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Abstract: Deployment of large-scale wind turbines requires sophisticated operation and maintenance
strategies to ensure the devices are safe, profitable and cost-effective. Prognostics aims to predict
the remaining useful life (RUL) of physical systems based on condition measurements. Analyzing
condition monitoring data, implementing diagnostic techniques and using machinery prognostic
algorithms will bring about accurate estimation of the remaining life and possible failures that
may occur. This paper proposes to combine two supervised machine learning techniques, namely,
regression model and multilayer artificial neural network model, to predict the RUL of an operational
wind turbine gearbox using vibration measurements. Root Mean Square (RMS), Kurtosis (KU) and
Energy Index (EI) were analysed to define the bearing failure stages. The proposed methodology was
evaluated through a case study involving vibration measurements of a high-speed shaft bearing used
in a wind turbine gearbox.

Keywords: wind turbine; vibration measurement; regression; artificial neural network; high-speed
shaft bearing; prognosis; remaining useful life

1. Introduction

The continuous monitoring of wind turbine systems and their constituent components (e.g., drive
trains, generators and blades) can be the most effective way to eliminate unplanned maintenance and
increase availability. With advanced data acquisition technology and signal processing techniques,
faults can be diagnosied in the early stage and suitable maintenance actions such as replacement and
repair can be scheduled to prevent the damage from propagating to surrounding areas. Wind turbine
systems are operating under adverse condition, such as vastly varying speeds, loads and temperatures.
Bearings in wind turbine systems generally operate under adverse conditions such as chemical effects
of lubricant, contamination and moisture, as a result, bearings are subject to performance degradation
if no preventive actions are taken. In addition, the high demands for renewable energy resources
has resulted in further demands on wind turbines availability and reliability, especially on the key
components such as the gearbox and bearings [1].

A gearbox is one of the most important units in the drive train system of a wind turbine. A gear box
consists of gears, bearings and shafts that are subject to continual variable operational speed and loads.
In a gearbox, the high-speed shaft is supported by the high-speed stage bearings located at the front
and back end of the shaft. Typical operating speed of the shaft is between 1500 and 1800 rpm during
power generation. It has been reported that a great number of wind turbine failures are related to the
high-speed shaft bearings [2]. Cyclic loads caused by the wind turbine rotor blades will drive the main
shaft to bend, leading to misalignment between the generator and the high-speed shaft and accordingly
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misalignment within the bearings. High-speed shaft bearings are therefore subject to damage from the
cyclic loads [3,4]. For inspection purposes, wind turbine gearboxes are largely inaccessible since these
are situated at the top of high towers. Possible failure implications are compounded by the fact that
once a bearing fails, it may cause damage to the surrounding components of the gearbox, and as a
consequence, cause replacement of various components inside the gearbox [5,6].

Over the past decades, much research has been dedicated to the development of health monitoring
methods for rotating machinery, especially the bearings. Compared to fault detection, the literature of
prognostics and health management is relatively limited, and effective implementation of prognostic
techniques is still lacking. The increased interest on machinery prognostics has resulted in many
successful tools, models and applications during the past few years. Basically, there are three types
of prognostic approaches that can be employed to predict the RUL, namely, data-driven methods,
physics-based models and hybrid models (see Figure 1). Data-driven approaches utilize the historical
failure data of the machine and/or similar machines to estimate how much time is left until a system
malfunction occurs. This method does not require an in-depth understanding of the physics of system
under study. Physics-based approaches predict the remaining life according to propagation of damage
mechanism (i.e., physics of failure). A hybrid approach uses both data-driven and physics-based
method so as to achieve an improved predictive performance in terms of improved predictive accuracy
than when a single method is used.

Figure 1. Main Prognostics Approaches.

Over recent years much efforts have been focused on developing regression-based prognostic
methods that can be used to estimate the RUL of rotating machinery. Li et al. [7] improved the
performance of traditional exponential regression model and applied the developed regression model
to vibration measurements collected from rolling element bearings to predict RUL. Wu et al. [8] put
forward a time-to-failure prognostic method based on empirical Bayesian algorithm an exponential
regression model for rolling element bearings. Sutrisno et al. [9] investigated the accuracy of three
different techniques for predicting the RUL of bearings. Bayesian Monte Carlo and moving average
spectral kurtosis, support vector regression (SVR) and an anomaly detection algorithm were compared
according to their performance in estimating a ball bearing’s remaining life. The anomaly detection
technique was found to be the most accurate among all methods compared. Goebel et al. [10] conducted
a comparative study of three prognostic methods RVM, Gaussian process regression (GPR) and a
neural network. The study showed that the three techniques have resulted in significantly different
RUL prediction results. Loukopoulos et al. [11] studied the performance of several machine learning
techniques, including linear regression, polynomial regression and K-Nearest Neighbors Regression.
The results showed that an ensemble method which is based on the weighted average of the predicted
RUL of each individual method offers a higher predictive accuracy. Kim et al. [12] utilized Support
Vector Regression to evaluate the bearing health condition by using real-world run-to-failure data
obtained from bearings of gas pumps. The results showed that the developed probability estimation
based prognostic method is potentially very effective for RUL prediction. A combined regression
technique which is based on linear and quadratic regressions was put forward to deal with gas turbine
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engine’s degradation [13]. An e-support vectors regression model was proposed in [14] for the RUL
estimation of rolling element bearings. The Logistic regression model was employed in [15] for the
estimation of RUL of CNC machine. More regression-based prognostic models can be found in the
literature [16–20].

Several other artificial intelligence approaches applied to machinery prognostics have been
considered by researchers. For instance, a self-organizing neural network was employed by Zhang
and Ganesan [21] for extrapolating the fault progression and estimating the remnant life of a bearing.
Loukopoulos et al. [11] applied a Self-Organizing Map (SOM) model to predict the RUL of industrial
pumps using temperature measurements. Dong et al. [22] developed a condition prediction method
based on grey model and back-propagation neural network. Elasha et al. [23] put forward a life
assessment approach for tidal turbine gearboxes. The method was validated on data generated using a
Blade Element Momentum Theory (BEMT) model. They predicted the RUL of a gearbox based on the
turbine loading conditions. The results of their investigation show life variations between the gears due
to differences in stress cycles and differing rotational speeds. Li et al. [24] put forward a hybrid method in
which a long short-term memory model and a state-space model was combined to predict the pro-fault
performance of a centrifugal compressor. An adaptive neuro-fuzzy inference system (ANFIS) was used
together with the particle filtering (PF) algorithm in [25] to predict the RUL of a gearbox. The authors
concluded that the ANFIS model outperforms the recurrent neural network through a comparative
study. Elforjani and Shanbr [26] employed three supervised machine learning techniques—artificial
neural network (ANN), SVR and GPR—to correlate vibration measurement features with the natural
wear of bearings. They concluded that the back-propagation neural network model outperforms the
other methods in predicting the RUL of bearings. A prognostic framework based on auto-adaptive
dynamical clustering was put forward by Chammas et al. [27]. This method allows the estimation
of remnant life of incipient failure of a wind turbine benchmark. The RUL is estimated by using an
auto-regressive integrated model to predict the future values of a severity indicator. A feed-forward
neuro network was developed to learn the correlation between the lifetime and the health indicator
extracted from the raw sensor signals [28]. Similarly, self-organizing map (SOM) and a feed-forward
neural network were combined for effective bearing failure life prediction [29]. More prognostic
methods based on feed-forward neural network can be found in [30–32]. Moreover, neuro-fuzzy
systems whose membership functions are tuned by ANNs have also gain popularity in machinery
prognostics. In [33], a multi-step forecasting model based on a weighted recurrent neuro-fuzzy system
was put forward. A neuro-fuzzy system was utilized in combination with regression trees and particle
filter in [34,35] for machine remaining useful life prediction. More research related to neuro-fuzzy
based prognostics can be found in [36,37]. The aforementioned prognostic techniques offer a tradeoff

between reliability, speed and applicability. Other techniques exit with wide ranging advantages
and disadvantages [38], however this paper focuses on combining two supervised machine learning
techniques, namely, regression model and artificial neural network (ANN) model to correlate vibration
features with the corresponding fault stages during the natural run-to-failure process of rolling element
bearings. One of the main contributions of this study is to improve the fitting of features obtained from
vibration signals using appropriate regression models. This study also aims to ascertain the feasibility
of using ANN models to estimate the RUL of rolling element bearings, and to explore the feasibility
of combining regression models with ANNs for a better RUL prediction. The proposed combined
technique leverages the strengths of both ANN and regression models, and is able to provide more
accurate RUL estimations compared to traditional exponential regression models. Compared with
traditional artificial intelligent methods, the proposed model takes advantages of the exponential
regression approach in that the fitted prognostic features ensure precise modelling of the bearing
degradation process. The effectiveness of the proposed prognostic method was validated on vibration
measurements captured from an operational wind turbine gearbox.
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2. Working Methodology

In condition monitoring applications, the vibration signals of bearing damage often present
multiple modulation characteristics, and therefore the features extracted by the general methods
from one bearing may not necessarily correlate to fault characteristics extracted from another bearing.
The internal reasons behind this include, for example, different observed trends from different cases.
As a result, there is still a need to apply and validate bearing fault indicators such as root mean square
(RMS) and Kurtosis (KU) for different applications. Furthermore, due to the measurement noise,
variation of operating conditions and stochasticity of the system deterioration, the extracted condition
indicators from the raw vibration signals generally contain fluctuations, which would incur inaccurate
RUL predictions. Thus, one of the main contributions of this study is to improve the fitting of the
features extracted from vibration measurements through the use of appropriate regression models.
This study also aims to ascertain the feasibility of ANN models to predict the RUL of rolling element
bearings used in real-world applications, and to explore the possibility of combining regression models
with ANNs to form a better prognostic model.

2.1. Statistical Condition Indicators

Vibration-based health monitoring schemes are applicable for monitoring many constituent
components of a gearbox, such as shafts, gears and bearings. To achieve a better signal-to-noise ratio
(SNR), vibration measurements are processed using filtering and amplifying techniques. Two condition
indicators, RMS and KU, are often generated from the vibration signals. Then the extracted condition
indicators are fitted using regression methods to provide useful information about the bearing
degradation. There are several fault indicators (statistical features) that could be used for fault
diagnostics using vibration data, such as RMS, KU, crest factor and energy operator, to name a few [39].
Among the aforementioned fault indicators, RMS and KU are the most widely used [40–42]. In this
study, we compared the suitability of three different fault indicators (i.e., RMS, KU and energy index)
for prognostic analysis. Monotonicity and trendability were utilized as the performance metrics
for measuring the suitability of these indicators. Based on the obtained results, RMS and KU were
eventually found to be most suitable indicators for the prediction of RUL in this study.

2.1.1. Kurtosis

Each mechanical failure has an associated “signature” that can be found in the frequency or time
domain representations of vibration signals. Kurtosis is such a “signature” which is referred to as the
fourth statistical moment of a given signal, reflecting the peakness of the histogram [43]. A kurtosis
value greater than three is an indicator of a sharp peak signal. A kurtosis value smaller than three
indicates vibration signals with flat peaks. In some cases, the occurrence of background noise and other
sources of vibration signals may prevent bearing faults from being detected through the observation of
changes in the kurtosis. To solve this problem, the kurtosis value needs to be computed across different
frequency bands [44]. The Kurtosis of a random signal is computed as:

KU =
1
N

∑N
i=1(Xi− µ)4[

1
N

∑N
i=1[Xi− µ]2

]2 (1)

where N is the number of samples in the signal, Xi refers to the amplitude of the signal of the ith
sample, and µ denotes the mean sample amplitude.

2.1.2. Root Mean Square

The root mean square (RMS) value describes the energy content of a signal. RMS is one of the
most common used statistical parameter that describe the change in the dynamic of the machine [45].
For the signal of sample size N, the RMS value is calculated using the equation below:
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RMS =

√
X2

1 + X2
2 + · · ·X

2
N

N
(2)

It is well known that the RMS value is a weak method to detect the failure at its early stage
because of the small energy generated by the defect which makes a small difference to the value of RMS.
However, RMS is capable of reflecting the increase of the vibration energy as the fault progresses [7].
Consequently, RMS is employed as the prediction indicator in this study. In other words, the RUL is
predicted by extrapolating the trajectory of RMS values.

2.1.3. Energy Index

Energy Index (EI) is defined as the square of the ratio of the RMS value of a signal segment to the
overall RMS value of the same signal. This technique has been effectively applied to detect incipient
failure of bearings [46]. In practice, an EI value of one indicates non-transient type waveforms, whereas
and an EI value larger than one is often associated with transient characteristics. EI can be computed
using the following equation:

EI =

(
RMSsegment
RMSoverall

)2

(3)

2.2. Definition of the Remaining Bearing Life

The RUL of a bearing is generally defined either as the total number of revolutions before a failure
occurs or the total number of hours that the bearing can run until the first sign of failure develops [47].
The RUL is estimated based on measured and calculated bearing condition variables such as vibration
amplitude and frequency. As shown in Figure 2, if a certain condition indicator x is calculated or
monitored continuously from t = 0 to t = tB, then a continuous time series y(t) can be obtained, which
represents the deterioration process of the component under study. This time series consists of two
parts, α and β, which indicates the healthy running stage and the fault degradation stage, respectively.
Prognostic analysis is usually based on the analysis of the time series from point A to point B. Ideally,
if the RUL of a bearing (i.e., the total running time between point A to B) can be accurately estimated
by using only the past data covered by α, then the optimal maintenance schedule can be made easily.

Figure 2. Bearing life process.

2.3. Regression

Regression models, as one of the most popular data-driven techniques for RUL prediction, attempt
to fit available data of deterioration by regression functions and then extrapolate the fault propagation
until the fitted curve reaches a pre-defined threshold. The objective of regression analysis is to find an
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empirical relation for predicting the bearing degradation thought time series. Due to measurement
noise, variation of operational conditions and the stochastic nature of the degradation processes, the
acquired data are usually accompanied by fluctuations that may have a significant impact on the
model’s ability to interpret the degradation trend. In this case, the raw condition indicators cannot be
directly used as the inputs of the prediction models. This is due to the fact that any fluctuations in the
condition indicators will cause the model to follow the randomness, and consequently, its ability to
accurately estimate the health status of the bearings may be very weak [48]. Therefore, in this study,
we first conduct a comparative study of two regression models, namely polynomial and exponential
regression, and then choose the one with the best fitting performance to fit the condition indicators
extracted from the data.

The polynomial models are suitable for situations where the correlation between explanatory and
study variables is curvilinear. Polynomial regression belongs to the least-squares curve fitting family.
It takes a set of data as inputs and generate an approximation between the input data and time. To be
specific, it estimates the coefficients of a polynomial function in that the function approximates the
curve closely. The formula of polynomial regression is as follows:

y = a0 + a1x + a2x2 + · · ·+ anxn
i (4)

where y is the response variable, x is the predictor variable, and a0, a1, . . . , an are model coefficients.
The degree of the polynomial function is determined by the number of non-zero coefficients in
Equation (4), which in turn determines how accurate the data can be fit. If the number of coefficients is
one or two, then the fitted curve is known as a linear regression. If the number of coefficients is larger
than two, a non-linear polynomial regression will be implemented.

The exponential regression model is a fitting process that finds the equation of the exponential
function which can present the best fit for a set of data [48]. The function form of the exponential is
shown in Equation (5):

y = a ∗ ebx (5)

where a, b are model constants and x is the predictor variable. Figure 3 shows the process of two
regression models that were used to extract the best fit from the scatters statistical parameters. In which
the vibration signals have been processed to obtain the condition indicators. And then the exponential
and polynomial functions have been used to determine the best fit and estimate the coefficients in
Equations (4) and (5).

Figure 3. Schematic of regression process.

The performance of the regression models was assessed using three statistics: Root Mean Square
Error (RMSE), R2 and Adjusted R2. The RMSE is the square root of the variance of the residuals. RMSE
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measure how close the measured data to the predicted values. The R2 is defined as the ratio between
the difference between the sum square total (SST) and sum square error (SSE) to the SST. SST measures
the data deviation from the sample mean, and SSE measures the deviation of the data from the model’s
predicted values. Therefore, the R2 value provides the goodness of the data. One of the disadvantages
of the R2 is that it can increase if there are more than one predictor, but this increase does not reflect the
model improvement. Therefore, adjusted R2 has been used in this research. Adjusted R2 is defined as
the ratio between the residual mean square errors to the total mean square error (which is the variance
of the predicted values).

Indicator Performance Quantification

Identification of a suitable indicator simplifies the degradation assessment and prognostics.
Parameter features include monotonicity and trendability can be used to compare candidate prognostic
parameters to determine which parameter is most useful for prognosis task [29]. Monotonicity and
trendability are a type of metrics used to quantify the indicators suitableness and are defined as
the following.

a) Monotonicity

The monotonicity metric indicates the principal whether or not the sequence is increasing or
decreasing (positive or negative trend of the indicator). Due to the fact that the bearing degradation is
considered to be an irreversible process, monotonicity measures whether or not a condition indicator
is suitable for representing a degradation process. Monotonicity is calculated as per Equation (6):

Monotonicity = mean


∣∣∣∣∣∣∣#pos d

dx
n− 1

−
#neg d

dx
n− 1

∣∣∣∣∣∣∣
 (6)

where n denotes the number of measurement time instances. #pos d
dx denotes the number of positive

derivatives, and #neg d
dx is the number of negatives derivatives.

The monotonicity of a sensor population is calculated by the average difference of the fraction of
positive and negative derivatives for each path. A monotonicity value close to one means that the
condition indicator is monotonic and suitable for RUL prediction, whereas a monotonicity value close
to zero indicates that the condition indicator is non-monotonic and not appropriate for RUL prediciton.

b) Trendability

The trendability metric indicates the degree to which the condition indicator values at different
times have the same fundamental shape and can be defined using similar function form. Its value is
determined by the minimum absolute correlation calculated among all the condition indicators [18].
A condition indicator can be considered trendable if all the parameters can be modelled by the same
function (Equation (7)):

Trendability = min
(∣∣∣corrcoe f fi j(xi, x j

∣∣∣) i = 1, 2, . . . , n and j = 1, 2, . . . (7)

2.4. Multilayer Artificial Neural Network

ANNs belong to the supervised machine learning family. They are inspired by biological neural
networks and each neuron is represented by a node [28]. An ANN generally contains an input layer,
multiple hidden layers, one output layer, biases and connection nodes. When the known inputs and
target outputs are repetitively presented to an ANN, the connection weights between nodes will be
adjusted automatically such that the difference between the network outputs and the targets is as small
as possible.

In this study, the ANN that we implemented is a multilayer back-propagation neural network.
Figure 4 illustrates an exemplary architecture of the multiple-layer neural network model. It is
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observable from the figure that each layer consists of its own inputs and outputs nodes (x & y),
weighting coefficients (w) and bias (b). The input layer doesn’t involve any processing and it is utilized
to directly feed information to the subsequent network layers. In contrast, the output layer involves
weighting and biases calculations and is employed to produce the network outputs. The hidden layers
aim at adding additional processing to the network so as to avoid solutions that do not converge.
As shown in Figure 4, the main purpose of the bias neurons is to prevent the network from generating
zero results even if the network inputs are not zero. The exemplary network structure is formed of a
feed-forward model. The following equation explains how the network inputs are correlated with
the outputs:

yi = ϕ0 [Cϕh[Bui + bh] + b0] (8)

where yi is the network output vector and the input vector is represented by ui, C denotes the weighting
matrix between the hidden layer and the output layer. B is the connection matrix from the input layer
to the hidden layer. The bias vectors of the hidden and output layers are represented by bh and b0,
respectively. ϕh and ϕ0 denote the activation functions of the nodes in the hidden and output layers,
respectively. Feedforward neural network models also take the form of Equation (9):

yi = f (u) (9)

where f (·) denotes a nonlinear transformation from u to yi. Interestingly, the structure of a feedforward
neural network is similar to that of a nonlinear regression model. Levenberg Marquardt (LM) learning
algorithm was chosen as the network training function in this study for adjusting the weighting
and bias matrices during the training process. LM optimization has been applied intensively for
feedforward neural network training and has been proven to be able to deal with many difficult and
diverse problems in practice. This algorithm minimizes functions that are sums of squares of nonlinear
functions. One of the advantages of this optimization method is that the second-order convergence
point can be approached without calculating the Hessian matrix.

Figure 4. Multiple-layer neural network.

3. Data Collection

The vibration dataset was collected using the Green Power Monitoring System, and interested
readers are referred to [49]. The data were collected from a high-speed shaft bearing mounted inside a
2 MW wind turbine. The vibration measurement was taken for 50 consecutive days using MEMS-based
accelerometers mounted radially on the bearing support ring [49]. Data were collected at 10-minute
intervals and the bearing speed was 1800 rpm. A total number of 50 data sets were recorded for
analysis. The vibration data were sampled at a sampling rate of 97,656 Hz for 6 s [49]. Table 1 lists the
key parameters of interest.
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Table 1. Wind turbine operating details.

Machine State Increasing Inner Race Bearing Fault

Power rating 2 MW flux
Nominal speed 1800 rpm

Measurement Channel Sensor
Sample rate 97656 Hz

Record length 6 s
Sensor type Accelerometer

4. Results

4.1. Signal Features Regression

It has been mentioned previously that due to measurement noise, variation of operational
conditions and the stochastic nature of the degradation processes, the raw condition indicators cannot
be directly used as the inputs of the prediction models. To solve this problem, the obtained raw data
was fitted by means of appropriate mathematical functions (i.e., exponential and polynomial models
were utilized to represent trends of the condition indicators).

The regression model utilized the two equations mentioned above (i.e., Equations (4) and (5)) to
find the relationship between condition indicators and time. Figures 5 and 6 illustrate the actual and
fitted condition indicators for 50 consecutive days of measurements of RMS, KU and EI. Tables 2 and 3
also summarize the optimal model constants and the RMSE, R2 and adjusted R2 for the exponential
and polynomial models respectively. It can be observed that using the exponential regression to fit
the condition indicators is more accurate than the polynomial in this case study, see Tables 2 and 3.
For instance, its results for RMS showed the lowest value of root mean square error of 0.05248 and a
high adjusted R2 with 0.957. Whereas, the results obtained from polynomial for the same condition
indicator showed the lowest adjusted R2 with 0.5774.

Figure 5. Fitted condition indicators using exponential functions.



Sensors 2019, 19, 3092 10 of 17

Figure 6. Fitted condition indicators using polynomial functions.

It is worth mentioning that a single metric only indicates the good fit to the data from
one prospective, and does not necessarily indicate that the model parameters are individually
well-determined. Therefore, three good to fit metrics were utilized in this study. In this work,
several exponential and linear functions were applied to the raw data. As a final result, the following
exponential and polynomial models have been utilized to fit the different fault indicators (see Tables 2
and 3).

Observations of Tables 2 and 3 showed that R2 and adjusted R2 values of the condition indicators are
similar for all exponential models, however, the lowest RMSE was observed for the RMS. Comparison
of the exponential models to the polynomial model showed the exponential model has the best
performance based on all three assessing parameters.

Table 2. General optimal estimated exponential model constants.

Condition Indicators
Model Constants

RMSE R2 Adj. R2

a b

RMS 2.235 0.0511 0.0525 0.958 0.957
KU 3.439 0.112 0.947 0.977 0.975
EI 54.07 0.634 9.711 0.968 0.967

Table 3. General optimal estimated polynomial model constants.

Condition Indicators
Model Constants

RMSE R2 Adj. R2
a0 a1 a2

RMS 2.19 0.117 0.0044 0.164 0.595 0.577
KU 3.24 0.572 0.3004 0.217 0.881 0.875
EI 53.8 38.81 11.2 13.94 0.945 0.942

Figure 7 presents the evaluation of condition indicators; the results showed the RMS trendability
and monotonicity parameters are higher compared to Kurtosis. Considering the values of the three
metrics RMSE, monotonicity and trendability, the RMS is the best indicator for the representation of
the degradation process compared with EI and KU. Therefore, it has been used for the ANN model as
the best fit parameter (i.e., fitted RMS values are used for ANN outputs).
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Figure 7. Evaluation of the condition indicators.

4.2. Neural Network

In this study, we propose to use an ANN model for estimating the RUL for bearing running at
high speed and constant load. The model is a feed-forward back-propagation artificial neural network
model with one input layer, a changeable number of hidden layers and one output layer. the optimal
number of hidden layers, learning rate and algorithm type were determined during the training process
by minimizing the error between the target outputs and the model outputs. Based on the training
results, the ANN model that was finally adopted consists of one input layer with two inputs, namely
raw RMS and KU; one output layer with one output (fitted RMS values); and two hidden layers with
nine neurons in the first layer and seven neurons in the second layer.

The Levenberg-Marquardt (LM) algorithm was utilized to train the model. LM has been proven
to outperform traditional gradient descent and many conjugate gradient-based algorithms in many
applications [50]. LM has the local search properties of the Gauss–Newton algorithm, but with
consistent error decrease thanks to the gradient descent algorithm. It updates the network weighting
and bias matrices according to LM optimization. The regularization diminishes a compound of squared
errors and weights to reduce the computational overhead.

Figure 8 shows the configuration of the training stage. The inputs of the ANN model are the raw
RMS and KU values, while the target is the best fitted RMS obtained using fitting tools for the same
parameter settings.

Figure 8. Neural network training stage.
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The network structure maps between these variables to generate the function of explaining their
relationship. The extracted raw RMS and KU were fed to the model, and the model was trained using
the algorithms stated previously. As mentioned previously, the lowest training errors were obtained
by an ANN model containing one input layer, one output layer and two hidden layers. The layer
size was determined according to the mean square errors between the target output series and the
estimated outputs.

The next phase comprised of validation of the trained model. This was achieved by passing the
raw KU and RMS values to the trained model. The ANN model’s output (i.e., estimated fitted RMS)
is then extrapolated to a pre-defined failure threshold to predict the RUL of the system. Figure 9
presented the final results of model output obtained from 70% of training and 30% of testing data.
The error and the RUL were calculated using the following equation:

RUL = t f − tc (10)

where t f is the time at which the actual failure occurred; in this study, t f was chosen as the last time
instance of running, which means the bearings had a damage at this point and then stopped. The tc is
the current time. The RUL calculated based on Equation (10) is the actual RUL. The estimated RUL is
calculated based on the same tc and the t f obtained by extrapolation for pre-defined threshold.

Figure 9. Neural Network Training Regression: (a) training results.; (b) validation results.; (c) test
results.; (d) results obtained using all data.

The prediction errors are calculated based on the difference between the actual and the
estimated RULs:

Error (%) =
Actual (RUL) − Estimated (RUL)

Actual (RUL)
(11)

Sum Square Error =
1
2

n∑
i=1

Error2
i (12)
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The sum of the square error resulted from regression and ANN are presented in Table 4.
Observation of the results show that the lowest error SSE are registered by the ANN. Interestingly some
negative error values were recorded due to the fact the models have overestimated the RUL. Based on
observation of the trends of the estimated RUL compared to the actual RUL (Figures 10 and 11), it
is evident that the proposed approach follows satisfactorily the deterioration trend of the bearings
under study with small errors. Figure 10 depicts the estimated RUL with the actual bearing life using
the exponential regression model as a prediction tool. The raw RMS was fitted using an exponential
regression model as stated in Table 2. We then extrapolate the time at which the fitted RMS exceeds a
pre-defined threshold to obtain the predicted failure time. It shows that the trend at the beginning of
the prediction initially closely estimated the actual values. However, the prediction deviates from the
actual values and oscillates away as the actual end-of-failure approaches. At this stage the fault can
be detected by the condition monitoring system, and thus there is no need for prognosis to predict
the fault stage. Results obtained from ANN analysis using two inputs (RMS and KU) are depicted in
Figure 11. For the ANN case, we simulate the fitted RMS as the ANN outputs, and then the simulated
RMS is extrapolated to a pre-defined threshold to predict the RUL.

The mean square error (MSE) is a network performance function that measures the network’s
performance according to the mean of square errors. When the vector of predictions is obtained and
the vector of known true RUL values is available, MSE can be estimated by:

MSE =
1
n

n∑
i=1

(yi − ŷi)
2 =

1
n

n∑
i=1

ei
2 (13)

where ŷi is the estimated value (ETTF) and yi is the desired output value (ATTF).

Table 4. Sum Square Error Results.

Model SSE

Polynomial 8427
Exponential 5419

ANN 661.198

Figure 10. Regression Model RUL results.
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Figure 11. Artificial neural network RUL results.

Table 5 shows the MSE for both regression and ANN models. Results observation shows that the
prediction made by the proposed model is very accurate. In addition, the best performance of the ANN
model has been recorded at an MSE of almost 5.62 which is a good indicator of the model accuracy.

Table 5. Error results.

Model MSE

Polynomial 15.61
Exponential 12.56

ANN 5.62

5. Conclusions

A data-driven prognostic method has been developed and tested using vibration signals collected
from an operational wind turbine gearbox. This paper has addressed bearing prognosis with the aim of
predicting the RUL of high-speed shaft bearings. Two types of prediction methods, namely, regression
and back-propagation neural network, have been used to model and estimate the remnant life.
The regression model’s results have been used to feed the neural network to enable better predictions.

The proposed model was tested on real-world vibration data collected from a 2 MW wind turbine
(degradation of bearing operating at speed of 1800 rpm). The obtained results using regression and
ANN models have been compared. The regression was based on three condition indicators RMS,
Kurtosis, and EI. The performance of each regression model was compared using three parameters:
RMSE, R2 and adjusted-R2. The result showed that the exponential model has the best performance.
The ability of condition indicators to be used for prognosis has been evaluated using monotonicity and
trendability parameters. The results showed RMS has the best overall performance, therefore the RMS
was used as best fit output data for neural network.

The results obtained using the proposed ANN model indicate that it has good performance in
predicting the remaining useful life of a bearing, and this success can be attributed to the link created
between the regression model to the ANN through the best fit condition indicator. Comparing the
performance of regression model and the ANN it can be seen that the ANN model was able to provide
more accurate predictions, however, this performance cannot be achieved without the regression
model. Therefore, the regression model is considered necessary to improve the predictive performance
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of the ANN model. The stochastic nature of the degradation processes cannot be mitigated by just
fitting a regression model. The use of a probabilistic model can overcome this limitation. Efforts will
be made in future research to explore the RUL prediction using a probabilistic approach.
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