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Investigation of the Statistical Distance to reach Stationary Distributions

S.B. Nicholson1 and Eun-jin Kim1
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The thermodynamic length gives a Riemannian metric to a system’s phase space. Here we extend
the traditional thermodynamic length to the information length (L) out of equilibrium and examine
its properties. We utilise L as a useful methodology of analysing non-equilibrium systems with-
out evoking conventional assumptions such as Gaussian statistics, detailed balance, priori-known
constraints, or ergodicity and numerically examine how L evolves in time for the logistic map in
the chaotic regime depending on initial conditions. To this end, we propose a discrete version of
L which is mathematically well defined by taking a set theoretic approach. We identify the areas
of phase space where the loss of information of the system takes place most rapidly. In particular,
we present an interesting result that the unstable fixed points turn out to most e�ciently drive the
logistic map towards a stationary distribution through L.

Corresponding author, Tel: 07794023712
E-mail address: smp11sbn@she�eld.ac.uk.

INTRODUCTION

A major goal in statistical mechanics is to understand
how non-equilibrium systems evolve in time. The main
reason this is a di�cult problem is that much of the the-
ory and machinery of traditional Boltzmann Gibbs statis-
tics does not carry over to the non-equilibrium regime.
Furthermore, non-equilibrium systems are not guaran-
teed to have well-defined time-independent constraints
which can be utilized in the determination of the form of
the probability density functions (PDFs). Another im-
portant issue which is addressed in this manuscript is the
amount of phase space in the course of a system’s (e.g.
rapid) time-evolution, as they are not guaranteed to have
explored all possible states in the phase space, invalidat-
ing any assumption of ergodicity. Thus, the presence
(or, existence) of phase space with zero probabilities is a
potential problem for any system starting from a set of
non-equilibrium conditions.

A general measure that has proven to be very ap-
pealing theoretically is the thermodynamic length (L

th

).
The thermodynamic length endows a phase space with
a Riemannian metric, thus allowing one to measure the
“distance” that a system travels between thermodynamic
equilibrium states. These systems are governed by a set
of control parameters �

i which are the experimentally
controllable variables of the system, the thermodynamic
length is defined as,

L
th

=

Z
⌧

0
dt

r
d�

i

dt

g

ij

d�

j

dt

. (1)

The metric g

ij

depends on the parameters of the sys-
tem being analysed. Most previous studies used ther-
modynamic functions to define g

ij

based on equilib-
rium states. For instance, Weinhold [19] used g

ij

=
d

2
U(V, S,N)/dx

i

dx

j

(x
i

= U, V,N for i = 1, 2, 3), where

U is the internal energy which is a function of the ex-
tensive variables. In comparison, Rupeiner [14] used the
second derivative of the entropy with respect to extensive
variables (for other examples see [2, 5, 12] ). Out of equi-
librium the control parameters are often not known, mak-
ing Weinhold and Rupeiners metrics inapplicable. Thus,
we take the approach of Crooks [3] and use the prob-
ability distribution function p(x, t) to define the Fisher
information matrix [7] as follows:

g

ij

=
X

x

p(x, t)
@ log p(x, t)

@�

i

@ log p(x, t)

@�

j

. (2)

Here p(x, t) is the probability of finding the system in
state x at time t, given that it evolved from an initial
distribution p(x, t0) at an earlier time, t > t0 and the
conservation of total probability requires p(x, t) follow,P

x

p(x, t) = 1. The control parameters �

i specify how
the system evolves through the surface of accessible states
specified by �

i. In equilibrium thermodynamics these
could be for example the temperature or pressure of the
system [3].
As we will see in the next section, putting Eq. (2) into

Eq. (1) and summing over �i and �

j gives us a distance
in terms of probability distributions. It is important to
note that Eq. (2) in general fulfils the requirements of a
metric either whether the system is in equilibrium or not.
Interestingly, in thermal equilibrium, using g

ij

of Eq. (2)
in Eq. (1) gives that L is proportional to the covariance
of the forces conjugate to control parameters �

i. That
is, in equilibrium, thermodynamic length can be thought
of as an integral in time over the fluctuations the system
undergoes (see, e.g. [3]). Out of equilibrium, this is no
longer true, and Eq. (2) is instead related to the integral
of the covariance of fluctuations at di↵erent times [18].
A large body of theoretical work has already been

developed for the thermodynamic length, starting with
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Weinhold [19], Rupeiner [14] and Schlögl [16], continu-
ing with [4] among others. There is however a distinct
lack of numerical illustrations for the thermodynamic
length. This is partly caused by the computational de-
mand in time and di�culties associated with obtaining
PDFs which are su�ciently accurate.

When our system evolves over a manifold of non-
equilibrium states we will use the information length (L)
instead of the thermodynamic length. Using L the relax-
ation of an arbitrary configuration of the system will be
numerically investigated as it relaxes to a stationary dis-
tribution. In this work stationary does not imply equilib-
rium, as equilibrium also requires the system satisfy de-
tailed balance (as defined in section 3). In particular, we
use a discrete map (the logistic map) as a typical example
of a non-equilibrium system which also allows us to take
computational advantages, as the simulation of maps is
much less demanding and time-consuming than contin-
uous systems. As noted above, for any non-equilibrium
system having zero-valued probabilities L can be unde-
fined. To overcome this we propose a discrete version of
L which is mathematically well defined by taking a set
theoretic approach.

The paper is organized as follows: Section 2 introduces
the information length and provides its key properties in
detail along with the definitions of our sets. These are
followed in Section 3 where we show that L must increase
for any PDFs other than the invariant (stationary) dis-
tribution. Section 4 will numerically examine the infor-
mation length for the logistic map in the chaotic regime.
In particular, using the logistic map we identify the areas
of phase space where the conversion of the information of
the system into work takes place most rapidly. We also
show that the logistic map very often follows the path of
minimum length. That is, the system follows the path
of minimum information change. The importance of the
minimum/optimal path has been noted in previous stud-
ies. For instance, J. Nulton et al utlilized this concept
to link the thermodynamic length between equilibrium
states to the “optimal” path in annealing processes [11].
In [5] it was suggested that experiments using biological
motors would yield paths of minimum length. In Sec-
tion 5, we show the curious result that the unstable fixed
points rapidly drive the system to its stationary distri-
bution. Conclusions are provided in Section 6.

INFORMATION LENGTH

To follow the path of a general non-equilibrium ensem-
ble (e.g as it evolves towards equilibrium), we measure
the Fisher-Rao information by using Eq. (2) in Eq. (1)

and define the information length as follows,

L =

Z
⌧

0
dt

vuutX

x

1

p(x, t)


dp(x, t)

dt

�2
. (3)

Now distances are measured by the di↵erence between
consecutive PDFs. The di↵erence in PDFs gives a mea-
sure of the statistical distance [11, 20]. The evolution
of a system can then be envisioned as the trajectory in
the probability space where the distance/metric at dif-
ferent times is provided by the statistical distance. As
time is the only parameter, Eq. (3) is ideally suited for
analysing experimental data, which we use exclusively in
the remainder of the paper.
An alternative expression to Eq. (3) is often neces-

sary to describe the evolution of non-equilibrium systems
since L is undefined for PDFs with zero values (i.e. when
p(x, t) = 0), as it is written in Eq. (3). This problem can
be readily remedied by expressing L in terms of q =

p
p,

as suggested by Wootters [20], which transforms Eq. (3)
into the following form,

L = 2

Z
⌧

0
dt

vuutX

x

✓
dq(x, t)

dt

◆2

, (4)

which no longer has this singularity problem. However
if time is discrete, Eq. (4) is not equivalent to Eq. (3),
making it necessary to look for a di↵erent form of L.
Thus, in this paper, we propose a set theoretical approach
to overcome this problem, as presented shortly.
To this end, we utilize a discrete version of Eq. (3),

L =
⌧X

t=1

�t

vuutX

x

1

p(x, t)

✓
�p(x, t)

�t

◆2

=
⌧X

t=1

�L(t)�t.

(5)
Here, �p(x, t) = p(x, t0)� p(x, t) where t

0 = t+ 1. Note
that for discrete systems, t simply denotes the iteration
number, taking the integer values as t = 1, 2, . . . ⌧ where
⌧ is the total time of a given evolution. Consequently,
for most of this work the time step 4t is 1. That is,
p(x, t0) (t0 = t + 1) and p(x, t) are the two consecutive
PDFs (i.e. the probability of being in state x at time t

0

or t, respectively) while �p(x, t) = p(x, t0)�p(x, t) is the
di↵erence between these two consecutive PDFs. As we
are dealing with numerical simulations, our state spaceX
will be coarse grained into a finite number of disjoint sets
x, which represent the new “states” of the system. For
the logistic map, examined shortly, x is a one dimensional
variable, x 2 [�1, 1]. The probability of being in “state”
x at time t is then, p(x, t), where,

P
x

p(x, t) = 1. It is
straightforward to generalize x to any higher dimensions,
x = {x

i

, x

j

, . . . x

N

}.
To guarantee that L is well defined for arbitrary dis-

crete non-equilibrium systems, we need to account for
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states that have zero probability of being occupied along
the system’s evolution. That is, given a total state space
X, the probability of finding the system p(x, t) in a par-
ticular states x can be zero (p(x, t) = 0 for some x 2 X).
As a result we define the following two sets depending on
the evolution of PDFs at two consecutive times t and t

0

as

Q

p

= {x : p(x, t) 6= 0|p(x, t0) = 0},
Q

w

= {x : p(x, t) 6= 0|p(x, t0) 6= 0}.
(6)

One possibility that is not included in the above equa-
tion is the case where p(x, t) = 0 and p(x, t0) 6= 0, which
can however be shown to have no contribution to L. The
subscript p in Q

p

designates the unused probability of
evolving over one time step, while w is the set that gives
a measure of the available work in evolving over one time
step, as shown later. To isolate the separate contribu-
tions to L from Q

p

and Q

w

, we define

L

Qp =
X

x2Qp

p(x, t)

(�t)2
,

L

Qw =
X

x2Qw

1

p(x, t)

✓
�p(x, t)

�t

◆2

,

and express Eq. (5) as:

L =
⌧X

t=1

�t

q
L

Qp + L

Qw . (7)

A consequence of the system only occupying Q

p

is
that, the system evolves independently at two consec-
utive times, resulting in �L(t) = 1.

Next we will look how L is related to the measure of
work of the system. The links between the thermody-
namic length and the dissipation of a system are already
well known, [15]. The Fisher information is also known
to be related to the relative entropy; see [1] and the ref-
erences within for the continuous case and [6] for the dis-
crete case. For completeness, we show how the relative
entropy DS[p(x, t)|p(x, t0)] from Procaccia and Levine’s
work [13] is related to L. To this end we define the ’mi-
croscopic’ relative entropy as,

DS[p(x, t)|p(x, t0)] = p(x, t) log

✓
p(x, t)

p(x, t0)

◆
, (8)

and express DS in terms of DS,

DS[p(x, t)|p(x, t0)] =
X

x

p(x, t) log

✓
p(x, t)

p(x, t0)

◆
,

=
X

x

DS[p(x, t)|p(x, t0)].
(9)

In order to show that L

Qw in Eq. (7) is related to DS,
we use p(x, t0) = p(x, t) +�p(x, t) (�p(x, t) = p(x, t0) �
p(x, t)) in DS as:

DS[p(x, t)|p(x, t0)] = �p(x, t) log


1 +

1

p(x, t)
�p(x, t)

�

= ��p(x, t),

where log(1 + x) ⇡ x was used above. Therefore, to
leading order in �p, the substitution of Eq. (10) into
Eq. (7) gives,

L =
⌧X

t

�t

vuut
X

x2Qp

p(x, t)

�t

2
+

X

x2Qw

1

p(x, t)

✓
DS[p(x, t)|p(x, t0)]

�t

◆2

, (10)

where �t = 1 for our discrete system. Eq. (10) then
demonstrates that L due to L

Qw is directly related to
the available work in the evolution of the system via the
’microscopic’ relative entropy DS to leading order in �p.
Higher order terms in �p are not, however, negligible for
strongly non-equilibrium process involving rapid change
in PDFs with large �p, suggesting that the relation be-
tween DS and L

Qw is more subtle, for instance, requiring
the generalisation of Fisher information to higher mo-
ments [10]. The discrepancy between Eq. (7) and Eq.
(10) will in fact be shown to occur in our numerical ex-

ample to follow for rapid equilibration. It is worth noting
at this point that L as well as the relative entropy (or
entropy) is dependent on the resolution that one uses to
coarse grain the system. As this is not a main issue of
this paper, we simply use the same coarse graining for all
simulations presented in this paper.
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PROPERTIES OF L

The main aim of this section is to examine the key
properties of L and the information that can be inferred
from L about a non-equilibrium system. In particular, we
identify the condition for �L(t) > 0. We then examine
its physical implications in terms of the loss of available
work and the change in the macroscopic observables and
fluctuations.

It is easy to see that the lower bound on �L(t) = 0
occurs when p is stationary (i.e. p(x, t) = p(x, t0)). An
interesting question is then if this stationary condition
is a su�cient and necessary condition for �L(t) = 0 re-
gardless of whether a system is in equilibrium or out of
equilibrium. To answer this question, we utilise the cur-
rent of probability which flows from state y ! x in one
time step, which is defined for a stationary system with-
out summation as

J

s

xy

= C

xy

p0(y)� C

yx

p0(x). (11)

Here, C
xy

is defined as the non-negative irreducible ma-
trix of transition probabilities from states y to x,

C

xy

= Pr (state at (t0 > t) is x|state at t is y) . (12)

The distribution p0(x) is guaranteed to be a unique sta-
tionary distribution of C

xy

due to C

xy

being irreducible
[8]. In matrix notation the invariance of p0 is expressed
as Cp0 = p0.

P
y

J

s

xy

= 0 is guaranteed since J

s

xy

fol-
lows Kircho↵’s loop rule that the amount of current into
a state is equal to the amount out of a state. We de-
fine stationary as the PDF being time independent, since
we do not assume any knowledge of mean values. The
system can be characterized as being reversible or not
through J

s

xy

= 0, or J

s

xy

6= 0 respectively. This is due
to J

s

xy

being a measure of microscopic irreversibility. In
general, we can define a non-equilibrium current J

xy

as,

J

xy

= C

xy

p

t

(y)� C

yx

p

t

(x). (13)

Summing Eq. (13) over y gives,

X

y

J

xy

= p

t

0(x)� p

t

(x)= �p(x, t). (14)

This allows us to link the operator C
xy

to L. Obviously,
when

P
y

J

xy

= 0, p(x, t0) = p(x, t), i.e. the distribution
is stationary with �L(t) = 0. �L(t) = 0 is also guar-
anteed under the stricter condition of detailed balance
which defines true equilibrium, when J

xy

= 0 8 x, y in
Eqs. (11) or (13). Therefore, in view of the uniqueness of
p0(x), we can infer that if

P
y

J

xy

= 0 8 x then J

xy

= J

s

xy

and �L(t) = 0, meaning that the system is stationary.
This shows that irreducibility is necessary for stationarity
to uniquely imply �L = 0. If the system does not have
an irreducible operator, then it is possible that�L(t) = 0
in general, as we will show in our numerical results.

Most systems in nature never truly reach a stationary
state, making the aforementioned discussion too ideal-
ized. We thus express p(x, t) in general as the sum of its
invariant distribution p0(x) and the fluctuations f as,

p(x, t) = p0(x) + f(x, t). (15)

The direct substitution of Eq. (15) into the discrete ver-
sion of Eq. (5) over one time step yields,

�L
�t

= 2

s
X

x

(4f)2

p(x, t)
, (16)

where �f = f(x, t0)� f(x, t). The above expression im-
mediately reveals that the driving force for the change in
L is time-variation in the fluctuations from equilibrium.
The same line of reasoning carries over to continuous sys-
tems as well.
The property of �L(t) > 0 for non-equilibrium and

non-stationary systems makes �L(t) a useful quantity to
investigate non-equilibrium and non-stationary processes
given some knowledge of the fluctuations in the system.

EQUILIBRATION AND SIMULATION

Having identified a physical meaning of L as a measure
of available work, it is of interest to investigate a specific
non-equilibrium system. To this end, we utilize the lo-
gistic map. The logistic map is used as it is a simple
non-equilibrium system which exhibits much of the in-
teresting properties of L. But also since the logistic map
can be considered one of the most di�cult classes of sys-
tems to analyse using our sets, being a non-di↵erentiable
(in time) discrete system. The system being discrete in
time means that for almost the entire evolution of the
system we have zero-probability states, p(x, t) = 0 while
p(x, t0) 6= 0. This means that our set representation of
the evolution is vital to avoid un-physical infinite lengths.
We recall that the logistic map is governed by the follow-
ing mapping

x

t+1 = 1� ax

2
t

, (17)

which describes the position of an orbit x
t+1 at time t+

1 as a function of its position x

t

at the earlier time t.
a is the control parameter, which is taken to be 2 for
simulating a chaotic region. The stationary density for
a = 2 is given by p0 = 1/⇡(1 � x

2)1/2. In this chaotic
region, the map has the two unstable fixed points x = �1
and x = 1/2, which turn out to play an interesting role
in �L(t) as shown later.
A key question of our interest is how an initial state far

from equilibrium approaches p0(x) in probability space
in terms of �L(t). For instance, is there any unique
property of �L(t) that can be identified for all evolutions
starting from di↵erent initial conditions? To answer this
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question, we perform numerical simulation of Eq. (17)
starting from an initial PDF which is strongly localised
at x = x0, approximated by a delta function. For each
simulation using di↵erent initial x0, the domain, [�1, 1]
will be broken into M bins, with the width of each bin
2
M

. The number of bins used is a free parameter after
all “There is no law of nature that defines the coarse
grains” [17]. Here we have fixed the number so as to
make each simulation comparable. p(x, t) thus represents
the probability of finding an orbit in bin x at time t.

Using the random initial distribution of M = 9 ⇥ 107

points, centred at x0 = �0.553, we first check the validity
of approximating Eq. (5) with Eq. (10). Interestingly,
Fig. (1) shows that L given in Eq. (5) plotted in the
solid black line with solid dots agrees very well for most
of the evolution with L given by Eq. (10) shown by the
line with circles, respectively. It is seen from Fig. (1)
that initially, the PDFs never overlap at the two consec-
utive times, occupying only set Q

p

. For 12 < t  15,
the PDFs overlap and change rather rapidly but still do
not fill the whole state space. In this regime, approxi-
mation of the derivative seems to give errors, causing the
di↵erence in the results from Eq. (5) and Eq. (10). This
is a clear manifestation of the di↵erence between the lo-
cal relative entropy and L in a strongly non-equilibrium
evolution. For 15 < t  20, the PDFs fill out the entire
domain [�1, 1] but still are not in the stationary distribu-
tion. The less dramatic change of the PDF on each time
step recovers a good agreement between Eq. (10) and
Eq. (5). From t = 21 on, the system fluctuates around
the stationary distribution and thus both equations are
trivially near zero. We have checked that a similar agree-
ment is also obtained for all other initial conditions that
are considered in this paper.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

∆
L
(t
)

∆L and ∆L(t)DS as a function of t

FIG. 1: Plot of the discrete version of L equation (5) against
time in black which shows a good agreement with equation
(10) plotted in black with circles. Both use M = 1 ⇥ 106

initial points who all start as a delta function around, x
o

=
0.3826834.

The evolution of L starting at x0 = �0.553 is shown in

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14
L as a function of t

t

L

FIG. 2: The evolution of L starting from x0 = �0.553 using
M = 9⇥ 107 orbits.

Fig. (2) where we see that the system for almost its entire
evolution follows the minimum path, i.e. a straight line.
For 0 < t  12, PDFs do not overlap on each time step
(as mentioned above), and thus have a slope of �L(t) =
1. When 12 < t  16, �L(t) also follows a slope of
�L(t) = 0.41453. For 16 < t  20, there is a non-linear
transition towards the stationary distribution. Finally,
for t > 20, the system has approximately come to the
stationary distribution, resulting in almost no increase
in L.
The finite discretization of the domain for numerical

simulation artificially takes areas of measure zero, such
as the sink at x = �1 and increases their influence to
areas of non-zero measure. That is, orbits for short time
periods may land very near a sink. On the next time
step, due to their proximity near the sink their small
movement again lands them in the same bin, this creates
the appearance of a fixed point. This results in the de-
crease of the slope at t = 12 in Fig. (2). Here the PDFs
overlap once they have landed in the bin which has the
x = �1 fixed point. Figure (3) shows two consecutive
PDFs near x = �1. Since only part of the orbits are
able to leak out of the Bin containing x = �1 the PDFs
overlap on subsequent time steps between �1 and ap-
proximately �0.75, thus also occupying Q

w

. This results
in the slope of �L(t) < 1. Yet since the rate in which
orbits leave the bin that includes x = �1 is constant,
the reduced slope is also constant. The constant slope
is equivalent to the system taking the path of minimum
available work through Eq. (10).

To understand how the initial position x0 and the un-
stable fixed points are related to L, we plot in Fig. (4)
the total change in L starting from di↵erent initial delta
functions uniformly spread over the domain. The to-
tal change in L between t = 0 and the final time when
the evolution reaches its invariant density varies with
the initial position x0. Interestingly, the total change
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−1 −0.95 −0.9 −0.85 −0.8 −0.75 −0.7
0

0.005

0.01

0.015

0.02

0.025

0.03

x

p
(x
)

Probability at two time steps

FIG. 3: P (x, 13) plotted in black and p(x, 14) is plotted in
red with the dashed line.

in L takes the minimum value for the initial ensem-
bles starting from or quickly entering the two unstable
fixed points x = �1, 1/2. Some of these initial condi-
tions x0 = [�1,�0.96,�0.708,�0.5, 0, 0.5, 0.708, 0.96, 1]
are marked with the circles in Fig. (4). All of these ini-
tial conditions reach fixed points in 5 iterations or less.
Since L represents the statistical distance between the
initial PDFs and the final, invariant density, this means
that the unstable fixed points are what is most e�ciently
converting available work into wasted work such as heat.
Phrased another way, the fixed points reduce the infor-
mation of the PDF, bringing each PDF nearer to the in-
variant density, which is the distribution with the highest
disorder [9]. If one wished to then prolong the distance to
a stationary distribution or conversely find the shortest
path to said distribution, one simply finds the path that
rarely (or quickly) comes into the vicinity of an unstable
fixed point.

There are more complicated paths the system can take
to the stationary distribution than those presented above.
For instance, starting at x0 = 0.7071 gives us Fig. (5),
where we can see four main phases involved in its evolu-
tion. The first is again only occupying Q

p

for 0 < t  4.
For 4 < t < 7, the orbits all fall into the bin that includes
x = �1. This does not contradict the results in Section
2 where we showed that for a system governed by an ir-
reducible operator �L(t) > 0 out of equilibrium. For if
one were to build an operator from the paths the system
has taken it would indeed be reducible. For 7 < t  16
the orbits have escaped the attractor and the slope is
again less than one. Finally the system quickly reaches
the stationary distribution for t > 16.

−1 −0.5 0 0.5 1
6
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11

12

13

14

x

L
to
ta
l

Total L as a function of intial condition

FIG. 4: The evolution of L as a function of time
for many initial conditions spread over the domain.
Most initial conditions travel a distance of between 13
and 16 before reaching p0(x). The points x0 =
[�1,�0.96,�0.708,�0.5, 0, 0.5, 0.708, 0.96, 1] whose initial
conditions are marked with circles, start at or quickly occupy
the bin of a fixed point and thus reach p0(x) in a far shorter
distance.
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1

2

3

4

5

6

7

8
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t

L

FIG. 5: The evolution of L starting from xo = 0.7071. The
evolution is divided up into four main phases. 0 < t  4,
all x 2 Q

p

, 4 < t  7 all orbits are in the bin that holds
the x = �1 fixed point, though the operator that would be
made from the orbits is reducible. 7 < t  16, �L(t) < 1 as
the PDFs overlap and the information changes. t > 16 the
system settles into p0(x).

CONCLUSION

In this paper we have investigated both theoretically
and numerically the information length using our set the-
oretic approach. We have shown that dL

dt

> 0 is guaran-
teed for systems out of equilibrium as long as the system
is evolved under an irreducible operator.
The two sets that contribute to L are Q

p

which is
the amount of probability not being used in the systems
evolution. Due to conservation of probability, when one
PDF does not intersect with the PDF at the next time
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step only set Q

p

is occupied and �L(t) = 1, meaning
the system has no correlation with itself in time. When
the system’s PDFs start intersecting at the two subse-
quent times we have non-zero Q

w

and the rate of change
in L decreases in time. This is because the available
work attributed at each state (measured with DS) is re-
duced through the conversion of available probability in
Q

p

. The logistic map was used to corroborate our re-
sults. An interesting result of this simulation is that the
system almost always follows the minimum path. The
only time it appears to deviate from this is when the sys-
tem is transitioning from a non-stationary distribution
that fills the entire phase space to the invariant distribu-
tion. We also showed the special role of unstable fixed
points as the most e�cient areas of state space to convert
a non-equilibrium distribution into the invariant density
for the logistic map. This curious result may warrant
further investigation as to the scope of its generality in
other systems. Future work will also include a more de-
tailed investigation between the total change in L and
the structure of attractors (e.g. various unstable orbits).

We emphasize that our set methodology capitalizes on
the attributes of the information length lending strong
generality to the systems that can be studied while illus-
trating the relationship between the distance a system
travels in state space and the available from that evolu-
tion. This is an improvement on other methods that rely
on assumptions such as that of detailed balance, distinct
PDFs (such as Gaussian, etc) or ergodicity in the system.
S.B. Nicholson would like to thank Stephen Cha�n for
his many useful discussions.
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