A study on helicopter main gearbox planetary bearing fault diagnosis
Zhou, L., Duan, F., Corsar, M., Elasha, F. & Mba, D.

Published PDF deposited in Coventry University’s Repository

Original citation:

DOI 10.1016/j.apacoust.2017.12.004
ISSN 0003-682X
ESSN 1872-910X

Publisher: Elsevier

This is an open access article under the CC BY-NC-ND license.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.
A study on helicopter main gearbox planetary bearing fault diagnosis

Linghao Zhoua*, Fang Duana, Michael Corsarb, Faris Elashac, David Mbad

a School of Engineering, London South Bank University, London, UK
b CSAIC, and Centre for Propulsion, Cranfield University, Milton Keynes, UK
c School of Mechanical, Automotive and Aerospace Engineering, Coventry University, UK
d Faculty of Technology, De Montfort University, Leicester, UK

\textbf{A B S T R A C T}

The condition monitoring of helicopter main gearbox (MGB) is crucial for operation safety, flight airworthiness and maintenance scheduling. Currently, the helicopter health and usage monitoring system, HUMS, is installed on helicopters to monitor the health state of their transmission systems and predict remaining useful life of key helicopter components. However, recent helicopter accidents related to MGB failures indicate that HUMS is not sensitive and accurate enough to diagnose MGB planetary bearing defects. To contribute in improving the diagnostic capability of HUMS, diagnosis of a MGB planetary bearing with seeded defect was investigated in this study. A commercial SA330 MGB was adopted for the seeded defect tests. Two test cases are demonstrated in this paper: the MGB at 16,000 rpm input speed with 180 kW load and at 23,000 rpm input speed with 1760 kW load. Vibration data was recorded, and processed using signal processing techniques including self-adaptive noise cancellation (SANC), kurtogram and envelope analysis. Processing results indicate that the seeded planetary bearing defect was successfully detected in both test cases.

1. Introduction

Helicopters have been extensively employed for various civil and industrial purposes in modern society. Their versatility comes from the capabilities of performing unique manoeuvres including direct take-off, landing and hovering to fulfil special needs during operations. A well-functioned main gearbox (MGB) contributes critically to helicopter’s airworthiness, i.e. the suitability for safety flight, because that MGB takes vitally important responsibilities to reduce high input speed generated from engines, providing appropriate torque to main rotors and other accessory systems. The working principle of MGB system determines that the friction heat and excessive mechanical forces applied to MGB key components are significant. MGB key components including shafts, planetary gears and bearings suffer from such harsh operational conditions, and are vulnerable to fatigue defects. Therefore, health and usage monitoring system (HUMS) is developed to monitor the health condition of MGB as well as other helicopter’s key components, aiming to enhance the helicopters’ operational reliability and functionality, support maintenance decision making, improve flight airworthiness and reduce overall maintenance costs.

The investigation of employing HUMS as the condition monitoring system for helicopters was initiated in 1982 \cite{1}. In 1990, the United Kingdom Civil Aviation Authority (UK CAA) made it mandatory to install Flight Data Recording (FDR) unit on medium and large civil helicopters to monitor their flight status. To this day, HUMS developed by companies and organisations including Airbus, GE Aviation, Goodrich, and Honeywell among many others are in service \cite{2}.

Generally, HUMS conducts helicopter health monitoring by recording vibration data to produce condition indicators (CIs). Anomalies of online CIs caused by defects will trigger the system alarms so that pilots can react accordingly. In-depth post-analysis is performed at ground station, where all CIs are checked for fault-related overflow, so that maintenance can be scheduled proactively. The implementation of HUMS has contributed to reducing helicopter accident rate without doubts. According to a survey conducted by International Helicopter Safety Team (IHST) on worldwide helicopter accident rate, it is evident that the accident rate has dropped from 9.4 accidents per 100,000 flight hours to approximately 6.5 accidents per 100,000 flight hours, from year 2005 to 2011 \cite{3}. Nevertheless, it is concerning that the HUMS does not perform reliably and effectively in detecting MGB planetary bearing defects \cite{4}. For example, official investigation for G-REDL accident carried out by Air Accidents Investigation Branch (AAIB) suggested that, root cause for this accident was planetary gear fracture, which was originated from the planetary bearing outer race \cite{5}. G-REDW accident happened in 2012 was caused by MGB lubrication system and emergency lubrication system failure, due to MGB vertical
bevel gear crack [6]. In 2016, helicopter LN-OJF crashed in Norway, post-analysis suggested this accident was resulted from fatigue fracture in one of the eight second stage planetary bearings, with clear similarities to the G-REDL accident [7]. In these and many other helicopter accidents where people were severely injured or even lost their lives, HUMS and CIs have failed to generate accurate warnings against MGB planetary bearing related defects. Therefore, successful diagnosis of planetary bearing defect in MGB could contribute profoundly to enhancing sensitivity of HUMS against such defect type, and improving helicopter flight safety.

Over the last two decades, significant research has been undertaken in the study of bearing fault diagnosis. In [8,9], Ho and Randall implemented self-adaptive noise cancellation (SANC) technique to separate deterministic gear mesh signals and non-deterministic bearing signals. Such technique was further evaluated extensively in [10–12]. Envelope analysis has been established as a benchmark technique to extract the diagnostic information hidden in high frequency resonances [13–15]. Antoni and Randall developed kurtogram based on the concept of spectral kurtosis (SK), and proposed using kurtogram as a frequency resonance detector in conjunction with envelope analysis [16]. Implementing the aforementioned techniques has undoubtedly

Table 1

MGB speed reduction ratios.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum input speed</td>
<td>23,000 rpm</td>
</tr>
<tr>
<td>Maximum output speed</td>
<td>265 rpm</td>
</tr>
<tr>
<td>Input shaft reduction ratio</td>
<td>1:2.87</td>
</tr>
<tr>
<td>Intermediate shaft reduction ratio</td>
<td>1:1.63</td>
</tr>
<tr>
<td>Bevel stage reduction ratio</td>
<td>1:2.05</td>
</tr>
<tr>
<td>1st Epicyclic module Ratio</td>
<td>1:3.10</td>
</tr>
<tr>
<td>2nd Epicyclic module Ratio</td>
<td>1:2.91</td>
</tr>
</tbody>
</table>

Table 2

Number of planetary bearings and their corresponding rollers.

<table>
<thead>
<tr>
<th></th>
<th>Planetary bearings</th>
<th>Number of rollers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Epicyclic module</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>2nd Epicyclic module</td>
<td>9</td>
<td>13</td>
</tr>
</tbody>
</table>

(a) 2nd Planetary gears/ bearings
(b) 2nd Epicyclic module ring and sun gears

Fig. 1. MGB internal configuration [5].

Fig. 2. MGB 2nd epicyclic module.
Fig. 3. Demonstration of MGB test rig.

Fig. 4. Schematic diagram of the test rig.

Fig. 5. Demonstration of accelerometers installation locations.

(a) Sensor installation side view (b) Sensor installation front view
achieved successes on diagnosing bearing fault, but most of these investigations were carried out on simulated data or experimental data taken from bearings in a relatively simplified system or test-rig. An actual operational helicopter MGB is a very sophisticated mechanical system, containing multiple speed reduction modules and planetary stages. Therefore, vibration data collected from helicopter MGB reflects complex mechanics of interactions between gears and bearings in MGB that can hardly be simulated. Diagnosis of planetary bearing defects in an operating MGB is considered to be more challenging in this regard.

To investigate planetary bearing defect diagnosis, valuable experimental vibration data was acquired from a helicopter MGB operated under two test cases, with emphasis on different test conditions in terms of defect sizes, operating speed and load.

2. Experimental rig and setup

2.1. Introduction on the main gearbox

A Category A Super Puma SA330 MGB was adopted for the experimental tests. In Fig. 1, the internal configuration of MGB is illustrated. The MGB has an input speed specification of approximately 23,000 rpm. The input speed from the engines is reduced via several gear reduction stages, reduction ratios are listed in Table 1.

To investigate planetary bearing fault diagnosis, defects were seeded on the outer race of the planetary bearing at 2nd epicyclic module in both test cases. Fig. 2(a) demonstrates 2nd epicyclic planetary bearings, which are driven by 2nd epicyclic sun gear and ring gear shown in Fig. 2b. Specifications of planetary bearings are documented in Table 2.

2.2. Test case 1

2.2.1. Experimental rig

Fig. 3 demonstrates the test rig designed for test case 1. The test rig consisted of a SA330 MGB, a speed-increasing gearbox, a DC motor and a dynamometer. The schematic diagram of the test rig is shown in Fig. 4. The DC motor is able to generate 3000 rpm speed. The speed-increasing gearbox connected with DC motor can significantly boost the speed up to 17,842 rpm to drive one of the MGB’s input shaft. The absorption dynamometer was installed on top of the 2nd epicyclic module, creating desired loading for MGB.

2.2.2. Sensor selection and installation

In this test case, 2 triaxial and 2 uniaxial accelerometers were installed to capture MGB’s vibration information. Originally, accelerometers with 100 mV/g high measuring sensitivity and 50 g measuring range were selected. However, preliminary test results showed that the amplitude of recorded vibration can reach approximately 500 g, which saturated the high sensitivity accelerometers. Therefore, uniaxial accelerometers PCB 352C03 and triaxial accelerometers PCB 356A43 were selected, which have 10 mV/g sensitivity and 500 g measuring range. All accelerometers were mounted at the MGB case externally.

The rules of placing sensors are platform/mission specific [17]. Generally, sensors should be installed as close as practical to the components they are intended to monitor, while not affecting mechanical structures of the components [18]. Fig. 5 shows the installation locations of the accelerometers. Two triaxial accelerometers were allocated to monitor epicyclic modules and input shaft (accelerometer 1 and 2, respectively). Other two uniaxial accelerometers were installed in the middle of the two epicyclic modules to provide comparative information. Table 3 describes above installation arrangements.

2.2.3. Test procedures

This test case was focused on detecting planetary bearing defects in their incipient stage, i.e. defects are localised. To insert incipient defects

Table 3
Installation locations of accelerometers.

<table>
<thead>
<tr>
<th>Sensor no.</th>
<th>Sensor type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Triaxial</td>
<td>Middle of 1st and 2nd epicyclic case</td>
</tr>
<tr>
<td>2</td>
<td>Triaxial</td>
<td>High speed input module</td>
</tr>
<tr>
<td>3</td>
<td>Uniaxial</td>
<td>Middle of 1st and 2nd epicyclic case</td>
</tr>
<tr>
<td>4</td>
<td>Uniaxial</td>
<td>Middle of 1st and 2nd epicyclic case</td>
</tr>
</tbody>
</table>

Table 4
Dimensions of seeded bearing defects.

<table>
<thead>
<tr>
<th></th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor defect</td>
<td>5</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>Major defect</td>
<td>8</td>
<td>6</td>
<td>2.5</td>
</tr>
</tbody>
</table>
on the outer race of 2nd epicyclic planetary bearing, a 2nd epicyclic planetary bearing was disassembled (Fig. 6). The bearing had two layers of races, as well as two sets of rollers and cages.

The test procedures consisted of three test conditions, including healthy condition, minor seeded defect condition and major seeded defect condition. The dimensions of seeded defects are detailed in Table 4. Pictures of minor and major defects are presented in Fig. 7. As introduced in Section 2.2.1, the maximum speed from speed-increasing gearbox to MGB was limited to 17,842 rpm. To comply with safety protocols, the maximum load and input speed in all test conditions were limited to 180 kW and 16,000 rpm respectively. Between each test, the MGB was stripped for 3 days to allow swapping the faulty bearing. Vibration data was recorded using NI 9234 data acquisition card and sampled at 25.6 kHz frequency.

Test case 2

Experimental rig

In this test case, an identical SA330 MGB was installed at special test bench which enabled both input shafts to be operated. This test bench is different from the experimental rig described in Test case 1. Fig. 8 demonstrates the MGB mounted on the test bench.
various load conditions from 90 kW to 1760 kW, with input speed up to 23,000 rpm. All vibration data was recorded using NI 9234 data acquisition card with 51.2 kHz sampling frequency. This test case has been documented in detail in [19].

3. Planetary bearing defect diagnosis and signal processing

Vibration-based health monitoring (VHM) has been established as one of the key technologies implemented in HUMS. Many CIs and health indicators (HIs) were developed using vibration data to reflect the health state for gears, bearings and shafts in MGB [20]. However, as described in Section 1, HUMS is unable to provide reliable indications for planetary bearing defects. The reasons are manifold, including but not limited to:

- Sophisticated mechanical structures of multi-stage epicyclic reduction modules in MGB complicate the signal transmission paths [21]. Therefore, vibration data collected by accelerometers is severely modulated.
- Planetary bearings are encircled by planetary gears, which result in overwhelming gear mesh signals masking weak planetary bearing signals.
- High operational and background noise of helicopter MGB lowers the signal-to-noise (SNR) ratio, making it difficult to extract diagnostic information from collected data.
- Traditional condition indicators are generated based on statistical characteristics of vibration data, which sometimes demonstrate inconsistent trends. Interpretation of the corresponding indications is cumbersome.

To address these issues, signal processing techniques that excel at extracting hidden impulsive diagnostic information from noise and gear mesh signals should be investigated. Processing techniques including self-adaptive noise cancellation (SANC), kurtogram and envelope analysis are therefore employed in this study.

3.1. Self-adaptive noise cancellation

It is generally recognised that the vibration signal acquired from a complex mechanical system, which contains numerous shafts, gears and bearings, are overall stationary. This notion suggests that the mixed vibration signal have approximately constant statistical parameters, e.g. mean and standard deviation. The frequency spectrum of such signal is usually a mixture of discrete frequency components and continuous frequency components, which are excited by periodic gear meshes (deterministic) and random bearing signals with additive noise (non-deterministic), respectively [22,13,23]. Wold’s theorem provides the theoretical support to separate these two types of signal [24]. The theorem states that for any stationary process $X(n)$, the following representation exists:

$$X(n) = p(n) + r(n),$$ \hspace{1cm} (1)

where $p(n)$ and $r(n)$ represent non-correlated deterministic process and non-deterministic zero mean process respectively. Signal $p(n)$ could be perfectly predicted from its past value, while $r(n)$ could not. Therefore, with an appropriate time delay chosen, non-deterministic bearing signals can no longer be predicted from its own delays, whereas deterministic gear signals can still be predicted. Based on this idea, Ho and Randall demonstrated the technique of separating non-deterministic bearing signals and discrete gear mesh signals using an adaptive filter in [8]. This technique is called self-adaptive noise cancellation (SANC) because it does not require reference noise signal as an extra input. In Fig. 10, the schematic diagram of SANC is depicted. The separation is achieved by adaptively filtering a delayed signal $X(n-\Delta)$ to predict original signal $X(n)$, generating prediction error $e(n)$. By selecting a proper delay Δ, the output from adaptive filter \mathcal{W} will contain more
deterministic components, leaving the prediction error $e(n)$ contains mostly non-deterministic signals.

One of the most widely adopted adaptive filter is least mean square (LMS) filter. LMS filter’s coefficients are adaptively updated until the mean square of prediction error $e(n)$ is minimised. LMS adaptation rule is defined as $[8, 25]$:

$$e(n) = X(n) - W_n^T X(n - \Delta)$$ \hspace{1cm} (2)

$$W_{n+1} = W_n + \mu e(n) X(n - \Delta),$$ \hspace{1cm} (3)

where μ is the forgetting factor which determines the adaptation step, Δ is time delay, and W_{n+1} represents the filter coefficients in $n + 1$ iteration. In $[12]$, a very thorough guidance was given on how to choose the
factor Δ and filter length. The selection of μ was discussed in classic articles [25,26]. The concept of SANC and its successful applications have been extensively discussed in [11,27–29].

3.2. Envelope analysis and kurtogram

Envelope analysis has been employed for bearing fault diagnosis for over 40 years [14]. It excels at revealing repetitive information hidden in signals’ envelope, mitigating the effect of speed fluctuation, amplitude modulation, and additive noise [13]. Commonly, envelope analysis benefits considerably from band-passing vibration signal in a certain high frequency band, where the frequency resonances associated with planetary bearings are dominant [15]. The envelope of the bandpass signal is then obtained by performing Hilbert transform (HT).

By examining the envelope spectrum of the band-passed signal, the diagnostic information of faulty bearing signals can be extracted for defect identification. Successful implementation of envelope analysis requires one to have some knowledge of the suitable demodulating frequency band. In practice, this was used to be a mechanical problem. In [23], it is stated that there was a recommendation on using hammer tap testing to find out bearing housing resonances before the actual bearing tests, which was inconvenient. A mathematical tool, namely the kurtogram, was developed to solve this problem.

Kurtogram was developed from the concept of spectral kurtosis (SK), which was firstly devised by Dwyer in [30] for the detection of "randomly occurring signals " [31]. Antoni gave a detailed study of SK in [32,16], which demonstrated the potential applications of SK on bearing defect diagnosis. SK is defined as [23]:

$$SK(f) = \frac{E[|X(tf)|^4]}{E[|X(tf)|^2]^2} - 2,$$

(4)

where $E[\cdot]$ is the expectation operator. $E[|X(tf)|]$ is considered as time average of the short-time Fourier transform (STFT) of the signal at time t, band-passed around frequency f. Therefore, SK evaluates the impulsiveness of the signal which is band-passed at different centre frequencies. Kurtogram demonstrates SK not only as function of t and f, but also as function of frequency bandwidth Δf, so that the values of SK calculated with different centre frequency and bandpass bandwidth can be portrayed in a colour map. Since kurtogram is able to provide indications on possible bandpass centre frequency as well as bandwidth, implementation of envelope analysis is much simplified. However, it is noted that the indication of kurtogram is not always correct, especially in our cases where multiple gear mesh frequencies and harmonics exist in the envelope spectrum. Under the circumstance where kurtogram fails to indicate accurately, suboptimal parameters of centre frequency and Δf for envelope demodulation are chosen by inspecting candidate resonances in frequency spectrum.

With the processing techniques introduced, the following processing procedures were implemented:

- Perform SANC to separate gear meshes and bearing-related signals.
- Perform kurtogram on separated bearing signals, selecting suitable centre frequency and frequency band for envelope demodulation.
- Perform envelope analysis to extract repetitive information in demodulated signal. The envelope spectrum will be examined for fault related frequency components.

The outer race defect frequency (f_{ORD}) is calculated using the equation below:

Table 6
Bandpass parameters for test case 1.

<table>
<thead>
<tr>
<th>Test condition</th>
<th>Centre frequency [Hz]</th>
<th>Bandwidth [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td>9793</td>
<td>200</td>
</tr>
<tr>
<td>Minor seeded defect</td>
<td>9802</td>
<td>250</td>
</tr>
<tr>
<td>Major seeded defect</td>
<td>9824</td>
<td>250</td>
</tr>
</tbody>
</table>

Fig. 15. Corresponding envelope spectrum of filtered signal, unsuccessful.

Fig. 16. Envelope spectrum of demodulated data in test case 1, (a) healthy condition, (b) minor seeded defect condition and (c) major seeded defect condition.
Table 7
Key frequency components of test case 2.

<table>
<thead>
<tr>
<th>Speed of:</th>
<th>Frequency [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input shaft</td>
<td>383.33</td>
</tr>
<tr>
<td>1st planetary carrier shaft</td>
<td>12.95</td>
</tr>
<tr>
<td>1st planetary gear meshes</td>
<td>1683.44</td>
</tr>
<tr>
<td>2nd planetary carrier shaft</td>
<td>4.44</td>
</tr>
<tr>
<td>2nd planetary gear meshes</td>
<td>578.15</td>
</tr>
<tr>
<td>Outer race defect frequency (f_{ORD}):</td>
<td>97.42</td>
</tr>
</tbody>
</table>

\[f_{ORD} = \frac{N}{2} f_r \left(1 - \frac{d}{D} \cos\phi \right). \tag{5} \]

where \(N \) is the number of rollers, \(f_r \) is shaft speed. \(d \) and \(D \) represent the roller’s diameter and pitch diameter, respectively. \(\phi \) is the contact angle between rollers and races. In practice, due to the slip of the rolling elements and the speed fluctuation, the extracted \(f_{ORD} \) usually presents several hertz offset from the calculated value.

4. Processing results

4.1. Processing results of test case 1

Vibration data collected under healthy, minor seeded defect and major seeded defect conditions was processed. The MGB was operated at 16,000 rpm input speed with 180 kW load. The data from triaxial accelerometer 1 in Fig. 5 was selected. This decision was made considering that accelerometer 1 has the shortest relative distance to the seeded defect, therefore defect signal was less attenuated during transmission. In addition, according to the report of G-REDL accident [33], using data from sensors which were not attached near 2nd epicyclic module may have contributed to the invalid diagnosis of 2nd planetary bearing defect in that accident. Hence data from accelerometer 1 was considered most relevant to identification of the seeded defect.

To assist the diagnosis in frequency domain, key frequency components are calculated and summarised in Table 5.

Fig. 11 shows the amplitude spectrum of vibration data under three conditions. It is observed that the spectrum are very similar to each other, where the discrete periodic gear meshes and their harmonics are dominant. Fig. 12 is produced by zooming Fig. 11 into frequency range of 50–200 Hz, for identification of possible \(f_{ORD} \) near 68 Hz. It is discovered in Fig. 12 that \(f_{ORD} \) cannot be found in healthy and minor seeded defect condition. In major seeded defect condition (Fig. 12(c)), the defect frequency of 68.53 Hz is evident. The marked 65.44 Hz frequency component is resulted from the 3.09 Hz modulation of 2nd planetary carrier.

In order to reveal distinct defect indications in minor and major seeded defect conditions, SANC was applied to process the data. Fig. 13 demonstrates the effect of applied SANC filter, where the large deterministic frequency components have been prominently eliminated. The filtered signal was further processed using kurtogram. The implemented kurtogram code was written in MATLAB by J. Antoni. Fig. 14 demonstrates the kurtogram of SANC filtered signal in minor seeded defect condition. Kurtogram indicates a candidate bandpass frequency at 8300 Hz with bandwidth of 200 Hz. However, this indication was discovered to be inaccurate. Fig. 15 shows the envelope spectrum of corresponding band-passed signal as suggested by the kurtogram result. No improvement of the signal-to-noise ratio was observed, compared with the result shown in Fig. 12(b). The same result was observed for data associated with the major seeded defect condition.

As the kurtogram analysis has failed to identify the optimal centre frequency and associated bandwidth for envelope analysis, the sub-optimal parameters were determined by manually inspecting the envelope spectrum of other candidate frequency resonances in the amplitude spectrum of SANC filtered signal (Fig. 13). Bandpass parameters that offered optimal SNR improvements are recorded in Table 6.

Envelope analysis was performed on demodulated data. The envelope spectrum of healthy, minor fault and major fault condition are illustrated in Fig. 16.

It is shown in Fig. 16 that the bandpass envelope analysis has given decisive diagnosis results. The calculated \(f_{ORD} \) which is at 68 Hz can be identified in both minor and major fault conditions directly, while no \(f_{ORD} \) is indicated in healthy condition. It is also observed that in major seeded defect condition, the frequency sidebands around 68.32 Hz defect frequency are more intensely spread from 60 Hz to 90 Hz, compared with that shown in minor seeded defect condition. However, the amplitude of envelope spectrum cannot reflect the severity of the seeded defect based on the observations, such phenomenon has also been found in other papers using real data [34–36]. With defect frequency evidently extracted, diagnosis of planetary bearing outer race defect in Test case 1 is successful.
4.2. Processing results of test case 2

In test case 2, MGB was operated at 23,000 rpm input speed with 1760 kW load. Key frequency components are calculated and summarised in Table 7.

Zoomed amplitude spectrum of raw vibration data is presented in Fig. 17. In all three conditions, discrete frequency components related to gear meshes are dominant across the zoomed frequency bandwidth. No direct indication of f_{OR} can be identified at 97 Hz. It indicates that in this test case, very limited diagnostic information is revealed in lower range of the frequency spectrum, due to the severe operating conditions and distributed defects. In order to extract diagnostic information, SANC and kurtogram technique were implemented.

Fig. 18 shows kurtogram result of SANC filtered data in minor seeded defect condition. Kurtogram suggests that the suitable demodulation centre frequency was 5400 Hz with 400 Hz bandwidth. However, through exploring other centre frequencies, it was discovered that 24,333 Hz with approximately 600 Hz bandwidth were the optimal demodulation parameters. Similar inspections were conducted for major seeded defect conditions as well. The final bandpass parameters for three conditions are determined, and listed in Table 8.

Envelope analysis was then implemented using parameters in Table 8. The envelope spectrum of demodulated data in healthy, minor seeded defect condition and major seeded defect condition are shown in Fig. 19. It is evident that the fault related frequency component f_{OR} (near 97 Hz) along with its harmonics are distinct for both minor and major seeded defect conditions. In the meantime, the sidebands labelled near 93 Hz and 101 Hz in both the faulty conditions can also be identified. These sidebands are resulted from 4.4 Hz 2nd planetary carrier speed modulation. This indicates an indisputable success in diagnosing planetary bearing outer race defect.

5. Discussion and conclusion

In this paper, MGB planetary bearing outer race defect diagnosis is investigated. To support this study, special test rigs were designed with commercial helicopter main gearbox SA330. Vibration data under healthy, minor seeded defect condition and major seeded defect condition were recorded in two test cases, where MGB was operated at 16,000 rpm with 180 kW load and at 23,000 rpm with 1760 kW load respectively. Signal processing techniques including SANC, kurtogram and envelope analysis were employed to extract fault-related bearing signals which were originally masked.

SANC was applied to separate periodic gear mesh signals and random bearing signals using adaptive filter. Kurtogram was applied to reveal hidden impulsive signatures which were associated with bearing defect in high frequency bands. Envelope analysis was performed to extract repetitive signals which were excited by bearing defect. However, processing results in Figs. 14 and 18 show that kurtogram cannot always generate accurate indications of the most impulsive frequency component for MGB vibration data. This is because that transmission paths for MGB vibration data are continuously varying due to the rotation of 1st and 2nd epicyclic module. Moreover, planetary gear meshes cannot be completely eliminated by adaptive filtering, making kurtogram insensitive to hidden impulsive bearing signals. Tian et al. [37] also described and analysed the deficiency of kurtogram in detecting the non-deterministic signals masked by strong noise in planetary system. Overall, the diagnosis in both 16,000 rpm test case and 23,000 rpm test case are successful. The calculated outer race defect frequency f_{OR} has been evidently identified in the envelope spectrum of the demodulated signals under all faulty conditions. Signal processing with aforementioned techniques has achieved indisputable success, specifically in test case 2 (Fig. 19), indicating that vibration data recorded in test case 2 contains more diagnostic bearing information than data recorded in test case 1.

In this study, the extraction of diagnostic information is presented, which facilitates accurate and sensitive CIs to be designed, hence enhancing the capabilities of HUMS to detect MGB planetary bearing defects.

<table>
<thead>
<tr>
<th>Test condition</th>
<th>Centre frequency [Hz]</th>
<th>Bandwidth [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td>24,324</td>
<td>560</td>
</tr>
<tr>
<td>Minor seeded defect</td>
<td>24,316</td>
<td>566</td>
</tr>
<tr>
<td>Major seeded defect</td>
<td>24,354</td>
<td>600</td>
</tr>
</tbody>
</table>

Table 8: Bandpass parameters for test case 2.
Fig. 19. Envelope spectrum of demodulated data in test case 2. (a) healthy condition, (b) minor seeded defect condition and (c) major seeded defect condition.

Acknowledgement

This study is sponsored by European Aviation Safety Agency (EASA), project entitled “MGH - Helicopter main gearbox health”.

References