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ABSTRACT

To elucidate the influence of shear flow on the generation of magnetic fields through the modification of turbulence
property, we consider the case where a large-scale magnetic field is parallel to a large-scale shear flow without direct
interaction between the two in the kinematic limit where the magnetic field does not backreact on the velocity. By
nonperturbatively incorporating the effect of shear in a helically forced turbulence, we show that turbulence intensity
and turbulent transport coefficients (turbulent viscosity, α and β effect) are enhanced by a weak shear, while strongly
suppressed for strong shear. In particular, β is shown to be much more strongly suppressed than α effect. We discuss
its important implications for dynamo efficiency, i.e., on the scaling of the dynamo number with differential rotation.
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1. INTRODUCTION

It is now widely accepted that astrophysical and geophysical
magnetic fields are not the remains of a fossil field created during
the formation of planets or stars (as they would have decayed
on a timescale much shorter than their current lifetime), but are
self-excited by motions of conductive fluid (for instance, molten
iron within the outer liquid core for the Earth and conducting
plasma for the Sun). The evolution of a magnetic field B in a
conducting fluid V is governed by the induction equation,

∂tB + V · ∇B = B · ∇ V + η∇2B and ∇ · B = 0, (1)

where η is the ohmic diffusivity. The first term on the right-hand
side of Equation (1) is the stretching of magnetic field lines by
gradients of the velocity field.

While laminar flows that can generate magnetic fields (dy-
namo) have been known for a long time, the effect of turbu-
lence on the generation of large-scale coherent magnetic field
remains controversial. The main problem is that turbulence tends
to create magnetic field at small scales (i.e., scale comparable to
the original velocity field), while observations of astrophysical
magnetic fields (for instance galaxies) reveal coherent magnetic
field on a scale much larger than the fluctuating velocity field.
Theories, such as mean-field dynamo (Moffatt 1978; Krause &
Rädler 1980), have investigated the necessary ingredients for
large-scale field generation. In the framework of mean-field dy-
namo, the magnetic and velocity fields can be decomposed into
mean and fluctuating parts: B = 〈B〉+b and V = 〈V〉+v, where
〈•〉 stands for an average on the realization of the small-scale
fields. Substitution of this decomposition into Equation (1) and
averaging yield the following equation for the mean magnetic
field:

∂t 〈B〉 + 〈V〉 · ∇〈B〉 = 〈B〉 · ∇ 〈V〉 + η∇2〈B〉 + ∇ × E . (2)

The first term on the right-hand side of Equation (1) represents
the stretching of magnetic field lines by gradient of the mean
flow (∇ 〈V〉) and is called the Ω effect. It is an efficient
mechanism to create toroidal field from a poloidal field in
a system with differential rotation (Moffatt 1978). The term
E = 〈v × b〉 is the electromotive force, which is often taken
to be linear in the mean magnetic field (〈B〉). In the case of an

isotropic turbulence, this can be simplified as

Ei = α〈Bi〉 − β(∇ × 〈B〉)i + · · · . (3)

The structure of the electromotive force permits the possibility
of other mechanisms for the amplification of the large-scale
magnetic field besides the Ω effect. The one that has been
discussed most is the α effect, the first term on the right-hand
side of Equation (3). This has been shown to generate a magnetic
field at large scale for a helical turbulence. Thus, it is a perfect
candidate to explain magnetic fields in systems influenced by
Coriolis force (which produces a net helicity) such as in stellar
convection zones. This type of dynamo is thus classified as αΩ
if the Ω effect (measured by the strength of the shear Ω in our
notations) is stronger than the α effect, or α2 type if the α effect
dominates over the Ω effect. The second term on the right-hand
side of Equation (3) is the turbulent diffusivity which adds up
to the molecular diffusivity η. Consequently, if β is positive, it
inhibits the growth of magnetic field.

Recently, numerical simulations have shown dynamo action
on a large scale in nonhelical turbulence in the presence of
shear (Yousef et al. 2008). This is an interesting result as the
α effect is often thought to vanish in a turbulence without
helicity. Various mechanisms have been invoked to explain
this large-scale dynamo: stochastic α effect (Proctor 2007),
shear amplification of small-scale dynamo (Blackman 1998),
magnetic effect driven by current helicity flux (Vishniac & Cho
2001) or negative diffusivity (Urpin 2002). Another possibility
is the shear-current effect (Rogachevskii & Kleeorin 2003)
which appears in a turbulent flow with a mean shear flow. In
that case, the expression of the β coefficient can be rewritten
βijk = −βT εijk +Fijk(∇U0), where βT is the turbulent magnetic
diffusion, while the second term proportional to shear ∇U0 acts
as a source of magnetic field (Rogachevskii & Kleeorin 2003). It
is thus of prime importance to investigate how the electromotive
force (and consequently the α and β coefficients) depends on
a large-scale shear flow (Rogachevskii & Kleeorin 2003, 2004;
Rädler & Stepanov 2006; Brandenburg et al. 2008). In all these
previous studies, strong shear is conductive to dynamo as it
creates magnetic energy via the Ω effect, acts as a source
of magnetic field (e.g., via the shear-current effect), causes
instability (Tobias & Hughes 2004), etc.

One interesting problem, which has not been investigated
by most previous authors, is the effect of a stable shear
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Figure 1. Sketch of the effect of shear on a turbulent eddy.

flow on turbulent transport through the modification of the
properties of turbulence alone, without direct influence on 〈B〉
(i.e., no Ω effect, shear-current effect). A strong shear flow,
without altering 〈B〉 directly, can reduce turbulent transport
as turbulence becomes weak by shear stabilization (Burrell
1997). This is basically because shear advects turbulent eddies
differentially, elongating and distorting their shapes, thereby
rapidly generating small scales which are ultimately disrupted
by molecular dissipation on small scales (see Figure 1). As
a result, turbulence level as well as turbulent transport of
various quantities can be significantly reduced compared to
the case without shear (Kim 2005, 2006; Leprovost & Kim
2006). In particular, in the case when a stable shear flow is
parallel to the magnetic field, a dramatic quenching of turbulent
magnetic diffusion (β effect) was clearly shown in a recent
numerical simulation of two-dimensional MHD turbulence
(Newton & Kim 2008). In three-dimensional MHD turbulence,
by considering a stable shear flow parallel to a uniform large-
scale magnetic field, Leprovost & Kim (2008) theoretically
predicted that the α effect is quenched by shear as well as
magnetic field. In particular, in the kinematic case (for weak
magnetic field), the α effect was shown to be reduced as
flow shear A increases with the scaling A−5/3. However, to
understand fully the effect of shear on the dynamo process, it
remains to compute its effect on the turbulence diffusion of
magnetic field, i.e., the β effect, by considering a nonuniform
magnetic field. This is what we do in the remainder of this Letter.

In the kinematic limit, the backreaction of the magnetic field
on the velocity is neglected. From the physical point of view,
this amounts to considering a very weak magnetic field and
ignoring the Lorentz Force on the fluid which is quadratic in
the magnetic field. For an incompressible conducting fluid, the
resulting equations of motion are

∂tV + V · ∇V = − ∇p + νΔV + f ,

∂tB + V · ∇B = B · ∇V + ηΔB , (4)

∇ · V = ∇ · B = 0 .

Here, B is the Alfvén speed, p is the total (hydrodynamical
+ magnetic) pressure, and f is a small-scale forcing. To study
the effect of shear flows and magnetic fields on small-scale
turbulence, we prescribe a large-scale flow of the form U0 =
−xAey and a sheared large-scale magnetic field B0 = (B0 −
Bx)ey. B0 has been chosen parallel to U0 so that there is no
direct interaction between the two fields, e.g., excluding the
Ω effect in our study (in contrast with the case considered by

Yousef et al. 2008; Schekochihin et al. 2008, etc.). To solve
the equations for the fluctuating velocity field, u = V − U0,
and magnetic field, b = B − B0, we use the quasi-linear
approximation assuming that the interaction between fluctuating
fields is negligible compared to the interaction between large and
small-scale fields. The equations for the fluctuating fields can
then be written as

∂tu + u · ∇U0 = −∇p + νΔu + f ,

∂tb + u · ∇B0 + U0 · ∇b = b · ∇U0 + B0 · ∇u + ηΔb , (5)

∇ · u = ∇ · b = 0 .

In the following, we shall assume a unit magnetic Prandtl
number (ν = η) and introduce a time-dependent Fourier
transform (Kim 2005):

Y (x, t) = 1

(2π )3

∫
d3kei[kx (t)x+kyy+kzz]Ỹ (k, t) .

Transforming the time variable from t to τ = kx(t)/ky =
kx(t0)/ky + A(t − t0), Equation (5) can be written as

∂τ Ṽi − Ṽxδi2 = −ikyθip̃ − ξ (g2 + τ 2)Ṽi + f̃i ,

∂τ b̃i − RṼxδi2 = −b̃xδi2 + R∂τ Ṽi + iγ Ṽi − ξ (g2 + τ 2)b̃i , (6)

τ Ṽx + Ṽy + βṼz = τ b̃x + b̃y + βb̃z = 0 .

Here, R = B/A and γ = B0ky/A are the ratio of the
magnetic shear and constant magnetic field to the velocity shear,
respectively; β = kz/ky and g2 = 1 + β2; ξ = νk2

y/A and
θi = (τ, 1, β). Note that since the first equation of Equation (6)
does not involve the magnetic field, the solution to vi is the same
as in the hydrodynamical case (Kim 2005). Using the velocity
from Kim (2005), the magnetic fluctuations can be obtained
from the second equation of Equation (6) as

b̃x =
∫ τ

τ0

dt
fx(t)(g2 + t2)

A
eG(t,τ )

×
[

R
g2 + τ 2

+ iγ {T (τ ) − T (t)} − Rξ (τ − t)

]
, (7)

b̃z =
∫ τ

τ0

dt
fz(t)

A
eG(t,τ ) [R(1 − ξ{Q(τ ) − Q(t)}) + iγ (τ − t)]

− β

∫ τ

τ0

dt
fx(t)(g2 + t2)

A
eG(t,τ ) [R{I (t, τ ) − ξJ2} + iγ J1] .

Here,

G(t, τ ) = − ξ{Q(τ ) − Q(t)} , Q(x) = g2x + x3/3,

(8)

I (t, τ ) = 1

2g2

[
τ

g2 + τ 2
− t

g2 + t2
+ T (τ ) − T (t)

]
,

J1 =
∫ τ

t

I (t, x) dx , and J2 =
∫ τ

t

I (t, x)(g2 + x2) dx ,

where T (x) = arctan(x/g)/g. b̃y can be obtained using incom-
pressibility: b̃y = −τ b̃x − βb̃z.

Our main interest is in the total stress and the electromotive
force, which determine the growth/decay of the large-scale
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velocity field and the large-scale magnetic field, respectively.
First, the stress is S = 〈uxuy〉 − 〈bxby〉. This total stress
consisting of Reynolds stress 〈uxuy〉 and Maxwell stress 〈bxby〉
gives a turbulent viscosity νT in Navier–Stokes equation for
large-scale flows, which enhances the molecular viscosity to
ν + νT . For the assumed shear flow U0 = −Ax, the turbulent
viscosity is given by S = νT A. Second, for the magnetic field
considered here, the electromotive force reduces to

Ey = 〈uzbx − uxbz〉 = αyyB0 , (9)

Ez = 〈uxby − uybx〉 = αzyB0 − βB .

Note here that only three coefficients αyy , αzy , and β are
nonvanishing in our configuration. In particular, phenomena
such as the Ω × J (Rädler & Stepanov 2006) and shear-current
effects (Rogachevskii & Kleeorin 2003), which have been
advocated to generate magnetic field for nonhelical turbulence
subject to rotation and shear as noted previously, are absent
here (in contrast with the simulations of Yousef et al. 2008).
Note that a shear-current effect could be studied by using a
similar analysis but assuming the large-scale magnetic field to
depend on z rather than x, which will be addressed in a future
contribution.

To calculate the correlation functions involved in the transport
coefficients, we consider an incompressible forcing which is
spatially homogeneous and temporally short correlated with the
correlation time τf . Specifically, in Fourier space, the correlation
function of the forcing is taken as

〈f̃i(k1, t1)f̃j (k2, t2)〉 = τf (2π )3δ(k1 + k2) δ(t1 − t2)φij (k2) ,
(10)

where the tilde denotes a Fourier transform with respect to the
spatial variable. As noted previously, the α effect can be linked
to the helicity of the turbulent flow. Consequently, we consider
a forcing with both a symmetric part (with energy spectrum E)
and a helical part (with helicity spectrum H) given by

φlm(k) = E(k)

(
δlm − klkm

k2

)
+ iεlmpkpH (k) . (11)

In the following, the turbulence intensity, turbulent viscosity and
α effect are expressed in terms of their values in the absence of
shear or magnetic field, e0, ν0, α0, and β0, which can be shown
to be

e0 = τf

(2π )2

∫ +∞

0
dk

E(k)

ν
,

ν0 = τf

(2π )2

∫ +∞

0
dk

E(k)

5ν2k2
, (12)

α0 = − τf

(2π )2

∫ +∞

0
dk

H (k)

6ν2
,

β0 = τf

(2π )2

∫ +∞

0
dk

E(k)

6ν2k2
.

Using equations for velocity in Kim (2005) and Equation (7)
and after a long algebra following Kim (2005), we can find
the turbulent intensity, stress, and the electromotive force.
Omitting the details, here we provide the results only for the
limiting case of a weak (ξ = νk2

y/A � 1) and strong shear
(ξ = νk2

y/A � 1).

First, in the case where the shear is weak compared to the
diffusion rate (ξ � 1), we obtain

〈u2
x〉 ∼ 2e0

3

[
1 +

9ξ−2
∗

35

]
,

〈u2
z〉 ∼ e0

[
1 +

3ξ−2
∗

70

]
,

〈b2
x〉 ∼ e0

3

[
R2 +

γ 2ξ−2
∗

2
+

36R2ξ−2
∗

35

]
,

〈b2
z〉 ∼ e0

3

[
R2 +

γ 2ξ−2
∗

2
+

2526R2ξ−2
∗

715

]
, (13)

νT ∼ ν0

[
1 +

4ξ−2
∗

21

]
,

αxy ∼ α0
ξ−1
∗
5

,

αyy ∼ α0

[
1 +

33ξ−2
∗

70

]
,

β ∼ − β0

[
1 +

26ξ−2
∗

35

]
.

Note that the turbulent viscosity νT and the β effect are
proportional only to the energy part of the forcing, while the
α effect is proportional only to the nonreflectionally symmetric
part of the forcing. This is consistent with the expectation that
the α effect is due to helical flow, which results from the helical
forcing with helicity spectrum H. Equation (3) shows that (in
the weak shear limit) all the turbulent coefficients increase with
shear above their values without shear. The increase in β with
shear seems to be in agreement with numerical results shown
in Figure 1 of Mitra et al. (2009) obtained in a slightly different
configuration of U0 and B0. Equation (3) also shows that αxy �
αyy , i.e., the electromotive force is primarily parallel to the
large-scale magnetic field (i.e., in the y direction). Furthermore,
without shear (ξ−1 = 0), we see that αxy = 0 showing that
this component of the α effect exists only for nonvanishing
shear. This is due to the fact that shear induces an anisotropic
turbulence (see, e.g., Leprovost & Kim 2007) which in turn
triggers off-diagonal components in the α tensor. Note that a
different result was obtained by Kim & Dubrulle (2001) who
found in two dimensions that the turbulent diffusivity decreases
with shear. This difference comes form the fact that Kim &
Dubrulle (2001) considered an anisotropic forcing, physically
different from the isotropic forcing considered here.

In the opposite limit of strong shear (ξ = νk2
y/A � 1),

turbulence intensity and transport coefficients are obtained as
follows:

〈u2
x〉 ∼ ξe0 , 〈u2

z〉 ∼ ξ 2/3e0 ,

〈b2
x〉 ∼ ξ 8/3e0 , 〈b2

z〉 ∼ ξ 2e0 , (14)

νT ∼ ξ 2ν0 , β ∼ ξ 7/3ν0 ,

αxy ∼ ξ 4/3α0 , αyy ∼ ξ 5/3α0 .

These results show that in the limit of strong shear (compared
to diffusion), all the turbulent quantities are reduced by shear
with scalings given above. Note that the magnetic energy 〈b2〉
is more reduced than kinetic energy 〈u2〉. Furthermore, both
the velocity and magnetic field in the direction of the shear
are reduced more severely than in the perpendicular direction,
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manifesting the anisotropic turbulence induced by shear. It is
because flow shear directly influences the component parallel
to itself (i.e., the x component in Figure 1) via elongation while
only indirectly the other two components (i.e., the y and z
components in Figure 1) through enhanced dissipation. The
electromotive force shows that the x-component of the α effect
(αxy) is now larger than the y one (αyy). This is again because,
as the shear increases, the anisotropy in the flow increases
enhancing the off-diagonal component αxy strongly. Finally,
the turbulent diffusivity β is reduced as ξ 7/3 more severely than
the α effect (αyy ∝ ξ 5/3), which has interesting implications
for the dependence of the dynamo number (characterizing the
efficiency of the dynamo) with differential rotation, as discussed
in the following.

To summarize, we found that the β effect is reduced as A−7/3,
with a much stronger dependence on the shear than the α effect
(αyy ∝ A−5/3). This result can have interesting implications for
solar dynamo which is often envisioned to take place at the base
of the convection zone where the shear is quite strong (the so-
called tachocline), e.g., to compensate for the weakness of the
interface dynamo (Dikpati et al. 2005). In particular, quenching
by shear should be incorporated when assessing the efficiency of
dynamo, e.g., the dynamo number given by D = αΩL3/(η+β)2,
where Ω is the differential rotation (corresponding to flow shear:
Ω = A in this Letter) and L is a characteristic scale of the
system. While it is conventionally thought that the dynamo
efficiency increases proportionally to shear (Kulsrud 1999) for
an αΩ dynamo, our result suggests that the relation between
the dynamo efficiency and the shearing rate is unlikely to be so
simple. For instance, in the case of the αΩ dynamo, the dynamo
number D becomes

D = αAL3/(η + β)2 ∝ A4 , (15)

which increases with shear much faster than what has been
conventionally thought. In the case of an α2 dynamo, we obtain
a different scaling:

D = α2L4/(η + β)2 ∝ A4/3 . (16)

In the case of α2 dynamo, it is also interesting to examine how
the growth rate of the magnetic field scales with shear: using
standard formula for the maximum growth rate (see Moffatt
1978, for instance), we obtain the estimate σ ∝ α2/β ∝ A−1.

It is interesting to note that our results are very different from
the recent works by Yousef et al. (2008) and Schekochihin et al.
(2008) where the large-scale magnetic field is amplified with
a growth-rate scaling as A2 or A. This is because, in these
works, the dynamo instability is triggered by direct interaction

between the large-scale magnetic field (with both components
parallel and perpendicular to the velocity field) and velocity
field (i.e., 〈B〉 · ∇〈U〉 �= 0). Note that in these works, the shear
flow is assumed to be weak compared to the diffusion rate,
corresponding to our weak shear limit (ξ � 1). It would be
interesting to study the opposite limit of a strong shear (ξ � 1).

Finally, we showed that turbulence and transport are enhanced
for weak shear while quenched for strong shear. Therefore,
there is a critical value of the shear for which the turbulence
intensity and transport are maximum. As shown by Newton &
Kim (2007), this can be due to resonance between the turbulence
and shear flow when the characteristic frequency of turbulence
matches the advection by shear flow (i.e., the Doppler-shifted
frequency vanishes).

We thank A. Brandenburg for valuable comments. E.K.
acknowledges the hospitality of Nordita where part of this work
was performed. This work was supported by U.K. STFC Grant
ST/F501796/1.
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