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Abstract

Homeostasis is known to be absolutely critical to the sustainability of living organisms. At the

heart of homeostasis are various feedback loops, which can control and regulate a system to stay

in a most favourable stable state upon the influence of various disturbance. While variability has

emerged as a key factor in sustainability, too much variability could however be detrimental. It is

thus absolutely crucial to understand the e↵ect of fluctuation in di↵erent feedback loops. Despite

a great advancement in modelling technique, this issue is far from being understood completely as

too a complicated model often prevents us from disentangling many di↵erent processes.

Here, we propose a novel model to gain a key insight into the e↵ect of variability in feedback

on self-sustained oscillation. Specifically, by taking into account variation in model parameters

for self-excitation and nonlinear damping, corresponding to positive and negative feedback,

respectively, we show how fluctuation in positive or negative feedback weakens the e�ciency

of feedback and a↵ects self-sustained oscillations, possibly leading to a complete breakdown of

self-regulation. While results are generic and could be applied to di↵erent self-regulating systems

(e.g. self-regulation of neuron activity, normal cell growth, etc), we present a specific application

to heart dynamics. In particular, we show that fluctuation in positive feedback can lead to

slow heart by either amplitude death or oscillation death pathway while fluctuation in negative

feedback can lead to fast heart beat.

⇤ Corresponding author: e.kim@shef.ac.uk
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I. INTRODUCTION

Homeostasis is known to be absolutely critical to the sustainability of living organisms

(e.g. [1]). Simply put, it means ‘not too much, not too little, but just right.’ More technically,

it represents the ability of a system, which can control and regulate itself to stay in a most

favourable stable state upon the influence of various disturbance. This is entailed by the

presence of two (or more) opposing and complementary forces (or requirements) in a system

and by the adjustment of these forces when perturbed to restore a subtle balance through

di↵erent positive or negative feedback loops. Self-regulation breaks down when a system

is no longer under the control of such feedback mechanism, e.g., when one of the forces is

overpowered by the other. For instance, normal cells have the ability of self-regulating their

growth by maintaining the balance between growth and death, and its breakdown can lead to

the overgrowth of cells and consequently tumour cells. Tumour cells can thus result not only

from the loss of the ability of inhibiting growth (e.g. the loss of tumour suppressor genes) but

also from the activation of uncontrolled growth factor (e.g. the activation of oncogenes) [2].

Another interesting example is self-regulation of neural activity where the balance between

excitatory and inhibitory neurons is crucial for the maintenance of normal function of neuron.

Either over-excitation of excitatory neuron or under-activation of inhibitory neuron can lead

to abnormal brain activity such as eclipse [3]. One more, but not the last, example would

be normal function of heart and heart rhythm as a result of self-regulation, and this will be

of our main focus regarding application of our results in this paper. With myriad of similar

examples found in living organisms, self-regulation – a fundamental feature of homeostasis

– is also at the heart of the emergence and maintenance of self-organised structures in

many other complex systems, including large-scale flows, magnetic fields, and vortices in

astrophysical and laboratory fluids, environments, and chemical reactions (e.g. see [4–8]).

Our work is motivated to understand how homeostasis is a↵ected when one of feedback

loops becomes less e↵ective due to fluctuation. While this can be caused by the intrinsic

problem with chemical, biological, or physiological process itself (e.g. ion channels, gene

expression, tissue damage, etc), it also seems to be an inevitable consequence of a system

involving multi-scale processes where fluctuation arises not only from the inhomogeneity and

heterogeneity in the system but also from the environmental influence. In view of emerging

evidence of variability and fluctuation and their relevance in many systems [5–13], it is timely
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to undertake a systematic investigation of this issue and quantify the e↵ect of fluctuations

in di↵erent feedback loops in a self-sustained oscillator.

To this end, we revisit the Van der Pol oscillator and study the e↵ect of fluctuations in the

model parameters for positive and negative feedback due to self-amplification and nonlinear

damping, respectively. We introduce our model in Section II. Section III reports on the

e↵ect of modulation in self-amplification. Section IV presents the results on the modulation

in nonlinear damping and the loss (i.e. degradation) of self-regulation. Section V discusses

implications for heart dynamics. Conclusion and discussion are provided in Section VI.

Appendices include linear stability analysis and application to heart dynamics. We note

that Sections III and IV contain rather detailed mathematical analysis, and readers who are

mainly interested in applications are welcome to go to Section V after skimming through

Section II.

II. MODEL

The Van der Pol oscillator is a prototypical mathematical model for self-sustained oscil-

lations. Since originally proposed by Van der Pol to understand oscillations in nonlinear

electric circuits, it has been developed further to investigate human heart and the stability

of heart dynamics [14–24] and extended to di↵erent disciplines (e.g. biology, fluids, envi-

ronments, engineering) [25]. This model is described by the following ordinary di↵erential

equation (ODE):
d

2
x

dt

2
+ (�↵ + �x

2)
dx

dt

+ !

2
0x = 0. (1)

Here, ↵ and � are control parameters which represent the e�ciency of amplification and

nonlinear damping, respectively; !0 is the natural frequency at which a system in the absence

of the amplification and damping (e.g. when ↵ = � = 0) oscillates. The term �↵

dx

dt

with

↵ > 0 leads to exponential growth of a linear solution while the term �x

2 dx
dt

with � > 0 due

to nonlinear damping limits the growth to a finite value [35]. Therefore, in regards to self-

regulation mentioned previously, ↵ and � represent the e�ciency of positive and negative

feedback, respectively. When a system is well self-regulated, self-amplification and nonlinear

damping act together in balance, and lead to self-sustained relaxation oscillation as a limit

cycle. This is modelled by using constant positive values for ↵ and �. However, when

there is some dysfunction in either positive or negative feedback loop (see §IV for further
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discussion), its e�ciency is reduced, causing a mismatch between the two such as time delay

in balance. We model this ine�ciency in either feedback by including a time-varying part

in ↵ or �, respectively. As noted in Section I, in continuous systems, Eq. (1) is a mean-field

equation for the time-evolution of large-scale observables while control parameters capture

the overall e↵ect of unresolved small-scale dynamics.

To gain a key insight into the e↵ect of fluctuations in ↵ and �, we, for simplicity, take ↵

and � to consist of constant and periodic modulation parts as follows:

↵ = µ1 + ✏1 sin (!1t), (2)

� = µ2 + ✏2 sin (!1t). (3)

Here, µ1 and µ2 are constant parts; ✏1 and ✏2 are the amplitude of the modulation while

!1 is the angular frequency of the modulation [36]. By using the unit where the natural

frequency !0 = 1 (see later), and by varying values of µ1, µ2, ✏1, ✏2, and !1, we investigate

how fluctuation in ↵ and � a↵ects the bahaviour of self-sustained oscillation. As our main

purpose is to gain a key insight into implications for homeostasis (heart dynamics), we focus

on qualitative behaviour of bifurcations upon the change of parameters, leaving a more

detailed study on bifurcation sequence for future work. We explore the possibility of the

breakdown of self-regulation and highlight a crucial role of e�cient feedback in sustainability.

We should note that for nonlinear oscillators, the e↵ect of fluctuations has been studied

previously by many authors where fluctuations appear as multiplicative or additive noise.

In particular, much attention has been paid to the case when natural frequency !0 contains

a random part, with a strong interest in parametric instability or stochastic resonance. In

contrast, the e↵ect of fluctuation on parameters ↵ and � has been studied much less (e.g. see

[26]), which will be the focus of this paper. Also, in the case of the Van der Pol oscillator, the

periodic additive forcing has been shown to lead to devil’s staircase with chaos sandwiched

between two nearby period doublings (e.g. see [27]). In the following, we show that similar

devil’s staircase also results from multiplicative noise.

III. FLUCTUATION IN POSITIVE FEEDBACK: ↵ = µ1 + ✏1 sin(!1t), � = 1

To understand the e↵ect of periodic modulation in ↵, it is useful first to examine its e↵ect

on linear oscillation in the absence of nonlinear damping term (i.e. � = 0) in Eq. (1). As
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detailed in Appendix A, fluctuation in ↵ can help a linear solution grow exponentially [37].

In the case of a purely periodic ↵ = ✏1 sin!1t, the onset of linear instability occurs when the

amplitude of ✏1 is su�ciently large. The critical value of ✏1 for the onset of linear instability

depends on !1, µ1 and the frequency p of excited mode. In general, a larger critical ✏1

is needed as µ1 and !1 increase. This is shown in Appendix A where a linear dispersion

relation is derived by keeping the interaction of the two adjacent modes, which are coupled

through the periodic modulation. Resonant interaction excites the following two types of

modes of p
A

= !1/2 and p

B

=
q

!

2
1
4 + !

2
0 +

!1
2 : the mode of p

A

has a smaller threshold ✏1 for

large !1 (> 2!0/
p

3), and is thus more easily excited for large !1; the mode of p
B

is more

easily excited for small !1 < 2!0/
p

3 (see Fig. 13). Note that while this analysis is strictly

valid only for su�ciently small ✏1 (e.g. ✏1/2 < !0, µ1), these are helpful in understanding

non-monotonic response of our system to periodic modulation as shall be shown shortly. For

the purpose of elucidating the e↵ect of the modulation in ↵, we keep � = 1 in the following

subsections.

A. Periodic self-amplification: ↵ = ✏1 sin(!1t) and � = 1

In the presence of nonlinear damping term (� 6= 0), an exponentially growing solution

saturates to finite amplitude, its solution forming a limit cycle for regular periodic oscillation,

or strange (chaotic) attractor for irregular oscillation. To elucidate the e↵ect of fluctuating

↵ on nonlinear solution, we start with the case µ1 = 0 where ↵ = ✏1 sin(!1t) is periodic

and examine if this periodic modulation alone can excite finite amplitude solution. To this

end, we compute solution to Eq. (1) numerically by keeping � = 1, for simplicity, and by

varying ✏1 and !1. With no loss of generality, we are using the unit where !0 = 1. After

obtaining a long time trace of x and v, we compute phase-portrait and power-spectrum by

taking Fourier transform of time trace after removing initial transients.

1. !1 = 2!0

As noted in Appendix A, when !1 = 2!0 = 2, a linear mode with frequency p

A

= !1/2

grows exponentially for all values of ✏1. Although the onset of linear instability is not

necessarily the same as the onset of finite amplitude non-linear solution, in our case, we
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check by solving Eq. (1) for di↵erent values of ✏1 that finite amplitude nonlinear solution also

exists for all values of ✏1. Specifically, a periodic limit cycle with frequency !1/2 = 1 = !0

is found up to ✏1 ⇠ 2.5, which then gradually becomes more irregular with the development

of sub-harmonics and then a chaotic attractor, interspersed by a periodic limit cycle via

frequency locking for larger value of ✏1. Note that a similar behaviour was found for the Van

der Pol oscillator [27] driven by an additive periodic forcing [38].

As an illustration, phase-portraits and frequency spectra are shown for ✏1 = 1, 3, 3.6,

4.2, 5, and 6 in Fig. 1. Frequency spectrum with sharp peaks for ✏1 = 1, 3.6, 4.2, 5 and

6 represents a limit cycle for a periodic oscillation, as can also be seen from a closed orbit

in corresponding phase portrait. The smallest frequency of peaks in frequency spectrum

is the angular frequency related to the mean period, which will be discussed shortly (e.g.

Fig. 2). In comparison, continuous frequency spectrum and compact phase portrait for

✏1 = 3 indicate irregular, chaotic oscillation. From the location of the peak at the smallest

frequency and the shape of the frequency spectrum in Fig. 1, we can identify bifurcations

such as the transition to chaos, frequency locking, sudden change in period (e.g. period

doubling) as ✏1 increases. For instance, the leftward movement of the peak at the smallest

frequency as ✏1 = 5 increases to ✏1 = 6 indicates the increase in period.

As mean period and variance are often used clinically (see also Appendix C) as diag-

nostics, we opt to utilise them to understand our results systematically. To this end, from

the time trace of x, we determine the position of local maxima (peaks) of x where x takes

its local maximum and compute the distance between two adjacent peaks (i.e. peak-peak

distance) which is the time between two adjacent peaks. From this, we compute mean pe-

riod and variance as a measure of mean peak-peak distance and its variation. Note that

mean period is inversely related to mean frequency although a strict inverse relation does

not hold as hT i = h1/fi 6= 1/hfi where T and f are period and frequency, respectively

while the angular brackets hi denote mean value. On the other hand, variance is linked to

irregularity/complexity of oscillation, a small variance suggesting a regular periodic oscil-

lation while a large variance suggesting an irregular, chaotic oscillation. We also measure

maximum value and root-mean-square (rms) value of x.

Results are shown in Fig. 2(a) where mean period, variance, and maximum and rms

value of x are plotted against ✏1 in blue, red, green and black. From Fig. 2(a), non-zero

solution is seen to exist for all ✏1 6= 0, as noted previously. The period of the solution
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FIG. 1: Frequency spectrum of v against !1 and phase portrait in x-v plane for µ1 = 0,

!1 = 2, and � = 1.

(shown in blue) keeps its constant value 2⇡/!0 = 2⇡ up to ✏1 < 2.6 then becomes almost

double between ✏1 = 3.6 and 4.2 where half frequency–mode !1/4 = !0/2 (period doubling)

appears. Regular periodic oscillation for ✏1 < 2.6 is indicated by a very small variance

(plotted in red). The transition between two periodic limit cycles occurs through large
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FIG. 2: Mean period (in blue), variance (in red), maximum (in green) and rms values (in

black) of x against ✏1 when µ1 = 0 and � = 1.

variance, indicating the involvement of irregular oscillation such as chaos (e.g. as also

shown in Fig. 1(b)), quasi-periodicity, etc. For ✏1 > 4.2, oscillation tends to become yet

more complex with larger variance together with increasing mean period although there

appears a small region of regular oscillation with period three (through frequency locking

at frequency !1/3 = 2!0/3 and !1/6 = !0/3 at ✏1 = 5 and ✏1 = 6, respectively [39]). See

Fig. 1 for the corresponding frequency spectra and phase portraits. In comparison with

mean period and variance, maximum (in green) and rms value of x (in black) exhibit much

simpler, almost linear dependence on !1. Similar behaviour will also be seen later in the

presence of non-zero µ1 (see Fig. 4).

2. !1 = !0

Unlike the case of !1 = 2, a linear solution for the modulation frequency !1 = 1 requires

a finite value of ✏1 �

p

3 to grow exponentially. We first check that the onset of finite

amplitude nonlinear solution requires the same critical value ✏1 =
p

3. This is seen in Fig.

2(b) where damped solution for ✏1 <
p

3 is indicated by zero values of mean period, variance,
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FIG. 3: Mean period (in blue), variance (in red), maximum (in green) and rms values (in

black) of x against !1 when µ1 = 1 and � = 1; (a)-(b): ✏1 = 1; (c)-(d) ✏1 = 5.

and maximum and variance of x. At the onset of finite amplitude solution at ✏1 =
p

3,

nonlinear oscillation is periodic with frequency !1/2 = 0.5 with negligible variance. The

oscillator maintains this frequency for a long interval ✏1 up to ✏1 ⇠ 4.8 and becomes chaotic

for a short interval 4.8  ✏1  5.2 before becoming periodic via frequency locking at !1/3

(period three) when !1 ⇠ 5.4. A noticeably large variance (shown as a big red spike) in

the transition region is a symptomatic of chaos. In comparison, maximum (in green) and

rms value of x (in black) again exhibit much simpler, almost monotonic increase with !1, as

observed previously in Fig. 2(a).

B. ↵ = 1 + ✏1 sin(!1t) and � = 1

A positive constant ↵ = µ1 > 0 in Eq. (2) leads to self-amplification of the Van der

Pol oscillator. The addition of periodic modulation ✏1 sin(!1t) to ↵ in Eq. (2) thus further
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promotes the growth of the solution. In the following, we fix µ1 = 1 and � = 1 and present

results for the three cases of di↵erent parameter scan over ✏1 and !1.

1. ✏1 = 1

We start with the case when the amplitude ✏1 of the periodic modulation is comparable

to the constant part µ1 = 1 in which case ↵ varies between 0 and 2 in time, remaining

non-negative for all time. Our results are shown in Fig. 3(a)-(b) by using the two di↵erent

intervals of !1 on the x axis. For small !1, interesting non-monotonic behaviour of mean

period and variance is pronounced. In particular, the variance becomes very small around

!1 = 0.9 where the frequency of solution becomes equal to the modulation frequency !1,

indicated by a periodic limit cycle with the frequency p = 0.9 = !1. Another noticeable

periodic solution is observed over a finite range of 1.5  !1  1.8 where the nonlinear

oscillator has 3/2 period (⇠ 9), likely by frequency locking. In contrast, the maximum

amplitude and rms value of x show much weaker dependence on !1 than mean period and

variance. When !1 is su�ciently large (e.g. !1 > 5), mean period, variance, maximum and

rms value of x asymptotically approach the values in the absence of the periodic modulation

✏1 = 0. This is because the e↵ect of ✏1 sin!1t vanishes as !1 ! 1 as a system cannot

respond to too rapid perturbation/modulation in a parameter.

2. ✏1 = 5

We now consider the case where the amplitude ✏1 of fluctuation in ↵ is much larger than

the constant part by choosing much larger ✏1 = 5 and show results in Fig. 3(c)-(d). In

comparison with Fig. 3(a)-(b), we observe that varying !1 between 0 and 1 has a much

larger e↵ect on the mean period and variance as the strength of perturbation is larger. Note

that it is also possible that for this range of small !1, the second mode of frequency p

B

plays

an important role as this mode is more easily excitable at low frequency (see the discussion

in §II and Appendix A). Variance is observed to be very small around !1 = 0.4, 0.8 and

1.2 where the mean period takes approximately the same value 15.7. Interestingly, the

corresponding frequency 2⇡/15.7 = 0.4 exactly matches the frequency (!1), half frequency

(!1/2) and quarter frequency (!1/4) for !1 = 0.4, 0.8 and 1.2, respectively, indicative of
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nonlinear frequency locking. In comparison, the maximum and rms values of x vary much

less, as in the case of ✏1 = 1. For a su�ciently large !1 (greater than 5), the values remain

constant upon the further increase in !1, due to the disappearance of the e↵ect of periodic

modulation for too large !1, as observed previously.

3. !1 = 1

Finally, we now look at the e↵ects of changing the amplitude ✏1 for a fixed !1 = 1.

Results in Fig. 4 show that a periodic solution with an almost constant output frequency is

maintained over a rather long range of ✏1 where variance is negligibly small. Specifically, for

✏1  0.2, mean period is about 6; for 0.3  ✏1  1, it gradually increases; for 1.2  ✏1 < 1.8,

it fluctuates around 8.3 (with the dominant frequency 0.75); for 2.2  !1  3.2, the period

becomes 12.57, which is half a modulation frequency !1/2 (i.e. period doubling). Period

three 18.985 at the third of modulation frequency !1/3 is also noticeable for a short interval

5.2  ✏1  5.4. The transition between two nearby periodic limit cycles is accompanied

by bifurcation involving chaotic oscillation, quasi-periodicity, etc with large variance. In

contrast, maximum and rms value change smoothly upon the change in ✏1, increasing almost

linearly with increasing ✏1, as also observed in Fig. 2.

It is instructive to compare Fig. 4 with Fig. 2(b) obtained for the same parameter values

apart from µ1. The most notable di↵erence between these two figures is the existence of

finite amplitude solution for all value of ✏1 in the case of µ1 = 1 in Fig. 4, while non-zero

solution exists only for ✏1 >

p

3 in Fig. 2(b). This is because µ1 excites oscillation even

when ✏1 = 0. Another di↵erence is that the period doubling occurs at a larger value of ✏1

in Fig. 4 compared to that in Fig. 2(b), which is again due to the e↵ect of µ1. For large ✏1

(> 2.2), Fig. 4 and Fig. 2(b) exhibit quite similar tendency.

IV. FLUCTUATION IN NEGATIVE FEEDBACK: ↵ = 1, � = 1 + ✏2 sin (!1t)

Self-regulation of the Van der Pol oscillator is modelled by a cubic nonlinear damping

term with a positive constant �. In order to understand how self-regulation is a↵ected by

fluctuation, we consider � = µ2 + ✏2 sin (!1t) as given in Eq. (3) while we fix µ2 = 1 and

↵ = 1, for simplicity, and explore the possibility of the breakdown of self-regulation.
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A. !1 = 1

Results are shown in Fig. 5 for !1 = 1 and ✏2  1. It is apparent that as ✏2 increases from

zero, mean period increases marginally, followed by a sudden increase between ✏2 = 0.7 and

✏2 = 0.8 where it is doubled from 2⇡ to 4⇡. Between these points, the transition involves

large variance due to irregular oscillation. In comparison, maximum amplitude and rms

value of x increase steadily for increasing ✏2, with the tendency of faster increase as ✏2 ! 1.

The maximum value of ✏2 shown in Fig. 5 is 1 since for a larger value of ✏1 > 1, a solution

grows exponentially due to ine�cient negative feedback. This is elaborated in the next

subsection.

B. Breakdown of self-regulation: Critical regulation point

To help understanding the e↵ect of ✏2 on self-regulation, � = µ2 + ✏2 sin(!1t) is shown in

Fig. 6 for ✏2 = 0.5 and ✏2 = 1.5 by using the fixed value of µ2 = 1 = !1. It is clear that

when ✏2  µ2, � is positive for all t, preventing a linear solution from growing exponentially.

However, when ✏2 > µ2, � takes negative values for certain time interval during which
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FIG. 7: Comparison between the two cases of (a) !1 = 1 (below critical value) and (b)

!1 = 1.2 (above critical value) for the fixed parameter values ✏2 = 1.1 and ↵ = µ2 = 1.

the solution can grow exponentially. Therefore, when ✏2 > µ2, there are intervals of time

when the solution exponentially grows, sandwiched between time intervals when the solution

damps. The overall e↵ect of this alternative growth and damping of the solution depends

on the value of !1 for fixed ✏2 since the smaller !1, there is a longer time for a solution

to grow to substantial amplitude before it gets damped. In comparison, larger !1 allows

less time for the solution to grow so that the amplitude of the solution can be regulated to

finite value. In the extreme limit of !1 ! 1, the e↵ect of periodic oscillation disappears as

observed previously, with � ! µ2 > 0. Thus for a given ✏2 > µ2, there exists the minimum

!1, corresponding to a critical value of !1 below which self-regulation is lost and the solution

grows exponentially. This critical point is referred as a regulation point.
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One example of this is shown in Fig. 7(a) for ✏2 = 1.1 and !1 = 1 (below critical value)

and Fig. 7(b) for !1 = 1.2 (above critical value). For !1 = 1 (below critical value), a

limit cycle exhibits a few oscillations before succumbing to the exponential growth. This is

because !1 is not quite large enough, permitting a su�ciently long time for the solution to

grow exponentially in Fig. 7(a). As !1 is slightly increased to !1 = 1.2 in Fig. 7(b), there is

less time for a solution to grow exponentially, making regulation possible.

✏2 1.01 1.1 1.3 1.5 1.6 1.65 1.7 1.8 2 3 5 10 20 50 100 200

!1 0.4 1.2 1.9 2.4 2.6 2.7 5.5 5.9 6.6 9.4 13 19.2 29.5 58 98.3 163

Mean period 31.5 10.4 6.5 5.2 4.8 4.8 4.6 5.0 5.5 4.8 4.5 3.6 3.0 2.2 1.5 1.0

TABLE I: Relation between ✏2 and !1 for critical point for µ1 = 1 and ✏1 = 0.

To find the relationship between ✏2 and !1 for a regulation point, it is simply a case of

choosing some ✏2 > µ2 and finding the minimum !1 such that the output is regulated with

a finite amplitude solution. The regulation points that we find are tabulated in Table. I. We

observe that as ✏2 increases, !1 increases. Note that the mean period markedly decreases

for increasing ✏2 (this will be utilised in §V.B).

V. IMPLICATIONS FOR HEART DYNAMICS

Results shown in previous sections demonstrated a significant change to the Van der

Pol oscillator due to periodic modulation in model parameters, highlighting an important

role of fluctuations in positive and negative feedback. In this section, we explore some of

implications of these results for heart dynamics as an example. It is useful to note that

applied to heart model, the distance between two adjacent peaks (peak-peak distance) of

x could be interpreted as peak-peak distance in action potential (see Fig. 14 and more

discussion in Appendix B) or the time between two adjacent heart beats. Thus, the inverse

of mean period represent average heart rate while the variance in peak-peak interval is related

to heart rate variability [29–31] (see Appendix C for implication for heart variability).
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A. Incoherent positive feedback

We recall that ↵ represents the e�ciency of positive feedback and takes a constant value

when this positive feedback is coherent while the decrease in e�ciency is modelled by fluc-

tuations in ↵. In the case of heart, ↵ could be viewed as the contribution to action potential

from ion currents across membrane, which change electric potential (e.g. depolarisation) at

cellular level, or as the e↵ect of the conduction of electric potential through cardiac tissues

from Sinus node to Perkinjee fibre at tissue level. Even though fluctuating ↵ is less e�cient

than constant ↵, we observed in Section III.A that a purely periodic ↵ permits self-excitation

of oscillation as long as the frequency (the amplitude) of ↵ is not too large (too small). This

suggests that fluctuating ion currents can initiate early depolarisation of action potential.

Another important implication would be for modelling abnormal heart rhythm associated

with slow heart (heart block or heart failure). There are di↵erent ways that lead to heart

failure (e.g. see [28, 32–34] and references therein). One way would be via amplitude

death where oscillation amplitude gradually decreases until it goes away (e.g. through Hopf

bifurcation); another would be via increased period associated with skipped beats (e.g.

through Homoclinic bifurcation). As an illustration, we here show a few examples of how

the results in Section III.A-III.B can be utilised to model these two pathways.

1. Amplitude death

Based on the results in Section III.A, we propose that one possible pathway of amplitude

death is by the progression of incoherent positive feedback and model this by time dependent

↵(t) as

↵(t) = µ1(t) + ✏1(t) sin(!1t), µ1(t) = µ0(1� F (t)), ✏1(t) = ✏0F (t), (4)

where µ0 and ✏0 are constant while F (t) is time-dependent function. As the e�ciency of

positive feedback degrades in time, fluctuation ✏1 will increase due to incoherent positive

feedback at the loss of the constant µ1. Thus, we take F (t) to be a monotonically increasing

function of time, taking the value between 0 and 1, so that the constant part of µ1(t)

decreases from µ0 to 0 while the oscillatory part of µ1(t) increases from 0 to µ0 in time.

As an example, we choose F (t) = tanh(t/⌧) where ⌧ is the characteristic time scale of F (t)

and show results for ⌧ = 100, µ0 = ✏0 = 1, !1 = 1 and � = 1 in Fig. 8. In Fig. 8(a),
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FIG. 8: ↵(t) = µ0(1� F (t)) + ✏0F (t) sin(!1t) and � = 1 with

F (t) = tanh(t/100), µ0 = 1, ✏0 = 1,!1 = 1.

↵(t) starting from constant value 1 is seen to increase its fluctuation with t according to

Eq. (4), while keeping its maximum value 1. The plot of v against t in Fig. 8(b) as well

as the phase portrait in Fig. 8(c) clearly show how the oscillation amplitude decreases with

time as a result. The corresponding frequency spectrum shown in Fig. 8(d) reveals well-

defined peaks, indicating the persistence of the oscillation with almost the same frequency,

regardless decreasing oscillation amplitude.

2. Oscillation death

The key observation we can make from Figs. 3-4 is that mean period depends most

sensitively on the amplitude of fluctuation ✏1 with the interesting tendency of larger period

for larger ✏1. To utilise this, we choose the value of ✏1 = 6 by keeping all other parameter

values the same as in Fig. 8 and show the results in Fig. 9. In Fig. 9(a), ↵ starting from the

constant value 1 increases its fluctuations, taking the value between �6 and 6 (with zero

time average value at a su�ciently large time). From the time history of x in Fig. 9(b),

we observe that the oscillation changes its period (the interval between two peaks) around

t ⇠ 140 where the period suddenly increases accompanied by a missed oscillation. The phase
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FIG. 9: ↵(t) = µ0(1� F (t)) + ✏0F (t) sin (!1t) and � = 1 with

F (t) = tanh(t/100), µ0 = 1, ✏0 = 6,!1 = 1.

portrait in Fig. 9(c) and the frequency spectrum in Fig. 9(d) reveal the presence of di↵erent

frequencies due to this change. These results clearly show how a pathway to an oscillation

death via missed peaks proceeds in time.

To demonstrate the robustness of our results, we show two more cases by using µ0 = 1

and ✏0 = 12 and µ0 = 6 and ✏0 = 6 in Fig. 10 and Fig. 11, respectively, where similar

behaviour can be observed. It is quite entertaining to see how the decrease in oscillation

frequency proceeds in Figs. 10(b) and 11(b). Of particular intrigue in Fig. 11 is that period

doubling occurs even when the constant part of ↵ before the transition is comparable to the

amplitude of fluctuating part after the transition.

Finally, it is important to note that the fact that the only di↵erence between Figs. 8 and

9, representing amplitude death and oscillation death pathways, respectively, is the strength

of fluctuations alludes to the possibility that amplitude and oscillation death may have

the same origin of incoherent positive feedback; that is, amplitude death is a consequence

of small fluctuation in positive feedback while oscillation death is a consequence of large

fluctuation in positive feedback.
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FIG. 10: ↵(t) = µ0(1� F (t)) + ✏0F (t) sin(!1t) and � = 1 with

F (t) = tanh(t/100), µ0 = 1, ✏0 = 12,!1 = 1.
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FIG. 11: ↵(t) = µ0(1� F (t)) + ✏0F (t) sin(!1t) and � = 1 with

F (t) = tanh(t/100), µ0 = ✏0 = 6,!1 = 1.
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FIG. 12: ↵ = 1, � = 1 + ✏0 sin(!1t) tanh(t/100) with ✏0 = 10 and !1 = 20.

B. Incoherent negative feedback

As seen in Section IV, near the regulation point, mean period tends to decrease for larger

fluctuation ✏2 in � (see Table 1). We now show how these results could be utilised to model

a progression to fast heart rhythm (e.g. tachycardia). We model the increase in fluctuation

in � by taking the following time-dependent function:

�(t) = µ2 + ✏0 sin(!1t) tanh(t/100), (5)

and results obtained for µ2 = 1, ✏0 = 10, and !1 = 20 are plotted in Fig. 12. Fig. 12(a)

clearly shows that the period of oscillation becomes shorter in time when the fluctuating

� increases according to Eq. (5); phase portrait and frequency spectrum in Figs. 12(b)

and 12(c) reveal the involvement of a mixture of di↵erent frequencies of oscillations in this

processes.
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VI. DISCUSSION AND CONCLUSION

While the variability has emerged as a key factor in sustainability, too much variability

however could be detrimental. Our work was motivated to understand how homeostasis

manifested in the form of self-sustained oscillations is a↵ected by fluctuating parameter,

modelled by periodic modulation. In particular, we were interested in identifying sweet-

spot in variability in model parameter and the limits beyond which self-regulation breaks

down. To this end, we focused on the e↵ect of fluctuation in self-amplifying parameter

(positive feedback) and nonlinear damping parameter (negative feedback) in the Van der

Pol oscillator. Our general conclusions are summarised as follows:

• Self-sustained oscillation can be excited by a purely oscillatory self-amplifying param-

eter as long as its time rate of change is not too fast. This highlight the importance

of fluctuations in positive feedback loop, e.g. such as fluctuating ion currents.

• Model parameter that changes too rapidly for a system to respond induces no change in

the system. This is related to ‘refractory (or recovery) time’ required for an organism

to be ready for a new stimulant, for example.

• Mean period and variance vary non-monotonically with fluctuation amplitude of model

parameters while maximum and rms values tend to monotonically increase.

• The increase in fluctuation in positive feedback leads to the transition between the

two periodic limit cycles by passing through a small region of chaos and/or quasi-

periodicity, with the lengthening of oscillation period.

• A sudden change in oscillation period occurs via nonlinear frequency locking, which

has been found in the previous work of pacemaker by a more complicated model (see,

e.g. [28]).

• Periodic oscillation occurs within the bounds on variability in model parameter, be-

yond which a system could lose its sustainability. For instance, a long plateau region

between ✏1 = 2.6 and 4 in Fig. 4 may represent the bounds within which a self-sustained

oscillator operates (i.e. sweet spot).

21



• Fluctuations in nonlinear damping make negative feedback less e↵ective, leading to a

possible overgrowth of the solution. This has interesting applications, such as tumour

progression due to the incoherent self-regulation [12].

• Self-organisation can break down completely when negative feedback/regulation be-

comes ine�cient due to incoherent nonlinear damping, with an exponentially growing

solution. For the critical point for this breakdown, we noted an approximate linear

relation between ✏2 and !1 (see §IV.B).

• Applied to heart dynamics, i) incoherent positive feedback can lead to slow heart

by either amplitude death (§V.A.1) or oscillation death pathway (§V.A.2) when the

fluctuation in ↵ is su�ciently small or large, respectively; (ii) incoherent negative

feedback can lead to fast heart beat (§V.B) [The importance of amplitude of fluctuation

in feedback is further elaborated in Appendix C for heart rate variability.]

We recognise that there has been a great advancement in heart modelling, involving multi-

scale, multi-disciplinary synergistic approach (e.g. see [28] and reference therein), and our

intention was nowhere near such an attempt. Our purpose was instead to elucidate a key

role of fluctuations in feedback loop and its consequence, which would not be feasible in a

more complicated model. Despite its simplicity, our model has the merit of enabling us to

undertake a systematic investigation, and, we hope, would prove to be a useful model to

understand other self-regulation systems. It would be worthwhile to tailor and extend our

work, for example, by i) investigating the e↵ect of modulation of ↵ and � with di↵erent

frequencies, ii) incorporating the e↵ect of stochastic fluctuation, iii) exploring the combined

e↵ect of multiplicative and additive noises, iv) considering more than two feedback loops,

and v) including evolution equation for ↵ and/or �.

We thank Drs L. Robson and M. Cambray-Deakin for their inspiration for the work. We

also thank M Mohamed for her help with Matlab.
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Appendix A: Linear dispersion relation

In this appendix, we provide a linear analysis on the e↵ect of periodic damping. For

simplicity, we take a Laplace transform of Eq. (1) to obtain

(!2
0+µs+s

2)x̃(s)+
✏1

2i
[(s� i!1)x̃(s� i!1)� (s+ i!1)x̃(s+ i!1)] = ẋ(0)+(s+µ)x(0), (6)

where ẋ(0) = dx

dt

at t = 0, x̃(s) =
R1
0 dte

�st

x(t). While Eq. (6) establishes an initial value

problem, we are interested in the condition which gives rise to the (parametric) instability

via frequency matching (i.e. resonance). To find this, we consider the dispersion relation by

keeping the nearest interaction between the two adjacent modes x̃(s) and x̃(s� i!1) as

(!2
0 + s

2 + µs)
⇥
!

2
0 + (s+ i!1)

2 + µ(s+ i!1)
⇤
�

✏

2
1

4
s(s+ i!1) = 0. (7)

By taking s = � + ip where � and p are real constants for the growth rate and frequency,

we obtain from Eq. (7) the following two relations:

0 = (2p� !1)
⇥
(2� + µ)[!2

0 + �(� + µ)� p(p� !1)]� ✏

2
1�/4

⇤
, (8)

0 = [!2
0 + �(� + µ)� p

2][!2
0 + �(� + µ)� (p� !1)

2]

�p(p� !1)(2� + µ)2 �
✏

2
1

4
[�2

� p(p� !1)]. (9)

The solutions to Eq. (8) are

p

A

=
!1

2
, p

B

=

r
!

2
1

4
+ !

2
0 +

!1

2
. (10)

Using Eq. (10) in Eq. (9) establishes how the linear growth rate � depends on the amplitude

of the periodic perturbation ✏1. For instance, the onset of instability is obtained by putting

� = 0 in Eq. (9), which gives us the critical value of ✏1 for the two modes as follows:

✏1A =

s

4µ2 +
((2!0)2 � !

2
1)

2

!

2
1

, (11)

✏1B = 2
q
µ

2 + !

2
1 . (12)

The mode with frequency p

A

= !1/2 takes its minimum critical value ✏1A = 2µ when

the modulation frequency !1 = 2!0, the twice natural oscillation frequency !0. This is

due to the parametric resonance between the natural oscillation and periodic parameter,

which facilitates resonant excitation of the mode with !1/2 = !0. That is, the periodic
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FIG. 13: Dispersion relation for the onset of instability when !0 = 1, � = 0, µ1 = 1: (a)

Critical ✏1 against input frequency !1; (b) Output frequency p against input frequency !1;

(c) The product of input frequency and critical ✏1 against input frequency. Blue and Red

lines are for the two solutions p
A

= !1/2 and p

B

=
p
!

2
1/4 + !

2
0 + !1/2, respectively

parameter with twice natural frequency leads to the excitation of the mode, which has the

same frequency as the natural frequency. This critical value ✏1A = 0 when µ = 0, implying

the instability of the mode with frequency p

A

= !1/2 for all values of ✏1 and this mode

dominates over the other mode with frequency p

B

which requires a finite value ✏1B � 2!1

for excitation. We note that for finite µ, the critical value ✏1A for the mode with frequency

p

A

= !1/2 is smaller than the mode with the frequency p

B

for !1 > 2!0/
p

3 and is thus a

dominant mode for su�ciently large !1. The opposite holds for small !1 < 2!0/
p

3 where

the critical value ✏1A is smaller for the second mode with frequency p

B

.

The critical values for these two modes are shown in blue and red lines in Fig. 13 by

using !0 = µ1 = 1 where the crossing between the two modes is seen at !1 = 2/
p

3. The

smallest critical value of ✏1A is clearly seen to occur at !1 = 2!0.
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FIG. 14: Cardiac Action Potential

FIG. 15: (a) µ1 = µ2 = 1.2, ✏1 = ✏2 = 0; (b) µ1 = µ2 = 1.2,!1 = 1, ✏1 = 1, ✏2 = 0.

Appendix B. Cardiac pacemaker

The main cardiac pacemaker periodically produces electric pulses to provide action poten-

tials to the heart for relaxations and oscillations. A distinct feature of a cardiac pacemaker

shown in Fig. 14 is a slow build-up followed by a sudden rise to a peak, which are known

as pacemaker potential and rapid depolarization respectively. In the following, we show in

detail that fluctuating parameters also have an important e↵ect on the shape of the action

potential as well as on the period.

To this end, we use parameter values µ1 = µ2 = 1.2, ✏1 = ✏2 = 0 and show the results in

Fig. 15(a). Comparing Fig. 15(a) with Fig. 14, we see that the shape of the two is roughly

similar. There is however much room for improvement, in particular, in the slow build-up

of early depolarising phase and the overall shape of subsequent rapid and repolarisation

phases. Specifically, the duration of the pacemaker potential in Fig. 15(a) is rather short

compared to that seen in Fig. 14 while the overall shape of the action potential is rather
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smoother in Fig. 15(a) in comparison with Fig. 14. When we introduce the time-dependent

model parameters as ✏1 = 1,!1 = 1 (✏2 = 0), we are able to make an improvement on this

as shown in Fig. 15(b): the early depolarising phase appears to more resemble that of Fig.

14 with the relative duration of time for the build-up increasing. The action potential is

also less steep, as hoped for. Although our model is not perfect, this is an improvement on

the previous model, suggesting that a simply introducing time-dependent variables even by

relatively small values can dramatically alter the model prediction.

Appendix C. Heart rate variability

The peak-peak distance in action potential (e.g. shown in Fig. 13) and the time between

two heart beats can be inferred from the distance between the adjacent peaks (peak-peak

distance) of x in our model. Therefore, the inverse of mean period quantifies the average

heart rate while the variance in peak-peak interval is related to heart rate variability [29–31].

In human heart of healthy individual, heart rate is never constant but exhibits certain degree

of variation as human heart is subject to many di↵erent factors ranging from rather regular to

very irregular stimulants/input (e.g. modulation by breathing, input from nervous systems,

etc). Application of the Van der Pol oscillator to heart dynamics thus requires the allowance

of fluctuation in the model parameter to incorporate the e↵ects from the variability. Also, as

noted in the Introduction, as a model for oscillations in a continuous system in space such as

heart, the Van der Pol oscillator is a mean-field theory, describing a large-scale, observable

where fluctuating model parameter can capture spatial as well as temporal inhomogeneity

(heterogeneity) in electro-chemical-mechanical activity (e.g. ion channel dynamics, electric

conduction, muscle physiology, etc) contributing to heart dynamics. In fact, variability in

heart rate has been known to be crucial for healthy heart, and there has been accumulating

evidence that the decrease in variability is often associated with heart failure. On the other

hand, too much variability in the form of tachycardia, etc, also leads to heart failure [29–34].

One of the interesting observation has been that the time between the two adjacent heart

beats (the so-called RR interval) tends to depend linearly on the amplitude of heart beat.

It is thus valuable to explore the possibility of utilising our model to understand heart rate

variability and its implication for healthy heart. This issue will be investigated in future
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[23] K. Grudziński and J. J. Źebrowski, “Modeling cardiac pacemakers with relaxation oscillators”,

Physica A, 336, 153–162 (2004).

[24] E. Ryzhii and M. Ryzhii, “A heterogeneous coupled oscillator model for simulation of ECG

signals”, Comp. Meth. Programs Biomed., 117, 40–49 (2014).

[25] L. Glass and M.C. Mackey, From Clocks to Chaos. The Rhythms of Life (Princeton Univer-

sity Press, Princeton, 1988); H.G. Schuster, Deterministic Chaos: An Introduction (VCH,

Weinheim, 1988); W.-B. Zhang, Synergetic Economics (Springer-Verlag, Berlin Heidelberg,

1991); V.S. Anishchenko, Dynamical Chaos Models and Experiments (World Scientific, Sin-

gapore,1995); H.D.I. Abarbanel, M.I. Rabinovich, A. Selverston, M.V. Bazhenov, R. Huerta,

28



M.M. Sushchik, and L.L.Rubchinskii, “Synchronization in neural networks”, Phys. Usp., 39,

337–362 (1996).

[26] M. Gitterman, “Underdamped oscillator with fluctuating damping”, J. Phys. A: Math. Gen.

37, 5729–5736 (2004); M. Gitterman, The noisy oscillator, random mass, frequency, damping.

2nd Ed., World Sci. Pub. Co. Pte. Ltd. (2013).

[27] U. Parlitz and W. Lauterborn, “Period–doubling cascades and devil’s staircases of the driven

Van der Pol oscillator”, Phys. Rev. A. 36, 1428-1434 (1987).

[28] Z. Qu, G. Hu, A. Garfinkel and J.N. Weiss, “Nonlinear and stochastic dynamics in the heart”,

Phys. Rep., 543, 61-162 (2014).

[29] M.C. Teich, S.B. Lowen, B.M. Jost, and K. Vibe-Rheymer, “Heart rate variability: measures

and models”, arxiv.org/abs/physics/0008016v1

[30] T. Costa, G. Boccignone, and M. Ferraro, “Gaussian mixture model of heart rate variability”,

PLoS One, 7, e37731 (2012).

[31] Task Force of The European Society of Cardiology and The North American Society of Pacing

and Electrophysiology: Standards of measurement, physiological interpretation, and clinical

use, Euro. Heart J. 17, 354-381 (1996).

[32] H. Gothwa, S. Kedawat, and R. Kumar, “Cardiac arrhythmias detection in an ECG beat

signal using fast fourier transform and artificial neural network”, J. Biomed. Sci. and Eng., 4,

289-296 (2011).

[33] D. A. Siders and D. Moulopoulos, “Mechanism of atrioventricular conduction: study on an

analogue”, Elrctrocardiology, 10, 51-58 (1977).

[34] N. Weiss, Z. Qu, P.-S. Chen, S.-F. Lin, H.S. Karagueuzian, H. Hayashi, A. Garfinkel and A.

Karma, “The dynamics of cardiac fibrillation”, Circulation, 112, 1232-1240 (2005).

[35] To be specific, for small x <

p
↵/�, �↵+�x

2 is negative leading to the growth of x while for

large x >

p
↵/�, �↵+ �x

2 becomes positive, causing damping of x.

[36] The signs of ✏1 and ✏2 do not a↵ect our results.

[37] Note that e↵ect of fluctuation in damping parameter tends to be more robust compared to

that in fluctuation in oscillation frequency !0. For instance, the previous study [26] has shown

that random (Gaussian) fluctuation µ1 can give rise to the growth of the first moment (e.g.

the average x), in contrast to the case of random frequency whose e↵ect appears in higher

order moment (e.g. hx2i).

29



[38] For su�ciently large ✏1 � 4, it is possible that the second mode of frequency p

B

=
p

2 + 1

(which requires ✏1 � 4) could be contributing to frequency locking, etc.

[39] Similar change in limit cycle was previously shown in the forced Van der Pol oscillator with

an additive oscillatory forcing [27].

30


	Variability and degradation  cs
	Variability and degradation pdf

