a =
2D0b

F1

√
p2 + F2

2

, (15)

tanφ =
p

F2
· (16)

In the above system, we consider different cases of F1, F2,
and F3 and provide the scalings of p, b, and a with rotation.

In the remainder of the paper, the scaling of poloidal field with
Ω in physical units is obtained by dividing A by Ω because of
our nondimensionlization as noted in Sect. 2. Also note that here
a = |A| and b = |B|.

1. F1 = F = 1 + λb2, F2 = F3 = 1. In the presence of
α-quenching only with no flux loss, Eqs. (13)−(16) are simpli-
fied as

p = 1, (17)

2(1 + λb2) = 2D0, (18)

a =
2D0b

(1 + λb2)
, (19)

tanφ = 1. (20)

Equation (17) explicitly shows that while α-quenching (F1)
provides nonlinear damping to saturate the growth of mag-
netic field, it does not influence the frequency p = 1, which
is the value of the frequency at the onset of bifurcation to
a finite amplitude solution. Moreover, phase φ is not altered
by α-quenching, maintaining a linear value π

4 . In the limit of
D0 	 1, Eqs. (18)−(20) enable us to find the scalings of a as
a ∼ Ω and and b as b ∼ Ω.

We now compare these analytical results by numerical simu-
lation of Eqs. (1)−(4). As noted in Sect. 2, we solve these equa-
tions by time stepping and obtain the frequency spectrum by
taking a FFT (fast Fourier transform) of the time series of dy-
namical variable B. Once we have the power spectrum we as-
sign colours according to the colour bar next to the figure. We
find that analytical scalings are in perfect agreement with the re-
sults obtained from numerical simulations shown in Fig. 1 where
κ1 = λ = 2.5 is used. Specifically, Fig. 1a represents the in-
tensity of frequency spectrum for different values of Ω where
the high-to-low intensity is coded in yellow to black colours. A
strip of a bright yellow colour tracks the frequency of maximum
intensity, which hardly changes with Ω with the same scaling
(p = 1) as predicted above. We note that the frequency shown in
Fig. 1a is lower than the angular frequency p by a factor of 2π.
Figures 1b−1c show b and a as functions of Ω, where the scal-
ings similar to the analytic values can be obtained. These results
confirm the validity of our finite amplitude solutions. We note
that a ∼ Ω implies that the scaling of poloidal magnetic field in
the physical unit is ∼Ω0.

2. F1 = 1, F2 = F3 = F = 1 + λb2. For simplicity, when
poloidal flux loss and toroidal flux loss are enhanced to the same
degree while there is no α-quenching, Eqs. (13)−(16) become
p ∼ (1 + λb2), 2D0 = 2(1 + λb2)2, a ∼ 2D0/21/2(1 + λb2)3/2,
and tan φ = 1. Therefore, both flux losses lead to the increase in
frequency p ∼ (1+λ1,2b2) with b, while their effects are canceled
in the phase shift φ = π4 . The increase of p with b is determined
consistently by the nonlinear dynamics, which sets the values of
b. This dynamical determination of p is reminiscent of the flux
transport dynamo where p depends on meridional flow, etc. In
the limit of D0 	 1, the scalings of p, b, and a are found to be
p ∼ Ω, b ∼ Ω 1

2 , and a ∼ Ω 3
2 , which are again confirmed by

numerical simulations.
3. F1 = F2 = F3 = F = 1 + λb2. In this case α-quenching

and flux loss due to poloidal magnetic field and toroidal mag-
netic field are the same, equally contributing to the flatten-
ing of magnetic fields for large rotation, Eqs. (13)−(16) give
p ∼ F ∼ 1 + λb2, D0 = (1 + λb2)3, a = 2D0b/21/2(1 + λb2)3,
and tanφ = 1. Clearly, poloidal flux loss and toroidal flux loss
both determine the maximum frequency p of the magnetic field;
p increases with Ω, similar to the case where the effect of both
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(a) p as a function of Ω (b) |A| as a function of Ω (c) |B| as a function of Ω
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Fig. 1. Frequency of maximum intensity p, poloidal magnetic field |A| and toroidal magnetic field |B| as a function of rotation rate Ω for F1 =
F, F2 = F3 = 1.0 for Case 1 in the fourth-order system.

(a) p as a function of Ω (b) |A| as a function of Ω (c) |B| as a function of Ω
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Fig. 2. Frequency of maximum intensity p, poloidal magnetic field |A| and toroidal magnetic field |B| as a function of rotation rate Ω for F1 =
1.0, F2 = F3 = F for Case 2 in the fourth-order system.

(a) p as a function of Ω (b) |A| as a function of Ω (c) |B| as a function of Ω
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Fig. 3. Frequency of maximum intensity p, poloidal magnetic field |A| and toroidal magnetic field |B| as a function of rotation rate Ω for F1 = F2 =
F3 = F for Case 3 in the fourth-order system.

flux losses is considered; a and b both increase with rotation rate
(cf. Fig. 3a to 3c). Interestingly, the phase between a and b re-
mains unaltered due to the equal amount of F2 and F3, with its
value φ = π

4 . In the limit of D0 	 1, we find that p ∼ Ω 2
3 ,

a ∼ Ω, and b ∼ Ω 1
3 . Numerically found scalings are almost

similar for p, b, and a (cf. Table 1). Thus, equal amount of
α-quenching, enhanced poloidal flux loss and toroidal flux loss
lead to stronger reduction in magnetic field for a higher rotation
rate, which can provide strong dynamic balance in a nonlinear
dynamo.

4. F1 = F2 = F = 1+λb2, F3 = 1. In the presence of only α-
quenching and enhanced poloidal magnetic flux loss, the various
scalings are simplified as p ∼ (1 + λb2)1/2, 2D0 = (2 + λb2)2

(1 + λb2)1/2, a = 2D0b/(2 + λb2)1/2(1 + λb2)2, tanφ ∼ 1/(1 +
λb2)1/2. Thus, φ decreases for large b (or large D0), reducing
phase shift between b and a to zero. Furthermore, in the limit of
D0 	 1, these give us p ∼ Ω 2

5 , b ∼ Ω 2
5 , and a ∼ Ω 4

5 .
5. F1 = F3 = F = 1 + λb2, F2 = 1. This is the case where

α-quenching and flux loss due to toroidal magnetic field are in
action; Eqs. (13) to (16) give p ∼ (1 + λb2)1/2, 2D0 = (1 +
λb2)5/2, a = 2D0b/(2+ λb2)1/2(1+ λb2)2, and tanφ = 1. Clearly,
frequency p of magnetic field is influenced by toroidal magnetic
field b. For D0 	 1, the scalings of p, b, and a are found to be
p ∼ Ω 2

5 , b ∼ Ω 2
5 , and a ∼ Ω 6

5 . Compared to the Case 4 above,
we see that change from toroidal to poloidal flux loss only affects
the scaling of a with Ω.
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Table 1. Scaling exponents for p, |B|, and |A| for Ω ≥ 5 in the cases of
the fourth-order system where p = Ωξ, |B| = Ωβ, and |A| = Ωγ.

Transport coefficients ξ β γ

F1 = F, F2 = F3 = 1 0 1.0 1.0
F1 = 1, F2 = F3 = F 1.0 0.50 1.55
F1 = F2 = F3 = F 0.66 0.41 1.08
F1 = F2 = F, F3 = 1 0.41 0.47 0.84
F1 = F3 = F, F2 = 1 0.41 0.47 1.55
F1 = F2 = 1, F3 = F 0.67 0.69 2.03
F1 = F3 = 1, F2 = F 0.67 0.69 1.35

6. F3 = F = 1 + λb2, F1 = F2 = 1. Here flux loss
due to toroidal magnetic field tames the amplitude of b for
large Ω, turning Eqs. (13)−(16) into the form p = (1 + λb2)1/2,
2D0 = (2 + λb2)(1 + λb2)1/2, a = 2D0b/(1 + λb2)1/2, and
tanφ ∼ (1 + λb2)1/2. Therefore, toroidal flux loss increases the
frequency according to the strength of b, which is determined
dynamically. Also, the phase φ between a and b increases, ap-
proaching π2 as D0 	 1, confirming that the preferential removal
of toroidal flux over poloidal flux increases the phase. In the limit
of D0 	 1, we find power-law scalings p ∼ Ω 2

3 , b ∼ Ω 2
3 , and

a ∼ Ω2.
7. F2 = F = 1 + λb2, F1 = F3 = 1. Flux loss due to poloidal

field determines the frequency, simplifying Eqs. (13)−(16) as
p = (1 + λb2)1/2, 2D0 = (2 + λb2)(1 + λb2)1/2, a = 2D0b/(1 +
λb2)(2 + λb2)1/2, tanφ = (1 + λb2)−1/2. In the limit of D0 	 1,
the scalings are found as p ∼ Ω2/3, b ∼ Ω2/3 and a ∼ Ω4/3,
tanφ ∼ Ω−2/3. Therefore, compared to Case 6 above, the differ-
ence is seen in the scalings of a and φ; that is, reduction in the
scaling of a and φ with Ω is observed, contrary to the case where
only saturation mechanism is flux loss due to toroidal magnetic
field.

To summarize, the effects of α-quenching F1 and flux losses
F2 and F3 are shown to be different; p is dynamically deter-
mined by b through flux loss F2 and F3, but with no influence
of α-quenching F1; that is, p = 1 with α-quenching, while p
increases with Ω due to flux loss. The effects of F2 and F3 are
almost similar, leading to the same scalings of p and b with Ω.
The phase φ is determined by the ratio of F2 and F3. In all cases,
b is always found to increase with Ω as b ∝ Ωβ where β takes
the value between 1/3 and 1. The largest β = 1 is found in the
case of α-quenching only, while smallest β = 0.4 in the pres-
ence of nonlinear terms of same magnitude. Thus, in this fourth-
order system, b keeps growing with Ω, without flattening for
large Ω. Numerical values of scaling exponents are summarized
in Table 1.

4. Nonlinear effect through mean differential
rotation

We now incorporate the nonlinear effect due to the modification
of differential rotation by magnetic fields and examine the role of
mean differential rotation in self-regulatory behaviour. Here, we
exclude the fluctuating differential rotation in order to identify
the effect of mean differential rotation. The effect of fluctuating
differential rotation is presented in Sect. 5. The main equations
are Eqs. (6)−(10) for w = 0, and ν0 = 35 is chosen for numerical
simulations.

1. F1 = F2 = F3 = 1. Even in the absence of α-quenching or
any flux loss, the back reaction of mean differential rotation w0

provides the saturation mechanism to ensure a finite-amplitude
solution, reducing Eqs. (6)−(10) to

p = ±1, (21)

b = D−1/2
0 ν1/20 (1 − D−1

0 )1/2, (22)

a = D1/2
0 ν

1/2
0

√
(2(1 − D−1

0 )), (23)

w0 = −1 +
1

D0
, (24)

tanφ = 1. (25)

Equation (21) immediately shows that the frequency of magnetic
field is independent of rotation rate, with no influence of w0. In
the limit of a high rotation rate, i.e. D0 	 1, Eqs. (22)−(25)
give us analytical scalings b ∼ Ω−1, a ∼ Ω and total shear
1 + w0 ∼ Ω−2 � 1 for Ω 	 1. The phase angle between
poloidal magnetic field a and b keeps its linear value of φ = π

4
(cf. Eq. (25)). We note that the dependence of the total shear on
rotation rate Ω−2 shows significant shear quenching. These re-
sults are confirmed by numerical simulations. Figure 4a shows
one single dominant frequency, p ∼ 1, that hardly changes with
rotation. A red broad band of weak intensity around the local-
ized frequency of maximum intensity increases its width initially
and then decreases for higher rotation. This behaviour arises be
cause shear quenching due to Lorentz force is too strong, leading
to significant quenching of magnetic field strength b for Ω 	 1.
This severe shear quenching is shown in Fig. 4d, where total
shear decreases rapidly and approaches zero for a higher rotation
rate (Ω ≥ 12). Numerically, scalings of |B|, |A| and total shear
1 + w0 for high rotation are found to be a ∼ Ω1.02, b ∼ Ω−0.98,
1+w0 ∼ Ω−2.0 ∼ D−1

0 , which are similar to analytically predicted
values, noted above.

2. F1 = F = 1 + λb2, F2 = F3 = 1. In the presence of
α-quenching alone with no flux loss, Eqs. (6) to (10) become

p = ±1, (26)

F2 +
D0b2

ν0
= D0F, (27)

a =

√
2D0b
F
, (28)

w0 = −D0b2

Fν0
, (29)

tanφ = 1. (30)

Again, the frequency p is independent of rotation rate.
Analytical scalings are obtained from Eqs. (26)−(30) for the
limit of the high rotation rate. In the limit of the high rotation
rate, D0 	 1, we obtain b ∼ Ω−1, a ∼ Ω, and (1 + w0) ∼ Ω−2.
The total shear 1+w0 ∼ Ω−2 � 1 for largeΩ implies that Lorentz
force generates strong mean differential rotation w0 < 0, causing
the significant reduction in the magnetic field.

3. F2 = F3 = F = 1 + λb2, F1 = 1. Equations (6) to (10)
give us

p = ±F, (31)

F4 +
D0b2

ν0
= D0F2, (32)

a =

√
2D0b

F3/2
, (33)

w0 = −D0b2

F2ν0
, (34)

tanφ = 1. (35)
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(a) p as a function of rotation rate. (b) |A as a function of Ω

(c) |B| a function of Ω (d) Total shear as a function of rotation rate.
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Fig. 4. Frequency of maximum intensity p, poloidal magnetic field |A|, toroidal magnetic field |B| and total shear as a function of rotation rate Ω
for F1 = F2 = F3 = 1 for Case 1 in the fifth-order system.

Thus, p changes as b changes with Ω (cf. Eq. (31)) due to non-
linear flux losses F2 and F3. In the limit of the high rotation rate,
D0 	 1, we find b ∼ Ω−1 � 1, 1 + λb2 ∼ 1, a ∼ Ω, and
1 + w0 ∼ Ω−2. The decline in toroidal magnetic field with Ω is
again due to the severe shear quenching present in the system.
On the other hand, the phase shift between a and b remains as
π
4 owing to equal amount of the toroidal and poloidal magnetic
fluxes.

4. F1 = F2 = F3 = F = 1 + λb2. Equations (6)−(10) are
simplified as

p = ±F, (36)

F6 +
D0b2

ν0
= D0F3, (37)

a =

√
2D0b
F3/2

, (38)

w0 = −D0b2

F2ν0
, (39)

tanφ = 1. (40)

In this case we numerically find that the presence of F1, F2,
and F3 leads to interesting dynamics for large Ω. For instance,
the system bifurcates at Ω = 19.7 with a sudden change in p,
|B|, |A|, and total shear (cf. Figs. 5a−5d). This result suggests a
possibly dramatic change in the dynamo owing to a strong mean
shear. Its physical relevance in the evolution of solar spin-down
will be addressed in future work.

5. F1 = F2 = F = 1 + λb2, F3 = 1. The presence of
α-quenching and nonlinear poloidal flux loss reduces
Eqs. (6)−(10) to

p = ±√F, (41)

b2 = 2−1D−1
0 F6(1 + F−1)(F1/2 − 1 − F−1), (42)

a =
2D0b

F2
√

F + 1
, (43)

w0 =
−pa2F
2ν0D0

, (44)

tanφ = F−1/2. (45)

We note that p is influenced by b as p ∼ b (cf. Eq. (41)). Again,
analytical scalings are obtained within the limit of a very high
rotation rate, i.e., D0 	 1 as p ∼ Ω2/5, b ∼ Ω2/5, a ∼ Ω4/5,
and (1 + w0) ∼ Ω−2, whereas the phase shift between a and b
decreases as rotation rate increases. The analytical scalings for p,
|B|, and |A| are the same as for those obtained in the fourth-order
system in the case of α-quenching and flux loss. Numerically
found scalings are very similar to these analytical results.

Somewhat similar results are found for different cases, as
briefly summarized as follows. For F1 = F3 = F, F2 = 1, and
F3 = F, F1 = F2 = 1, we find that frequency p and phase shift
are influenced by b. For F2 = F, F1 = F3 = 1, p and phase
shift are the same as in Case 5. All the numerical results for high
rotation, Ω ≥ 5 are listed in Table 2.
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(a) p as a function of rotation rate. (b) |A| as a function of Ω

(c) |B| a function of Ω (d) Total shear as a function of rotation rate.
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Fig. 5. Frequency of maximum intensity p, poloidal magnetic field |A|, toroidal magnetic field |B| and total shear as a function of rotation rate Ω
for F1 = F2 = F3 = F for Case 4 in the fifth-order system.

Table 2. Scaling exponents for p, |B|, |A|, and 1 + w0 for Ω ≥ 5 in the
cases of the fifth-order system where p = Ωξ, |B| = Ωβ, |A| = Ωγ, and
1 + w0 = Ω

δ.

Transport coefficients ξ β γ δ

F1 = F2 = F3 = 1 0 −0.98 1.02 −2.0
F1 = F, F2 = F3 = 1 0 −1.39 1.42 −3.46
F1 = 1, F2 = F3 = F −0.99 −1.56 1.30 −4.30
F1 = F2 = F3 = F varies varies varies varies
F1 = F2 = F, F3 = 1 0.39 0.45 0.93 −0.16
F1 = F3 = F, F2 = 1 −0.43 −1.45 1.66 −4.40
F1 = F2 = 1, F3 = F −0.30 −1.02 1.20 −2.76
F1 = F3 = 1, F2 = F −0.57 −1.62 1.30 −3.21

We now compare these results with those obtained in the
fourth-order system. The similarity is found in the frequency
behaviour of p that is controlled by the flux loss through F2
and F3, without being influenced by α-quenching and also in
phase shift, which is determined by ratio of F2 and F3. Also,
it is noticed that p does not change its value with rotation rate
for F1 = F2 = F3 = 1 and F1 = F, F2 = F3 = 1, bear-
ing a resemblance to Case 1 in Sect. 3. The similar role of F2
and F3 in the fourth-order system is, however, broken owing
to mean differential rotation. The agreement between analytical
scalings and numerical scalings becomes less accurate than the
fourth-order system, with only two cases of a close match (e.g.,
F1 = F2 = F3 = 1 and F1 = F2 = F, F1 = 1). Both b and a are

found to be decreased with Ω after an initial increase in all cases
except F1 = F2 = F, F3 = 1, which is very similar to the numer-
ical results found for F1 = F2 = F, F3 = 1 in Sect. (3). But in
certain cases where the combined action of F1 = F2 = F3 = F
is considered, A/Ω grows faster than |B| for higher Ω.

In summary, the mean differential rotation generated by
the Lorentz force severely inhibits the dynamo with significant
quenching of magnetic fields for large Ω. That is, without fluc-
tuating differential rotation, quenching in mean differential rota-
tion tends to become severe, possibly shutting down the dynamo
for large Ω. This thus suggests that self regulation of differen-
tial rotation through fluctuating differential rotation is needed to
prevent it. This will be shown in the next section.

5. Nonlinear effect through fluctuating differential
rotation

The goal of this section is to understand the effect of fluctuat-
ing differential rotation by assuming w0 = 0 in Eqs. (6)−(10).
Since, analytical solutions are not particularly illuminating,
Eqs. (6)−(10) are solved numerically to examine how the scal-
ings of a, b, and p change with Ω in different cases. We choose
ν = 0.5 for these simulations to highlight the effect of nonlinear
terms in taming the chaotic property of the system.

I. F1 = F2 = F3 = 1: this is the case where dynamo satu-
rates solely due to the back reaction of fluctuating differential ro-
tation with no nonlinear feedback through transport coefficients.
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(a) p as a function of rotation rate. (b) |A| as a function of Ω

(c) |B| a function of Ω (d) Total shear as a function of rotation rate.
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Fig. 6. Frequency of maximum intensity p, poloidal magnetic field |A|, toroidal magnetic field |B| and total shear as a function of rotation rate Ω
for F1 = F2 = F, F3 = 1 for Case 5 in the fifth-order system.

Figure 7a shows the frequency spectra for different values of Ω.
We can see a broad band of frequency p of a magnetic field of
high intensity, which increases very rapidly with Ω. This broad
band is a manifestation of the presence of many different fre-
quencies in the system as a result of chaotic dynamics. A lo-
calized band of lower frequencies is also noticeable, which in-
creases with Ω. The b and a plotted in Figs. 7b and 7c both show
their rapid increase with Ω with small fluctuations appearing for
large Ω. Strong chaos in the system is caused by fluctuating dif-
ferential rotation (cf. Figs. 7a to 7c).

II. The presence of α-quenching or either flux loss tames the
chaos, leading to a finite amplitude solution with a localized fre-
quency. For different values of F1, F2, and F3, the scaling results
of dynamical variables for large Ω are summarized in Table 3.
The scalings p, |B|, and |A| are highly variable withΩ, especially
for small Ω. We thus study these as a function of Ω by com-
puting local scalings and plot them in Figs. 8a−8c. For different
combinations of F1, F2, and F3, we plot results using different
colours/linestyles in Figs. 8a−8c. We denote the local scaling ex-
ponents of p, |B|, and |A| as ξ1, β1, and γ1, respectively. Clearly,
the change in local scalings of p, |B|, and |A| become less variable
for high-rotationΩ ≥ 5 (cf. Figs. 8a−8c). It is also interesting to
see that the scalings of p are more robust because they vary less
than those in |B| and |A|.

We first examine the effect of the inclusion of flux losses in
the presence of nonlinear α-effect. In the case of α-quenching
only (i.e., for F1 = F, F2 = F3 = 1), |B| grows rapidly with Ω,

Table 3. Scaling exponents for p, |B|, and |A| for Ω ≥ 5 in the cases of
the sixth-order system where p = Ωξ, |B| = Ωβ, and |A| = Ωγ.

Transport coefficients ξ β γ

F1 = F, F2 = F3 = 1 0.63 0.73 0.71
F1 = F2 = F, F3 = 1 0.57 0.50 0.78
F1 = F2 = F3 = F 0.78 0.40 1.01
F1 = F3 = F, F2 = 1 0.81 0.36 0.95
F1 = 1, F2 = F3 = F 1.20 0.52 1.39
F1 = F2 = 1, F3 = F 1.20 0.44 1.24
F1 = F3 = 1, F2 = F − − −

whereas p and |A| increase very slowly withΩ (see Figs. 8a−8c).
When nonlinear toroidal flux loss is added to this case (i.e., for
F1 = F3 = F, F2 = 1), β1 (local scaling of magnetic field
strength |B|) is decreased by approximately half, while ξ1 (lo-
cal scaling of frequency p of magnetic field) and γ1 (local scal-
ing of poloidal magnetic field strength |A|) become larger. The
inclusion of nonlinear poloidal flux loss to this case (i.e., for
F1 = F2 = F3 = F) increases the β1 ∼ β by 10% with a power-
law scaling of β = 0.40 (cf. Table 3) in comparison with the
value of β1 ∼ β = 0.36 in the case F1 = F3 = F, F2 = 1. We
note that the reduction in the value of ξ1 ∼ ξ is 4% and γ1 ∼ γ is
6%. Thus, results suggest that including nonlinear poloidal flux
loss in the presence of nonlinear α and toroidal flux loss reduces
the scaling of p with Ω, while increases the scaling of |B|. This
demonstrates that poloidal flux loss does not contribute much to
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(a) p as a function of Ω (b) |A| as a function of Ω (c) |B| as a function of Ω
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Fig. 7. Frequency of maximum intensity p, poloidal magnetic field |A| and toroidal magnetic field |B| as a function of rotation rate Ω for F1 = F2 =
F3 = 1 for Case 1 in the sixth-order system.

the regulation of the growth of toroidal magnetic field strength
with Ω.

Second, we focus on the effect of flux losses when F1 = 1.
The equal amount of F2 and F3 increases the scaling of p,
|B|, and |A| to a value ξ1 ∼ ξ = 1.20, β1 ∼ β = 0.52, and
γ1 ∼ γ = 1.39, respectively. In comparison, toroidal flux loss
(i.e., for F3 = F, F2 = F1 = 1) does not change the scaling
exponent of p, but it is noticed to reduce the scaling of |B| and
|A| with scaling exponents β1 ∼ β = 0.44 and γ1 ∼ γ = 1.24
in comparison with both flux losses case. Figure 8a shows local
scaling of p as a function of Ω for F2 = F3 = F and F3 = F.
For F1 = F3 = 1, F2 = F, p, |b| and |a| show fluctuation for
a higher rotation rate, as can be seen from Figs. 8a−8c, where
local scalings of p, |B|, and |A| are highly variable as Ω changes,
indicating that poloidal flux loss is not efficient in reducing the
effect of fluctuating differential rotation. Therefore, these results
suggest that nonlinear toroidal magnetic flux loss is more impor-
tant than poloidal flux loss in taming the dynamo.

In summary, the study of all cases of the sixth-order sys-
tem demonstrates that the presence of fluctuating differential ro-
tation leads to magnetic field |B|, which keeps increasing with
Ω for high rotation with the scaling in the range [0.36, 0.73]
(cf. Table 3). However, this increase in magnetic field is less
rapid compared to the case of the fourth-order system with no
fluctuating and no mean differential rotation. For instance, in the
fourth-order system, the scaling of magnetic field |B| with Ω are
[0.41, 1.0] (cf. Table 1). Toroidal flux loss is more important in
reducing β1 as a nonlinear term than poloidal flux loss. These
results show that in the sixth-order system various saturation
mechanisms, especially, α-quenching and toroidal flux loss, are
able to slow down the growth of magnetic field with Ω to some
degree, but not strongly enough to flatten the magnetic field for
large Ω. Compared to the results in the fourth-order system, the
opposite effects of mean differential rotation and fluctuating dif-
ferential rotation shown in Sects. 4 and 5, respectively, suggest
that the combined effect of both mean and fluctuating differen-
tial rotation is beneficial for the self-regulatory behaviour of dy-
namo. These opposite effects of mean and fluctuating differential
rotation also make the effects of toroidal and poloidal flux loss
equally important in the seventh-order system, as discussed in
Sect. 6.

6. Implications and key observations

Ever more improved observational data of the evolution of mag-
netic fields and rotations of various stars of different age and

spectral types with different rotation rates have been revealing
valuable information about the relation among rotation, differen-
tial rotation, and magnetic activity. First, the cycle period Pcyc of
magnetic fields of the solar type stars is shown to depend upon
the stellar rotation period Prot as Pcyc ∝ Pβrot, with scaling ex-
ponent β = 1.25 ± 0.5 (Noyes et al. 1984); e.g., β = 0.8 for
the active branch and β = 1.15 for the inactive branch (Saar
& Brandenburg 1999; Charbonneau & Saar 2001; Saar 2002).
Second, the magnetic activity (a measure of the strength of mag-
netic fields) has been observed to increase with stellar rotation
but tends to saturate for high rotation (with Prot < 3 day). Third,
the differential rotation ΔΩ is observed to increase with the stel-
lar rotation rate Ω, while the relative difference ΔΩ/Ω decreases
with Ω. The precise dependence of differential rotation on ro-
tation is quite uncertain since ΔΩ ∝ Ωn where 0 < n < 1
(Fröhlich et al. 2009; Hotta & Yokoyama 2011; Donahue et al.
1996; Reiners & Schmitt 2003; Barnes et al. 2005). Furthermore,
the time variation of differential rotation has been reported in re-
cent work (e.g., Fröhlich et al. 2012; Hotta & Yokoyama 2011).

Therefore, a main challenge in dynamo theory is to explain
these observations. For instance, the almost linear relation be-
tween the frequency of magnetic fields and stellar rotation could
be explained within the framework of linear dynamo theory, for
instance, by the linear dispersion relation in α − Ω dynamo.
However, observed magnetic fields are manifestations of nonlin-
ear saturation, making the understanding of how stellar magnetic
fields apparently manage to almost maintain a linear dependence
of their frequency on rotation rate as one of the fundamental
questions in any dynamo theory.

Our results from Sects. 3−5 above show that none of the
cases considered are consistent with all these observations.
Towards understanding these observations, Sood & Kim (2013)
have numerically studied the seventh-order system, given by
Eqs. (1)−(4), and performed a thorough parameter study on the
choice of nonlinear quenching effects of F1, F2, and F3 by us-
ing ν = 1 and ν0 = 35. From their investigation, they pro-
posed a minimal model that can reproduce the observed rela-
tion between magnetic frequency and rotation rate. In particular,
they highlight the importance of the regulatory behaviour of dy-
namo through a nonlinear balance between the generation and
destruction of the magnetic fields. They also demonstrate the
importance of both mean and fluctuating differential rotations
in achieving dynamical balance among magnetic fields. We now
show how, through the balance among different nonlinear effects
of transport coefficients and mean and fluctuating differential
rotations, this regulatory behaviour arises in the seventh-order
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Fig. 8. Local scalings ξ1 for p, γ1 for |A|, and β1 for |B| are plotted as functions of rotation rate for different combinations of F1, F2, and F3, where
for different combinations, different colours/linestyles are assigned as: for F1 = F2 = F3 = F black/solid line, F1 = F2 = F, F3 = 1 green/dot,
F1 = F3 = F, F2 = 1 gold/dash, F1 = 1, F2 = F, F3 = F pink/dash dot, F1 = F, F2 = F3 = 1 turquoise/dash dot dot, F1 = F2 = 1, F3 = F red/long
dash, F1 = F3 = 1, F2 = F turquoise/“+”.

system when F1 ∼ F2 ∼ F3. To demonstrate how the results in
Sects. 4−6 are altered in this seventh-order system, we use the
same parameter values ν = 0.5 and ν0 = 35 used in Sects. 4−6.

The behaviour of frequency of magnetic field and magnetic
field strength with rotation rate in this seventh-order system is
shown in Figs. 9a−9b. Figure 9a shows an almost linear increase
in the frequency p of maximum intensity (depicted in yellow)
with rotation rate. A red band of the localized frequency of max-
imum intensity around p is found to gradually increase its width
with rotation rate. The power-law dependence of p onΩ is found
to be p ∼ Ω0.82 for a higher rotation rate and agrees with obser-
vations. The flattening of magnetic field strength |B| for a higher
rotation rate can be seen in Fig. 9b, which is also consistent with
observations.

To investigate the balance, in Figs. 10a−10b, we plot the
magnitude of various nonlinear terms appearing in Eqs. (1), (2)
for D0 = 2, which are |2DB|, |F2A|, |i(1 + w0|)A, |F3B|, and
| 12 iA∗w|. Figure 10a shows that there is a balance between the

α-quenching term |2DB| and poloidal flux loss term |F2A|, de-
picted in black and red, respectively. This thus indicates that
the dissipation and the generation of magnetic field are al-
most balanced in Eq. (1). Figure 10b shows that the genera-
tion of poloidal field due to shear |w0A| (illustrated in black)
is in balance with toroidal flux loss |F3B| (represented in red).
Fluctuating differential rotation | 12 iA∗w| depicted in blue is less
dominant in this case. Thus, the two main nonlinear terms in
Eq. (2) are of similar magnitude.We compare the nonlinear terms
in Eqs. (1) and (2) for all other cases in seventh-order systems
and confirm that the dynamical balance is best achieved for this
seventh-order system with F1 = F2 = F3.

7. Conclusions

We studied nonlinear dynamical model analytically and numer-
ically to elucidate the effects of nonlinear terms in the reg-
ulation of a dynamo. In the fourth-order system, flux losses
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(a) p as a function of rotation rate Ω. (b) Magnetic field strength |B| as a function of rotation rate Ω.

Fig. 9. Frequency p of magnetic field and toroidal magnetic field |B| are plotted as a function of rotation rate Ω for F1 = F2 = F3 = F in case of
the seventh-order system for ν = 0.5 and ν0 = 35.0.

(a) Dynamical balance between nonlinear terms on R.H.S. of Eq. (1). (b) Dynamical balance between nonlinear terms on R.H.S. of Eq. (2).

Fig. 10. Time series of different nonlinear terms for F1 = F2 = F3 = F in case of the seventh-order system for ν = 0.5 and ν0 = 35.0.

determine the frequency p of magnetic field, without any influ-
ence of α-quenching; that is, α-quenching does not affect the
frequency p. The effect of flux losses due to poloidal magnetic
field and toroidal magnetic field is the same on p and |B| irre-
spective of the presence or absence of α-quenching. Phase φ
is determined by the ratio of F2 and F3. We observed the in-
crease in p and |B| with Ω in all cases, with power-law scalings
ξ ∼ [0, 1.0] and β ∼ [0.4, 1.0], respectively. We find good agree-
ment between analytical and numerical results in this system.

The presence of shear due to mean differential rotation, that
is, in the fifth-order system, frequency p keeps a constant value
p = 1 for different rotations when the α-effect is quenched or
when there are no transport coefficients present in the system.
That is, again the frequency p is determined by both flux losses
and phase is determined by the ratio of F2 and F3, which is sim-
ilar to the fourth-order system. But the effects of F2 and F3, with
or without α-quenching, are no longer the same on p and |B| in
contrast to the fourth-order system. We find growth of p and |B|
in the presence of an equal combination of α-effect and poloidal
flux loss (i.e., F1 = F2 = F, F3 = 1). The quenching of magnetic
field |B| and p is more significant when the nonlinearα-effect and
toroidal flux loss are taken together (i.e., F1 = F3 = F, F2 = 1).
The decreasing behaviour of p and |B| in almost all cases is due
to severe shear quenching, which is responsible for the shutting
down of dynamo action.

In the sixth-order system, we present local scalings with ro-
tation rate to demonstrate the effect of nonlinear terms. Here,
unlike the fourth- and the fifth-order systems, α-quenching (i.e.,
F1) influences p, while p and |B| behave differently when the ef-
fect of either flux loss is considered in the presence or absence
of α-quenching. Interestingly, in this case, p and |B| always in-
crease with Ω despite the feedback from fluctuating differential
rotation. Toroidal flux loss is shown to be more important than
poloidal flux loss. The results observed for the fifth-order and the
sixth-order systems thus identify the pivotal role of the combined
effect of both mean and fluctuating differential rotation in the self
regulation of a dynamo to work near marginal stability. We also
note that the self regulation between generation and dissipation
of magnetic fields is a prerequisite for working of the dynamo.
In all cases, the scaling of p is less sensitive to the change inΩ or
to the different combinations of nonlinear transport coefficients.

Finally, we presented how this self-regulatory behaviour
comes about in the seventh-order system in the presence of
an equal combination of α-quenching, poloidal flux loss, and
toroidal flux loss (Sood & Kim 2013), where α-quenching,
toroidal flux loss and poloidal flux loss are equally important.
While our work is based on the α − Ω dynamo model, simi-
lar regulation of the generation and the dissipation of magnetic
fields not only between nonlinear transport coefficients but also
between mean and fluctuating differential rotation is likely to
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persist in other models. The extension of this work to other mod-
els will be addressed in a future paper.

It will also be of great interest to utilize our model to under-
stand the spin down of solar type stars (Leprovost & Kim 2010;
Kepens et al. 1995) by using a magnetic field that is consistently
obtained from a dynamo model (work in progress).
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