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ABSTRACT 

The diffusion of unidirectional magnetic fields by two-dimensional turbulent flows in a weakly ionized gas is 
studied. The fields here are orthogonal to the plane of fluid motion. This simple model arises in the context of 
the decay of the mean magnetic flux–to–mass ratio in the interstellar medium. When ions are strongly coupled 
to neutrals, the transport of a large-scale magnetic field is driven by both turbulent mixing and nonlinear, ambipolar 
drift. Using a standard homogeneous and Gaussian statistical model for turbulence, we show rigorously that a 
large-scale magnetic field can decay on turbulent mixing timescales when the field and neutral flow are strongly 
coupled. There is no enhancement of the decay rate by ambipolar diffusion. These results extend the Zeldovich 
theorem to encompass the regime of two-dimensional flows and orthogonal magnetic fields, recently considered 
by Zweibel. The limitation of the strong coupling approximation and its implications are discussed. 

Subject headings: diffusion — ISM: magnetic fields — magnetic fields — turbulence 

1. INTRODUCTION 

In the interstellar medium, where the bulk of fluid consists 
of neutral gas, magnetic fields appear to be constantly lost from 
the fluid—a phenomenon often referred to as ambipolar dif­
fusion (Spitzer 1978). This is simply because magnetic fields 
move with (or are tied to) ionized gases while there is slippage 
between the motion of ionized and neutral gases. For parameter 
values typical of interstellar clouds, however, the ambipolar 
drift appears to be too slow (roughly by 2 orders of magnitude) 
to explain the large dispersion in the correlation between den­
sity and magnetic field strength (Zweibel 2002). This naturally 
motivates us to explore other transport processes. In particular, 
the interaction of nonlinear, ambipolar diffusion and turbulent 
advective mixing is a question of obvious relevance. In this 
Letter, we seek to examine the interplay of these two processes 
and to determine the bound on the turbulent transport of mag­
netic fields. 

While it is well known that turbulent mixing leads to a rapid 
diffusion of passive scalar fields, this is no longer the case for 
the diffusion of even a weak magnetic field (far below equi­
partition) in a fully ionized gas (Cattaneo & Vainshtein 1991; 
Gruzinov & Diamond 1994) because of the back-reaction of 
the Lorentz force. In a weakly ionized gas, such as in the 
interstellar medium, the problem becomes more complicated 
since turbulent mixing also depends on the collision frequency 
between ions and neutrals as well as on the strength of magnetic 
fields. This is because in a weakly ionized gas, ions undergo 
the frictional damping due to collisions with neutrals, which 
effectively reduces the effect of the Lorentz force (or Alfvén 
waves). In fact, Kim (1997) demonstrated that in two spatial 
dimensions, the diffusion is still reduced below its kinematic 
value but that the critical strength of a large-scale magnetic 
field above which the diffusion is reduced can be larger [by a 
factor of (n t)1/2 , where n and t are the ion-neutral collision i-n i-n 

frequency and the correlation time of neutrals, respectively] as 
compared with what happens in the case of a fully ionized gas. 

For simplicity, in this Letter, we consider the mixing of 
unidirectional magnetic fields by two-dimensional flows that 
are perpendicular to these fields. Note that this configuration 
is different from traditional two-dimensional MHD, in which 
the fields and flows are coplanar. To maintain this geometry, 

it is necessary to make the strong coupling approximation 
(Spitzer 1978; Shu 1983; Zweibel 1988) by assuming that the 
drift between ions and neutrals is balanced by the Lorentz force 
on ions because of frequent ion-neutral collisions (frictional 
damping). Our work is the generalization of Zweibel (2002), 
who considered the diffusion of magnetic fields by highly ide­
alized flows made up of an ensemble of hyperbolic stagnation 
points. Since it is not altogether clear how to relate these flows 
to realistic turbulence models, we take a statistical approach 
here and rigorously derive the diffusion rate by assuming a 
standard scenario of Gaussian and homogeneous turbulence. 
Note that it is possible that this simplified statistical model may 
fail when the nonlinear, ambipolar diffusion is dominant, in 
which case sharp frontlike structures are generated (Branden­
burg & Zweibel 1994). 

Under the strong coupling approximation, magnetic fields 
are advected passively by neutral flows and diffused by non­
linear ambipolar drift (in addition to the usual ohmic diffusion). 
Thus, in view of this nonlinear diffusion, one may naively 
expect that a large-scale magnetic field would decay at a rate 
that is significantly enhanced over the turbulent (kinematic) 
value. We show, however, that it is not the case because of 
strong fluctuations (see § 3). Specifically, in deriving a gen­
eralized Zeldovich theorem (which relates the macroscopic 
quantity [transport] to microscopic dissipation) for a weakly 
ionized gas in two-dimensional motion but containing magnetic 
fields orthogonal to the plane of motion, we show that the flux 
transport due to the advection by neutral flows has an upper 
bound given by a kinematic value while the nonlinear diffusion 
arising from ambipolar drift is insignificant. The remainder of 
the Letter is organized as follows. We present our model in 
§ 2 and derive a diffusion rate in § 3. Section 4 contains the 
summary and discussion of the Letter. 

2. MODEL 

∼ r k r n /n is large; In a weakly ionized gas with r n i, i-n n-i 

i.e., n /n p r /ri k 1. Here r, ii-n n-i n rn, and r are the density of 
the bulk of fluid, neutrals, and ions, respectively, and ni-n and 
nn-i are ion-neutral and neutral-ion collision frequencies, re­
spectively. Infrequent neutral-ion collisions permit us to pre­
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scribe the motion of neutral gas, provided that 

B2 ni-n 2 2(= v ) K v , tn K 1, (1)A n-i4pr ni n-i 

where v ∼ vn and t are the neutral velocity and correlation time, 
respectively, and vA p B/ (4pr)1/2 is the Alfvén speed with 
respect to the bulk of the fluid (see Kim 1997). Given a neutral 
velocity, the ion velocity follows simply from the strong cou­
pling approximation as v p v + [(V x B) x B]/4pr n . Note i n i i-n 

here that the strong coupling approximation is valid when 

n 1 ñ ,  (2)  i-n A 

1/2 1/2 where ñ p kB/ (4pr ) p kv (n /n ) is the Alfvén fre-A i A i-n n-i 

quency defined by using the density of the ion (cf. eq. [1]), 
with k being the wavenumber. When this condition is violated, 
as is likely to be case on small scales because of the high fre­
quency of Alfvén waves, the drift between ion and neutral mo­
tions is no longer balanced by the Lorentz force, thereby re­
quiring a self-consistent treatment of ion dynamics (Kim 1997). 

We consider the mixing of unidirectional magnetic fields [say, 
B p B(x, y)ẑ] by incompressible neutral flows v(x, y) in the x-
y plane perpendicular to these fields. That is, we treat the two-
dimensional motions of three-dimensional fields. Note that our 
problem is somewhat similar to that in the Goldreich-Sridhar 
model (Goldreich & Sridhar 1997), which also considers the 
perpendicular mixing of anisotropic structures. The evolution 
equation for the strength of the magnetic field in this geometry 
can be written in the following form (see also Zweibel 2002): 

(at + v · V)Q p a∇ 7 (Q2 ∇Q). (3) 

Here Q { B/r a, { r/4pnn-i, and the (small) ohmic diffusivity 
has been ignored. The second term on the left-hand side of 
equation (2) represents the advection by neutral flow, while the 
term on the right-hand side is the nonlinear diffusion by am-
bipolar drift. The ratio of the effects of these two can be mea­
sured by the ambipolar Reynolds number RAD p vl/lT p 

2 2(v /vA)(tnn-i ). Here vl p hk is the kinematic diffusion rate, and 
l p vA

2/n is ambipolar drift due to total magnetic fields. Note T n-i 

that RAD can be larger or smaller than unity while still being 
consistent with equation (1). The question is then what the total 
diffusion rate is in the presence of these two (advection and 
ambipolar drift) effects. Would they act together to significantly 
enhance the diffusion rate over the kinematic value hk? To 
answer this question, we assume a Gaussian, homogeneous 
turbulence and evaluate the diffusion rate by using a quasi­
linear closure (for instance, see Moffatt 1978) in the next sec­
tion. The observant reader is no doubt puzzled by the fact that 
equation (3) is two-dimensional. The motivation for this sim­
plification is that turbulence with k · B0 ( 0 will bend magnetic 
field lines, resulting in its conversion to Alfvén waves and 
radiation along B0. Such fluctuations are intrinsically less ef­
fective at transporting Q since much of their energy is expended 
on bending. However, flutelike eddies, with k · B0 p 0, are 
energetically favored for transport and also remain correlated 
with the flux tube being transported for a longer time. Thus, 
the incorporation of eddies with a finite wavenumber along B0 

(i.e., k · B0 ( 0) will reduce the transport of magnetic fields. 

3. DIFFUSION RATE 

We employ the decomposition of Q into large-scale AQS and 
small-scale Q ' components and assume that flows are on small 
scales ( AvS p 0). The equations for AQS and Q ' are then easily 
obtained as follows: 

' 2atAQS + V · AvQ S p a∇ 7 AQ ∇QS,  (4)  

'atQ + v · VAQS p aV · F,  (5)  

where 

'2 '2 ' 2 'F { (Q  AQ S)∇AQS + 2Q AQS∇AQS + AQS ∇Q 
'2 ' '2 ' ' ' ' '+ Q ∇Q  AQ ∇Q S + 2AQS(Q ∇Q  AQ ∇Q S). 

As can be seen from equation (4), the determination of the dif­
'fusion rate requires the computation of the flux Gi p AviQ S and 

the cubic nonlinear term in Q. To compute the cubic nonlinear 
term, as well as other nonlinear terms that appear in the following 
analysis, we assume that the statistics of fluctuations are Gaussian 
and that the turbulence is homogeneous. Then 

2 2 '2AQ ∇QS p (AQS + AQ S)∇AQS.  (6)  

On the other hand, the flux Gi is evaluated by assuming sta­
tionary turbulence. We first multiply equation (5) by vi and then 
take the average to obtain 

hk hk
G p  a AQS p  a AQS.  (7)  i 2 2 i  1 i1 + atk AQ S 1 + Reff AD 

Here h p tAv2 S/2 = vl is the kinematic diffusion rate; k =k eff 

1/l is the inverse of the characteristic scale of fluctuating mag­
2 '2netic fields; RAD p hk /lT, where lT p (AvA S + AvA S)/nn-i; and 

t is the correlation time of fluctuating magnetic fields, which 
is assumed to be comparable to that of neutral velocity. Note 
that lT and RAD, now defined in terms of averaged quantities, 
include both mean and fluctuating components. In deriving 

'2 2equation (7), we used AvQ S p 0 and Av v S p d Av S/2 by as­i j  ij 

suming an isotropic turbulence. Equation (7) states how much 
flux is transported from large to small scales, thereby leading 
to the decay of AQS. Interestingly, the diffusion rate by advec­
tion,  Gi /aiAQS, has an upper bound given by kinematic dif­
fusion hk and becomes smaller as RAD decreases. This is because 
that ambipolar drift “renormalizes” the correlation time so as 
to reduce the transport. Thus, it is clear that the kinematic 
turbulent flux is an upper bound on Gi. 

In the case of stationary turbulence, the flux transport is 
balanced by dissipation on small scales as 

2 '2 ' 2 ' 2Ga AQS p  a(AQS + AQ S)A(aiQ ) S p  l A(aiQ ) S.i i  T  (8)  

This was obtained by multiplying equation (5) by Q ' and then 
taking the average. Equation (8), together with equation (7), 
establishes the relation between small- and large-scale fields as 

hk 2 ' 2(a AQS) p l A(a Q ) S.  (9)  
 1 i T i1 + RAD 

Equation (9) is a generalized Zeldovich theorem for a 
weakly ionized, strongly coupled gas. It gives the relation 
between the mean field and its gradient and relates the mac­
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roscopic quantity (i.e., flux transport) to microscopic dis­
sipation. Note that the original Zeldovich theorem in a fully 
ionized gas can be recovered by replacing the ambipolar 
drift by ohmic diffusion h (l T r h) and by taking RAD

1 p 
' 2 20, which gives A(a Q ) S/(a AQS) p h /h p R R  is the (i i k m m 

magnetic Reynolds number). Of course, the situation dis­
cussed here is three-dimensional, with fields orthogonal to 
the plane of two-dimensional motion. 

Finally, the (total) diffusion rate of AQS follows from equa­
tions (5)–(7) and equation (9) as 

hk F∇AQSF2 

hT p [1 + ] . (10) 1 ' 21 + RAD A(∇Q ) S 

Given in this form, hT illustrates the two complementary effects 
of ambipolar drift on diffusion—the first is the reduction of 
hT by the renormalization of t (the term RAD

1 ), and the second 
is the enhancement of hT by nonlinear diffusion (the second 
term in the square brackets). Due to the second effect, it is, in 
principle, possible that hT k hk. This, however, turns out to be 
very unlikely. To see this, we first estimate hT in an interesting 
and more relevant case in which RAD 1 1. 

When RAD 1 1, equation (9) leads to 

A(∇Q ' )2 S ∼ R (1 1), (11) 
F∇AQSF2 AD 

suggesting strong fluctuations. Equation (10) then becomes 

hT ∼ hk. (12) 

Thus, hT approaches the kinematic value hk. That is, the dif­
fusion cannot exceed the kinematic rate because of strong fluc­
tuations. Note that in this limit, the field is transported as an 
effectively passive scalar! 

We now look at a less interesting limit, RAD ! 1, in which the 
effect of turbulence does not play an important role. Note that 
in this limit, the strong coupling approximation can easily break 
down. This can be seen by rewriting the validity condition for 
the strong coupling approximation (eq. [2]) as R 1 1/(tn ).AD i-n 

That is, the smaller RAD (the stronger magnetic field), the easier 
it is to violate the strong coupling approximation. Thus, the 
results obtained in the limit RAD K 1 may not be consistent with 
this approximation. With this in mind, we reduce equation (9) 
to 

A(∇Q ' )2 S 2∼ RAD(! 1), (13) 
F∇AQSF2 

for RAD ! 1. Equation (13) indicates that to satisfy the station­
arity condition (eq. [9]), AQS2 1 AQ '2 S. This follows because the 
dissipation due to ambipolar drift on small scales is too large 
to be balanced by flux transport. However, as noted previously, 
the strong coupling approximation (which leads to the nonlinear 
diffusion) is likely to be invalid on small scales, especially 
when magnetic fields are strong. What should happen on small 
scales is the propagation of Alfvén waves rather than nonlinear 
diffusion. Alternatively put, when the full dynamics of ions is 
taken into account, stationary turbulence may still be possible 
even when AQS2 1 AQ '2 S. Now, the diffusion rate in this case 

(RAD ! 1) follows from equations (10) and (13) as 

hT ∼ hk /RAD p lT = AvA S
2/nn-i. (14) 

This is a somewhat expected result in the sense that for small 
RAD, the diffusion rate is set by the ambipolar drift. Our non­
trivial result is the observation that in this case, the ambipolar 
drift due to fluctuating magnetic fields must be negligible in 
order to maintain stationarity. 

4. SUMMARY AND DISCUSSION 

The problem of the transport of magnetic fields in the in­
terstellar medium is studied by incorporating the effect of tur­
bulence. Specifically, we consider the diffusion of unidirec­
tional magnetic fields in the presence of two-dimensional, 
incompressible, turbulent (neutral) flows perpendicular to these 
magnetic fields, embedded in a weakly ionized gas. By assum­
ing that the strong coupling approximation is valid on all scales, 
we compute the total diffusion rate of a large-scale magnetic 
field through a quasi-linear analysis. When the turbulence is 
homogeneous, stationary, and Gaussian, the diffusion rate hT 

is found to depend on RAD and the level of fluctuations (see 
eq. [10]), with ambipolar drift playing two complementary roles 
(see § 3). In particular, when RAD 1 1, hT is shown to be at 
most of the order of the turbulent rate hk p vl. In this case, 
the field is effectively a passive scalar. Interestingly, this sug­
gests that even in the strong coupling regime, it is unlikely that 
magnetic fields will diffuse at a rate faster than the simple 
kinematic value, in spite of the nonlinear diffusion operator. In 
the opposite case ( R ! 1), we demonstrated that h = l asAD T T 

long as fluctuations are negligible compared with the mean 
field. Note, however, that this limit may not be consistent with 
the strong coupling approximation. Therefore, our result not 
only confirms the main point of Zweibel (2002) but also puts 
it on a simple, rigorous foundation. 

The results of this Letter are applicable to any system 
with a neutral population and a weak magnetic field, such 
that the strong coupling approximation (vi p vn+ [(V x  
B) x B]/4pr n ) is valid. However, because of the assumed i i-n 

incompressibility of neutral flows, a more uniform loading 
of magnetic fields discussed in the Letter is basically due 
to the diffusion of magnetic fields in a constant density 
background. As the magnetic field diffuses while the density 
remains constant, the system progresses toward a state of 
more uniformly loaded magnetic fields. In the turbulent case 
with RAD 1 1, this mass-loading uniformization occurs by 
the turbulent cascade of magnetic energy (by diffusive mix­
ing) to small scale, where it is eliminated by ohmic dissi­
pation. This uniformization occurs in one large eddy turn­
over time, as one expects, since tun p � n tn p � n ln /vn p 

1/3 1/3 2/3 1/3 2/3 � (l /e l ) p (l /e ) [1/(1 a )] ∼ t . Here e is the n n n 0 0 

energy dissipation rate, and ln p aln 1 with a ∼ 2
1 was used. 

It is important to realize that the breakdown of flux freezing 
on small scales due to ohmic diffusion is critical to the 
uniformization of loading. Strictly speaking, our results can­
not be directly applied to star-forming regions where the 
compressibility of flows and gravity are crucial. Neverthe­
less, our results imply that the ambipolar drift in the tur­
bulent medium can make magnetically subcritical clouds 
supercritical and also that the turbulent mixing can unifor­
mize the loading of magnetic field lines on a large eddy 
turnover timescale. 

In the interstellar medium, the diffusion rate due to ambipolar 
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drift alone is too small (by a few orders of magnitude) to explain 
the observations. Given that RAD based on a large-scale mag­
netic field seems to be larger than unity, turbulent mixing per­
haps provides a mechanism by which the uniformity of the 
density and the strength of magnetic fields is achieved on the 
eddy turnover timescale. However, ions and neutrals are un­
likely to be strongly coupled on small scales because of the 
high frequencies of Alfvén waves, thereby invalidating the 
strong coupling approximation. Therefore, the complete answer 
to the problem ultimately requires the self-consistent treatment 
of ion dynamics. Furthermore, for a better estimate on RAD, 
some information on the strength of fluctuating magnetic fields 
is needed. For instance, when fluctuations are much stronger 
than mean fields, RAD based on fluctuations may be smaller 
than unity, and thus ambipolar drift alone may lead to a fast 

diffusion. Of course, even in this case, the validity of the non­
linear (ambipolar) diffusion may become questionable because 
of the breakdown of the strong coupling approximation. In 
either cases, the relaxation of the strong coupling approxi­
mation is expected to bring in the reduction of the diffusion 
since magnetic fields are no longer passively advected/distorted 
(Kim 1997). Of course, other effects, such as gravity, the de­
tailed microscale mechanism for dissipating magnetic energy, 
and turbulence intermittency, must be considered as well. A 
detailed study of this issue will be addressed in a future work. 

We thank E. G. Zweibel for helpful comments. E. K. and 
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grant FG03-88ER 53275. 
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