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Parkville 3010 Victora, Australia 
*Correspondence: mstumpf@unimelb.edu.au 

ABSTRACT One of the central tasks in systems biology is to understand how cells regulate their metabolism. Hierarchical 
regulation analysis (HRA) is a powerful tool to study this regulation at the metabolic, gene-expression and signaling levels. It has 
been widely applied to study the steady-state regulation; but analysis of the metabolic dynamics remains challenging because it 
is difficult to measure time-dependent metabolic flux. Here we develop a non-parametric method that uses Gaussian processes 
to accurately infer the dynamics of a metabolic pathway based only on metabolite measurements; from this we then go in to 
obtain a dynamical view of the hierarchical regulation processes invoked over time to control the activity in a pathway. Our 
approach allows us to use HRA in a dynamic setting but without the need for explicitly time-dependent flux measurements. 

INTRODUCTION 
It is important to understand how microbes regulate their metabolism in response to changes in environmental conditions. A 
key aspect of regulation of metabolism (or metabolic fluxes) is to modulate enzyme abundance, either through transcriptional 
regulation, or through signaling and post-translational modification. Experimental studies of central metabolism e.g. in three 
species of parasitic protists (1) and in Bacillus subtilis (2) show that flux regulation is rarely achieved exclusively at the 
transcriptional level. It is thus important to take a more comprehensive assessment of metabolic regulation, including substrate 
and product changes, allosteric regulation and post-translational enzyme modifications. 

Hierarchical regulation analysis (1, 3) (HRA) is a powerful tool to study regulatory processes across different levels. For 
each reaction step, HRA quantifies the contributions stemming from different regulatory levels, including gene expression and 
signaling, to the regulation of overall flux. This approach has been successfully used to analyze the regulatory properties of 
many important metabolic pathways (2, 4–7); for all instances it was found that regulation is typically distributed across levels. 

We consider an example where the rate vi of an enzyme-catalyzed reaction i depends linearly on two functions, which we 
denote by h and g. The former is related to hierarchical effects due to changes in enzyme concentration or covalent modification. 
The latter is related to metabolic effects where changes in rate are caused by changes in the concentrations of substrates, 
products, and metabolic effectors. Identifying the rate vi at steady state with the flux through the enzyme J, we obtain 

J = vi = h(ei) · gi (X); (1) 

ei represents the concentration of the enzyme catalyzing the process vi ; X denotes a vector of concentrations of metabolites that 
are involved in reaction i. For covalent modifications, the first term can be expanded as h(ei ) = ei · ϕa,i with ϕa,i denoting the 
fraction of the enzyme that is in the active covalent modification state (Fig. 1(b)). Then the change in the logarithm of the 
steady-state flux J can be expressed as 

Δ ln J = Δ ln h(ei ) + Δ ln gi(X); (2) 

rearranging this expression, we have 
Δ ln h(ei) Δ ln gi(X)

1 = + = ρi + ρi , (3)
Δ ln J Δ ln J h m

where Δ denotes the difference between two steady states. The hierarchical regulation coefficient ρi quantifies the contribution 
h 

of changes in enzyme concentration (or enzyme capacity, i.e. h(ei ) = V i ) to the regulation of the flux. The relative max 
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Figure 1: Illustration of hierarchical and metabolic regulation in an unbranched metabolic pathway. (a) The enzyme e1 that 
catalyzes the first reaction is regulated through both transcriptional repression (gene-expression regulation) and allosteric 
inhibition (metabolic regulation) by the end product. (b) A fraction of the enzyme that is in a covalent modification state 
(ei · ϕa,i) actively catalyzes the first reaction. Hierarchical regulation comprises gene-expression and signaling regulation. 

contribution of the changes in the enzyme activity through its interaction with the rest of the metabolism is quantified by 
the metabolic regulation coefficient ρi (see Fig. 1 for illustration of hierarchical and metabolic regulation). The hierarchicalm 
regulation coefficient can be further expressed as a sum of the gene-expression and signal-transduction regulation coefficients 
(i.e. ρi = d ln h(ei )/d ln J = d ln ei/d ln J + d ln ϕa,i/d ln J = ρi + ρi ). Experimentally, it is relatively easy to measure theg s

hierarchal regulation coefficient, since only enzyme concentration measurements, ei (or V i ), and the flux are required. This is 
h 

max 
normally done under two experimental conditions. More recently, Chubukov et al. (2) generalized this to multiple conditions — 
which increases computational accuracy — by using linear regression to relate ln(ei ) and Δ ln J. The metabolic regulation 
coefficient can then be calculated from ρi = 1 − ρi

h
.m 

Most existing HRA studies investigate steady state regulation; however, it is typically important to know how cells adapt to 
environmental changes. Time-dependent regulation analysis aims to quantify the regulation coefficients as a function of time 
(8, 9). The integrative version of time-dependent regulation analysis integrates all the regulation between time t0 (the start of 
the perturbation) and t. For instance, the time-dependent hierarchical regulation coefficients can be calculated as,( ) 

ln h(ei (t)) − ln h(ei (t0)) h(ei t)) − h(ei(t0)) /h(ei (t0))
ρi (t) = ≈ 

(( ) . (4)h ln vi(t) − ln vi (t0) vi (t) − vi (t0) /vi (t0) 

Here, the reaction rate, v, is employed in the denominator rather than the flux, J, as we are studying the transient effect rather 
than the steady states. The latter expression only provides a good approximation when h(ei (t))/h(ei (t0)) ≈ 1 and vi (t)/vi (t0) ≈ 1. 
When there is no post-translational modification, h(ei(t)) can be simplified as ei(t) or Vmax (t) (9). The time-dependent metabolic 
regulation coefficients are simply ρi (t) = 1 − ρi (t). We can also develop an instantaneous version of time-dependent regulationm h
analysis (8, 10) that quantifies the contribution of hierarchical and metabolic regulation to the change in the reaction rate at time 
point, which will not be discussed here. 

Dynamic flux measurement or estimation is a key limitation for generalising HRA from steady-state to dynamic regulatory 
analysis: it is hard to directly measure fluxes, while intracellular fluxes can be estimated by tracking isotope-labelled (e.g. 13C 
and 15 N) metabolites (11, 12); but this is only suitable for steady-state analysis. The only time-dependent regulation analysis 
(9) for nitrogen starvation in yeast that has been presented is based on fluxes estimated at a limited number of time points; 
but the results cannot capture the complete temporal behavior and it requires several independent experiments to generate the 
confidence limits on the HRA results; experimentally this is both expensive and time-consuming. 

Here we develop a new non-parametric Bayesian modeling framework for dynamic (or time-dependent) HRA. High 
resolution time-dependent metabolite profiles can be first estimated from discrete metabolite concentration measurements using 
non-parametric Gaussian process regression (GPR). Dynamic reaction rates or fluxes can then be inferred from the derivatives 
of the corresponding metabolite profiles and the network stoichiometry. Finally, the time-dependent hierarchical regulation 
coefficients are calculated from the time-dependent reaction rates and enzyme profiles. A key advantage of our approach lies in 
its reliance on only experimental protein and metabolite data without the need of time-dependent flux measurements. With this 
we obtain complete temporal hierarchical regulation profiles for each reaction together with statistical confidence. 

MATERIALS AND METHODS 

Dynamic reaction rate estimation from metabolite measurements: motivation examples 
We first consider the simple linear metabolic pathway example (Fig. 1a). We assume that x1 is an external substrate with 
constant concentration, and the last reaction rate vN depends only on the concentration of the last metabolite xN with known 
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2ṽ1

a b

Figure 2: Illustration of (a) a branched metabolic pathway and (b) a pathway with a feedback reaction. The lower diagram shows 
the equivalent unbranched pathway with reactions from the original pathway (orange) merged to form ‘net’ reactions (red). 

degradation kinetics gN (xN ); and eN is a constant as gene-expression regulation is not considered in this last step. The ordinary 
differential equations (ODEs) of this linear pathway are, 

Xx2 = e1 · g1(x1, xn) − e2 · g2(x2, x3) = v1 − v2 
v1 = xX2 + v2

Xx3 = e2 · g2(x2, x3) − e3 · g3(x3, x4) = v2 − v3. v2 = x3 + v3. X. ⇒ . (5).
XxN−1 = eN−1 · gN−1(xN−1, xN ) − gN (xN ) = vN−1 − gN (xN ) . 

vN −1 = xXN + gN (xN )
eX1 = ge(xN ) − kd · e1. 

The changes of metabolite concentration can also be expressed by the differences between incoming and outgoing reaction rates. 
After the derivatives of metabolite concentrations are approximated from the Gaussian process (GP) derivatives, the reaction 
rate of each reaction can be calculated. The generic expression of the ith reaction rate is, 

vi = xXi+1 + · · · + xXN + gN (xN ) (6) 

This example illustrates that dynamic reaction rates in a linear metabolic pathway can be expressed in terms of the derivatives 
of time-dependent metabolite concentrations. For branched pathways, or pathways with feedback/feedforward reactions, in 
general there can be more reactions than metabolites. Therefore, not all the reaction rates can be expressed explicitly in terms of 
metabolite concentrations. In such cases either some reaction rates need to be measured experimentally to reduce the total 
number of unknown reactions, or some reactions may need to be combined or merged together so that the number of unknown 
reactions is equal to the number of metabolites. For instance, the reaction rates, v1 and v4, as shown in the branched pathway in 
Fig. 2a can not be uniquely determined and shall be combined into an overall net-reaction rate vv1, as 

Xx1 = v1 − v2 − v4 vv1 = v1 − v4 = Xx1 + v2 

Xx2 = v2 + v3 ⇒ v2 = Xx2 + v3 (7) 
Xx3 = v3 v3 = Xx3 

Similarly, for a pathway with a feedback reaction as given in Fig. 2b, there are four reactions but only three metabolites. To 
estimate reaction rates from metabolites the feedback reaction rate (−v4) can be expressed via the forward reaction rates v2 

and v3 (i.e. vv2 = v2 − v4, vv3 = v3 − v4). In such a way, the original pathway can be approximated as a linear pathway and the 
net-reaction rates between metabolites can be estimated, 

Xx1 = v1 − vv2 v1 = Xx1 + vv2 

xX2 = vv2 − vv3 ⇒ vv2 = xX2 + vv3 (8) 
xX3 = vv3 vv3 = xX3 

For a pathway with branches or feedback/feed-forward loops, we will not be able to compute the regulation coefficients with 
respect to each reaction unless practically one can measure the flux go through some of the branches. However, a hierarchical 
regulation coefficient of a specific enzyme with respect to a joint net-reaction rate can still be defined and calculated, but its 
summation with the corresponding metabolic regulation coefficient will no longer be conserved (i.e. always equal to one). For 
instance, the relative change of the vv2 in the feedback pathway example is, 

Δ lnvv2 = Δ ln((v2 − v4) = Δ ln( (e2 · g2(x1, x2) − e4 · g4(x1, x3)
) ) ) 

= Δ ln e2 · g2(x1, x2) 1 + e4 · g4(x1, x3)/e2 · g2(x1, x2)( )
= Δ ln e2 + Δ ln g2(x1, x2) + Δ ln 1 + e4 · g4(x1, x3)/e2 · g2(x1, x2) . 

Manuscript submitted to Biophysical Journal 3 
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Dividing both sides of the equation by Δ lnvv2 the first term Δ ln e2/Δ lnvv2 is a hierarchical regulation coefficient that quantifies the 
contribution of relative change of enzyme e2 to the relative change of net-reaction rate vv2. The second term is the corresponding 
metabolic regulation coefficient. However, the last term depends not only on the enzymes but also metabolite interactions with 
respect to both reactions 2 and 4. Hence, the conservation law is not applicable for branched or feedback/feedforward pathways 
and we will not be able to directly calculate the metabolic regulation coefficient even if the hierarchical coefficient is available. 
For a pathway with multiple branches or feedback/feed-forward loops, several branches will be combined to form the net flux, 
which does not require multiple transformations, although the definition of ‘net’ flux may not be unique (as one can have 
multiple ways to combine different branches). 

Time-dependent metabolites estimation using GPR 
The examples given in the previous subsection indicate that to estimate dynamic fluxes, we first need to estimate time-dependent 
metabolite concentrations. In general, metabolic pathways can be modeled by a set of ODEs, 

xX(t) = f(x(t), t; θ) (9) 

where x(t) = [x1(t), x1(t), ..., xN (t)] is the vector of metabolite concentrations at time t, and θ is the vector of model kinetic 
parameters. The rate of change of the ith metabolite is, xXi (t) = fi(x(t), t; θ). We assume that the ith metabolite can be measured 
with some additive normally distributed noise (with constant variance): 

ξxi (t) + ξ, ξ ∼ N(0, σ2 

Identifying the underlying time-dependent metabolic processes from limited noisy observations is challenging, especially when 
the ‘true’ kinetics and parameters are unknown. Gaussian process regression (GPR) (13), a nonparametric Bayesian inference 
approach, can then be employed to recover the underlying dynamic process without having to estimate reaction kinetics. 

Single-output GPR 

The most straightforward approach is to use standard single output GPR to model the concentration of each metabolite as a 
function of time xi(t) from the noisy observations yi(t). GPR assumes that outputs (xi) evaluated at a finite number of inputs (i.e. 
time points t = {t1, t2, . . . , tS }) have a multivariate Gaussian distribution. A prior can be put directly on a function rather than 
the parameters of a parametric function. A GP prior over the observed outputs (a function over time) for the ith metabolite is 

(10)yi (t) = ) 

ξ

ξ

yi(t) ∼ GP(m(t), k(t, t') + σ2 

where m(t) is a mean function of the metabolite concentrations taken at times t, δ(t, t') is the Kronecker delta function, and ( )
k(t, t') is a covariance function. Normally a squared covariance function is selected, k(tp , tq) = σ2exp − (tp − tq )

2/2l2 , where f d 
the hyperparameters, (σf , ld , σξ ), can be determined by maximizing the likelihood function (14). Given the GP prior it is 
possible to compute the posterior, because the joint (prior) probability distribution of the training outputs, yi , and the test 
outputs is again multivariate Gaussian,         

Ko + σ2 

δ(t, t')), (11) 

I Ko∗yi mo
∼ N (12), ,x∗ 

i K∗o K∗∗m∗

where yi = [yi(t1), . . . , yi (tS )]
T is a set of output observations; x∗ = [xi(t1 

∗), . . . , xi (t∗ )]T is the test outputs to be estimated at i R
any finite set of time points, (Ko)pq = k(tp , tq ), (Ko∗)pq = k(tp , tq∗ ), (K∗o)pq = k(tp

∗ , tq), and (K∗∗)pq = k(tp
∗ , tq 

∗ ). 
The posterior distribution for the ith time-dependent metabolite concentrations xi (t) can be obtained by updating the GP 

prior using the observed dataset yi(t) (from conditioning the joint Gaussian prior distribution), 

[xi (t1 
∗), ..., xi(tR

∗ )]|yi ∼ N(mi
post , K i ), (13)post 

ξξ(Ko + σ2I)−1(yi − mo (Ko + σ2 

dense metabolite concentration time series from limited experimental samples. 
I)−1Ko∗. From the GP posterior we can obtain where mi

post ) and K i 
post = m∗ + K∗o = K∗∗ − K∗o

Multi-output GPR 

Different metabolites in a metabolic pathway often interact with one another, e.g. via substrate/product effects or allosteric 
regulation, or if they are affected by the same noise process (e.g. enzyme gene expression). Single-output GPR is computationally 
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efficient at modelling individual metabolite trajectories, where such (often unknown or neglected) interactions between 
metabolites can be ignored. Multi-output GPs can account for such unknown relationships and are implemented either by 
specifying positive definite covariance functions between different outputs through so-called co-kriging (or coregionalization) 
(15, 16), or through parameterizing impulse responses function via linear systems theory (17–19). In this work, the latter 
approach is employed. Considering a stationary linear system with M independent white noise processes, u1(t), . . . , uM (t), as 
inputs, it produces N outputs y1(t), . . . , yN (t) with nth defined as, 

yn(t) = zn(t) + wn(t) (14) 

where wn(t) is stationary Gaussian white noise with variance σ2, and the multi-input multi-output filter is defined as,n 

M M ∫ ∞M M 
zn(t) = hmn(t) ⊗ um(t) = hmn(τ)um(t − τ)dτ, (15) 

−∞ m=1 m=1 

where hmn is the Gaussian kernel connecting input m to output n; hence, a multi-input multi-output filter can capture the 
dependencies among output variables yn(t). By evaluating the convolution integral, the covariance between yi (tp) and yj (tq ) is, 

p � �MMM ∫ ∞ M (2π) 2 vmi vmj 1
Ci j (d) = hmi(τ)hmj (τ + d)dτ =  exp − (d − [µmi − µmj ])

2S , (16)
2 

m=1 −∞ m=1 Ami + Amj 

where d = tp − tq is the distance between two input points, S = Ami (Ami + Amj )
−1 Amj and µmi is the offset parameter. The 

(positive definite) covariance matrix between N output variables becomes, 

C11 + σ1
2I · · · C1N 

. ..C = 

⎡⎢⎢⎢⎢⎢⎣ . . . . 

⎤⎥⎥⎥⎥⎥⎦ . (17). . 
CN 1 · · · CNN + σ2 IN nNC is a R × R matrix with R = i=1 Ri and Ri observations of output i. The hyper-parameters θ = {νmn, µmn, Amn, σn } can be es­

timated by maximizing the log-likelihood, L(θ) = − 12 log|C(θ)|− 12 y
T C(θ)−1y− R 

2 log π, using a multistart or constrained Nelder­22
Mead algorithm implemented in Matlab’s nonlinear optimization toolbox, where yT = (y1,1 · · · y1,R1 ) · · · (yi,1 · · · yi,Ri ) · · · (yN ,1 · · · yN ,RNnNThe distribution of predictions over Rt = (Rt are the testing time points, i.e. t1 

∗ , t2 
∗ , . . . , t∗ , for output i) for all thei=1 Ri

t
i Rt 

output variables (e.g. metabolites in a pathway) has mean and variance,
i 2 

z1(t ∗ ), , zN (t ∗ )
 

C−1y, K M − K M C−1K M 
1,1), . . . , z1(t ∗ · · · N ,1), . . . , zN (t ∗ |y ∼ N(K M 

1,Rt N ,Rt ∗o ∗∗ ∗o o∗ ), (18)
1 N 

where K M , K M and K M are defined in the Supplementing Materials and Methods. For notational simplicity the conditional∗o o∗ ∗∗ 
probability distribution in Eq. 18 will below be written as [z1, · · · , zN ] | [y1, · · · , yN ]. 

Derivative processes and reaction rates estimation 
As shown above, reaction rates depend on the derivatives of metabolite concentrations in a pathway. Since differentiation is 
a linear operator, the derivative of a GP is another GP. We thus obtain the GP posterior distribution for the derivatives of 
metabolite concentrations, 

[xXi (t1 
∗), . . . , xXi (tR

∗ )]|zi ∼ N(mi
post , K i ), (19)post 

where the training set zi are the time-dependent estimates of the ith metabolite obtained from the multi-output GPR; the 
expressions for mi and K i are the same as in Eq. 13; K∗o, Ko∗, and K∗∗ are defined differently here (14, 20):post post ( )Ko Ko LD FK∗o = , Ko∗ = Ko LD F , and K∗∗ = ,LD F LD F M ( ) ( ) ( )
with (LDF )pq = cov xX(tp), x(tq ) = d/dtp k(tp , tq ), (LFD )pq = cov x(tp ), xX(tq) = d /dtq k(tp , tq), (M)pq = cov xX(tp), xX(tq ) = 
d2 
/dtp dtq k(tp , tq ) As the sum of GPs is another GP, according to (Eq. 6) the distribution of the reaction rate of the ith reaction 

(over the same finite time points) can be expressed in terms of the derivatives of corresponding metabolite concentrations, 

[vi(t1 
∗), ..., vi (t ∗ )]|zi ∼ N(mi , K i ), (20)R v v 

 
) . 
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where mi = mi+1 + · · · + mN + gN (mN ), K i = K i+1 + · · · + K N . This expression is generic for estimating reaction v post post post v post post 
rates in a linear metabolic pathway or the net-reaction rates in a branched or feedback/feedforward pathways. 

Practically, when estimating reaction rates of a large metabolic pathway with many metabolites, there can be a large number 
of parameters associated with the multi-output GP (as in Eq. 16) and if only limited data are available, the optimization can 
become an ill-posed problem. In such cases single-output GPs may be used as an alternative by replacing the zi in Eq. 18 with 
xi in Eq. 13; correlations between metabolites will then no longer be modeled explicitly. 

Time-dependent regulation coefficients estimation 

The time-dependent hierarchical regulation coefficient expression Eq. 4 for the ith reaction at time t is defined as a ratio of 
the relative changes of enzyme concentration to the relative change of the reaction rate. Because of the dependency between 
reaction rate and enzyme concentration, the relative changes between these two variables (over a finite time points t1 

∗ , t2 
∗ , . . . , t∗ )R

are therefore calculated as joint posterior predictions of a multi-output GP, 

[ze, zv ]|[ye, yv ] ∼ N(mρ, Kρ), (21) 

where mρ = K M C−1y, Kρ = K M − K M C−1Ko
M 
∗ . The training data ye are the relative changes of enzyme concentrations; yv∗o ∗∗ ∗o 

is the relative change of the estimated reaction rate from Eq. 20. By assuming the previous steady-state (or the one before 
perturbation) enzyme concentrations ei(t0) and reaction rates vi(t0) are known, the distribution of time-dependent hierarchical 2
regulation coefficients ρi (t1 

∗), ..., ρi (t∗ ) can be evaluated according to, 
h h R 2 

ln ei (t1 
∗), ..., ln ei (t∗ ) − ln ei (t0)2 R

= 
ze . (22)

ln vi(t1 
∗), ..., ln vi(t∗ ) − ln vi (t0) zvR

For each time t this is the ratio of two GPs, and the probability density of the hierarchical regulation coefficient p(ρi (t)) can be 
h

evaluated as a ratio between two Gaussian variables, 

ln ei (t) − ln ei (t0) ze ∼ N(µze , σz2 
e 
)

p(ρi (t)) = p = p . (23)h ln vi (t) − ln vi(t0) zv ∼ N(µzv , σ2 )zv 

Since the reaction rate vi is a function of enzyme concentration, ei , the probability density of the ratio (i.e. z = ze/zv , 
ze ∼ N(µze , σ2 ) and zv ∼ N(µzv , σ2 )) can be calculated from the means, standard deviations and correlation coefficient of ze zv 

the two Gaussian variables (i.e. pz (z; µze , µzv ; σze , σzv ; r)), see Supplementary Materials and Methods and (21). Here, the 2
correlation coefficients between two GPs over all test sampling times (i.e. corr(ze, zv ) = r(t1 

∗), ..., r(t∗ ) ) is calculated from the R
covariance matrix C employed in the multi-output GP (Eq. 16), 

cov(ze, zv ) diag(C12)corr(ze, zv ) = = C C (24)
σze · σzv diag(C11 + σ1

2I) · diag(C22 + σ2
2I) 

After obtaining the probability density p(ρi (t)), we can also compute the mean and the confidence intervals at each time t.
h

RESULTS 

An unbranched pathway with negative feedback transcriptional regulation 
Fig. 3a shows an unbranched metabolic pathway with three metabolites, where for all the three enzymes gene expression is 
regulated by the last metabolite. We describe this as (with all the kinetic equations and parameters provided in (8)), 

xX1 = v1(S, x1, e) − v2(x1, x2, e) 
xX2 = v2(x1, x2, e) − v3(x2, x3, e) v1 = xX1 + v2 

xX3 = v3(x2, x3, e) − g3(x3, P) ⇒ v2 = xX2 + v3 (25) 
XmRN A = vtrscsyn − vtrscdeg v3 = xX3 + g3(x3, P). 

eX = vtrnlsyn − vtrnldeg 

We add additive Gaussian random noise (σ2 = 0.05) to the simulated metabolite, mRNA and enzymes concentrations. The 
system is perturbed from a reference steady state with S = 0.1 to S = 1 at t = 0. We fit a GP to each of the metabolite time 
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Figure 3: A three-metabolite unbranched metabolic pathway and estimation results. (a) The pathway model diagram. The 
metabolites are denoted by xi and enzymes by e. S and P are the external metabolites. The first enzyme e1 is regulated through 
both transcriptional repression and allosteric inhibition by the third metabolite. Enzyme 1, 2 and 3 are encoded on the same 
operon. (b)-(c) GPR to simulated metabolite observations x1, x2, x3, mRNA, and enzymes e after the change in S from 0.1 
to 1 at t=0. The noisy metabolite observations are shown in dot, the confidence intervals in gray represent the ±2× standard 
deviations of the GP posterior distribution. 

courses (Figs 3b and 3c) and calculate their derivatives. The time-dependent reaction rate (vi) for each reaction i can then be 
calculated from the GP derivative processes (Figs 4a-c). Finally we calculate the time-dependent hierarchical and metabolic 
regulation coefficients for each reaction and the corresponding confidence intervals (Figs 4d-f). 

After perturbing external metabolite S only the first reaction rate v1 increases instantaneously (from 40 to 120 from time 
t = 0− to 0+, not shown) as it is directly affected by the changes in S; all other metabolite concentrations and reaction rates have 
not yet had time to respond. At the new steady state, all metabolite concentrations are increased, i.e. x1 from 4.8 to 52.2, x2 from 
1.9 to 3.8, and x3 from 0.7 to 0.9; and all the reaction rates increase from 40 to 46, while enzyme concentrations decrease from 
1.3 to 1. This explains the negative hierarchical regulation coefficients shown in Figs 4d-f. The estimated regulation coefficients 
in Figs 4d-f show that metabolic regulation is initially responsible for the decrease in the reaction rate v1 and increase in the 
reaction rates v2 and v3 as the hierarchical regulation coefficient is close to zero. It takes some time for the negative hierarchical 
regulation to come into effect as gene expression is a relative slow process. Although the first reaction is under a negative 
allosteric regulation, the overall metabolic regulation shows a positive effect as it also includes substrate and product effects. 
The regulation coefficients for all the three reactions are very similar. This is because the relative changes in the enzyme 
concentration are very small in magnitude compared to the reactions rates, although the latter vary differently after perturbation. 

Leucine biosynthetic pathway with positive feed-forward transcriptional regulation 
The previous example shows a metabolic intermediate inhibits upstream enzymes through transcriptional regulation. Here we 
investigate a different regulatory structure: a metabolite activating downstream enzymes through transcriptional regulation. 
A simplified mathematical model describing the leucine biosynthetic pathway in Saccharomyces cerevisiae (22) is used to 
demonstrate such positive feed-forward regulation (Fig. 5a). This pathway converts pyruvate into leucine with two major 
regulatory mechanisms: metabolic/allosteric feedback inhibition of Leu4 and Leu9 (Eu) by leucine; and transcriptional 
regulation of downstream enzymes Leu1 (E1) and Leu2 (E2) by αIPM (I1). It has been demonstrated that positive feed-forward 
regulation has similar effects in maintaining pathway flux as negative feedback regulation from a control engineering perspective 
(23). The kinetic model describing the dynamics of αIPM (I1), βIPM (I2), Leucine (P), Leu1 (E1) and Leu2 (E2) together with 
parameters estimated from experimental data are provided in (22). The dynamics can be described as: 

IX1 = v1 − v2 
v2 = IX2 + v3

IX2 = v2 − v3 ⇒ (26) 
v3 = P − Fext + d5 PX

XP = v3 + Fext − d5P 

Fext is the external leucine flux. As the enzyme Eu is treated as a constant in the model, we will only investigate the hierarchical 
regulation with respect to the reactions catalyzed by E1 and E2. To investigate flux regulation the pathway is perturbed by adding 
an external flux of αIPM after the system reaches a quasi steady state. This is achieved by adding a constant external flux term 
φext in the first equation of Eq. 26. To evaluate the system’s responses and regulation strength under different perturbations, 
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Figure 4: Time-dependent reaction rates (a)-(c) and regulation coefficients (d)-(f) with respect to the three reactions in the 
metabolic pathway. In (a)-(c), the time-dependent reaction rates estimated from GP regression are shown in blue; for comparison 
the results based on ODE model simulations are shown in red. In (d)-(f), metabolic regulation coefficients, ρi (t), are shown in m

blue, and hierarchical regulation coefficients ρi (t) are in red. Results based on ODE model simulations are shown as dotted 
h

lines; results based on non-parametric GP regression are shown as solid line with confidence intervals indicated by the bands. 

three levels of perturbations are considered by adding φext =0.1, 0.2 and 0.3 mM/min at t=0 minute, respectively. The system 
is simulated for 400 minutes with an sampling time of 20 minutes. The multi-output GPR estimates of I2 (βIPM) and P 
(Leucine) are shown in Figs 5b and 5c, with reaction rate estimates given in Figs 5d and 5e. Before perturbation, the steady-state 
concentrations of βIPM is 0.27 mM, Leucine is 1.1 mM, enzymes Leu1 and Leu2 are 0.0055 and 0.0014 mM, and the quasi 
steady-state flux is 0.08 mM/min. It is clear that after perturbation, βIPM, Leucine, enzymes and reaction rates all increase. 

The time-dependent regulation coefficients for the last two reactions under relative small perturbation (φext = 0.1) are first 
calculated (Figs 6a and 6b). As both enzymes are regulated by positive feed-forward transcriptional regulation from αIPM, the 
hierarchical regulation coefficients of both steps are positive in contrast to the previous example. Initially, the increases in the 
pathway’s reaction rates are mainly stemming from metabolic regulation as the metabolic regulation coefficient is close to 1; 
the hierarchical regulation gradually comes into effect and eventually becomes a more important contributor to the increase of 
reaction rates. Such a switch takes less than 40 minutes for the reaction catalyzed by Leu1 to happen while it takes around 100 
minutes for the reaction catalyzed by Leu2, indicating the transcriptional regulatory strength for the former reaction is stronger. 

It is also interesting to investigate how regulation changes with the strength of the perturbation; see Figs 6c and 6d. For 
the reaction catalyzed by E1, hierarchical regulation increases at the same rate despite changes in perturbation strength; the 
regulation will only last for longer periods if the perturbation increases. For the reaction catalyzed by E2, hierarchical regulation 
increases more quickly as the perturbation increases, whereas it stops sooner by settling at a lower steady-state value. This is 
probably due to E2 reaching its maximum catalytic capacity more quickly than E1 (i.e. with smaller Michaelis constant). 

Nitrogen assimilation pathway in Escherichia coli 
Finally, we apply our approach to experimental data from E. coli and study the regulation in the nitrogen assimilation. 
Ammonium is a preferred nitrogen source for E. coli growth and there are two ammonium assimilation pathways (24): 
glutamate dehydrogenase (GDH) and glutamine synthetase (GS)-glutamate synthase (GOGAT) (Fig. 7a). After a period of 
nitrogen starvation, the ammonium level in the bacterial cultures are instantaneously increased. Figs 7b-d present experimental 
measurements for α-ketoglutarade (αKG), glutamate (GLU) and glutamine (GLN) concentrations over time (i.e. at 0, 1, 2, 5 
and 15 minutes) after ammonium spike. Red stars are the wild-type metabolite measurements; green stars indicate the isogenic 
glnG deletion measurements. The relationships between pathway metabolites and reaction rates can be described as below. 

X XαKGX = v1 − (v2 + v4.1) = v1 − vv2 v1 = αKGX + GLU + GLN 

X = v2 + v4.1 − (v3 − v4.2) = vv2 − v ⇒ vv2 = GLU X + GLN (27)X

X X

GLU v3 

GLN = v3 − v4.2 = vv3 vv3 = GLN 

As we can only infer three reaction rates from three metabolites, reaction rate v4 (as shown in Fig. 7a) can be split into 
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Figure 5: A simplified leucine biosynthetic pathway and estimation results. (a) The pathway model diagram. Multi-output GPR 
estimates of (b) I2 (βIPM) and (c) P (Leucine) concentrations under different levels of perturbation (adding exogenous αIPM 
flux φext = 0.1 mM/min as shown in green, φext = 0.2 mM/min in blue and φext = 0.3 mM/min in red). The time-dependent 
reaction rates v2 and v3 can then be estimated as shown in (d) and (e). The GPR fits to the proteins E1 (Leu1) and E2 (Leu2) are 
given in (f) and (g). The 95% confidence intervals in (b)-(g) are indicated by the bands. 
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Figure 6: Time-dependent hierarchical regulation coefficient ρi (t) (in green) and metabolic regulation coefficient ρi (t) (inmh
yellow) for reactions catalyzed by (a) E1 and (b) E2 under a constant flux perturbation (φext = 0.1 mM/min) to αIPM. 
Time-dependent hierarchical regulation coefficients for reactions catalyzed by (c) E1 and (d) E2 under different levels of flux 
perturbations to αIPM (i.e. φext = 0.1 mM/min in green, φext = 0.2 mM/min in blue and φext = 0.3 mM/min in red). 
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Time-dependent reaction rates estimation of v1, vv2 and vv3) from derivate GP processes. Time-dependent estimates of enzymes 
GS (and its active form GS0), GOGAT and GDH under (h) wild-type and (i) glnG deletion conditions. The 95% confidence 
intervals in (b)-(i) are indicated by the bands. 
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a b c d

Figure 8: Time-dependent gene-expression regulation coefficients (wild-type: red, glnG deletion: green). (a) Δ ln GDH/Δ lnvv2, 
(b) Δ ln GS/Δ lnvv3, (c) Δ ln GOGAT/Δ lnvv2 and (d) Δ ln GOGAT/Δ lnvv3. 

a b

Figure 9: Time-dependent estimates of hierarchical, gene-expression, and signal-transduction regulation coefficients (i.e. ρh in 
black, ρg in red and ρs in blue) of protein GS with respect to net rate vv3, under (a) wild-type and (b) glnG deletion conditions. 

two parts i.e. v4.1 and v4.2 which can be summarized with reaction rates v2 and v3 to form the ‘net’ reaction rates vv2 and vv3. 
Multi-output GP models are first used to fit the metabolite measurements under both wild-type and glnG deletion conditions 
as given in Fig. 7b-d. Time-dependent reaction rates for all the three reactions (i.e. v1, vv2 and vv3) can then be estimated 
according to Eq. 27 and are shown in Figs 7e-g. It can be clearly noted that most of the flux is through the GDH reaction in 
such an ammonium rich condition, which confirms previous studies (24). When comparing the results of wild-type and glnG 
deletion conditions, the rate vv3 under glnG deletion is significantly reduced to a very low level (Fig. 7g) while the glutamine 
decreases and αKG increases (Figs 7d and 7b). This can be explained as glnG encodes the transcription factor Ntrc that controls 
GS enzyme expression, which catalyzes glutamine synthesis in its active form. The experimental measurements of protein 
concentrations (i.e. GS and its active form GS0, GOGAT and GDH) and GP model predictions are provided in Figs 7h and 7i. 
Clearly we can see that the GS protein (and its active form) concentrations under glnG deletion are significantly lower compared 
to the corresponding wild-type condition, while other proteins remain at similar levels in both conditions. 

Next we quantify the contributions from hierarchical regulation effects, i.e. those involving gene expression and post-
translational modifications, to the regulation of reaction rates after ammonium spike. Since we have the time-dependent 
estimates of protein GS, GOGAT and GDH profiles and reaction rates, vv2 and vv3, we can compute the gene-expression 
regulation coefficients, i.e. Δ ln GDH/Δ lnvv2, Δ ln GS/Δ lnvv3, Δ ln GOGAT/Δ lnvv2 and Δ ln GOGAT/Δ lnvv3, with respect to 
both reactions as given in Fig. 8. The results indicate that gene-expression regulation has a relatively minor effect on modulating 
reaction rates vv2 after ammonium fluctuations under both conditions. This observation indicates metabolic regulation would 
play a major role in regulating vv2. For the reaction rate vv3, gene-expression regulation of GS and GOGAT increases after 
ammonium spike under the wild-type condition, while it remains at low levels in the glnG deletion condition. 

It is well known that signal transduction and post-translational modification (here adenylyltransferase) play crucial roles in 
regulating GS activity. Since the time-dependent measurements (and GP estimates) of total GS protein and its active form 
GS0 are available (Figs 7h and 7i) and GS0 = GS · ϕa with ϕa denoting the fraction of the enzyme that is in active form 
due to post-translational modification, we can further calculate the time-dependent signal-transduction regulation coefficient, 
ρs = Δ ln ϕa/Δ lnvv3, and total hierarchical regulation coefficient, ρh = Δ ln GS0/Δ lnvv3 with respect to net reaction rate, vv3. 
The results for both conditions are shown in Fig. 9. It is interesting to see that signal-transduction regulation is much higher 
after ammonium spike compared to the gene-expression regulation, and that the former contributes a major part to the overall 
hierarchical regulation under the wild-type condition, indicating the importance of post-translational modification in regulating 
pathway flux. Under the glnG deletion condition, all three regulation coefficients are small over time while signal-transduction 
regulation still contributes more to the overall hierarchical regulation for the majority of the time. 
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DISCUSSION 

To conclude, we have developed a non-parametric method that uses Gaussian processes to accurately infer temporal profiles 
(and associated uncertainties) of reaction rates in metabolic pathways, and to characterize the time-dependent hierarchical 
regulation in a metabolic pathway. 

A key contribution of the proposed approach is to generalize the widely used steady-state regulation analysis to the dynamic 
scenario without the need for time-dependent flux measurements. Simulation studies demonstrate that the proposed approach 
can accurately capture the true regulation profile, even in the presence of experimental noise. It can therefore be used to 
quantify subtle changes in regulation even away from steady state. This can be particular useful for the analysis of real pathway 
perturbations, or synthetic biosensor design. When both time-dependent measurements of enzyme concentration and the 
fraction that is in the active post-translational modification state are measurable, we can further quantify the time-dependent 
contributions from gene-expression and signal transduction to the regulation of metabolic activity. 

For a branched pathway or a pathway with feedback or feed-forward structures, we can still evaluate the hierarchical 
regulation of an enzyme with respect to the ‘net’ reaction rate, although the summation law between the hierarchical and 
metabolic regulation no longer hold. For a large-scale reaction network with complex structure, a practical strategy is to partition 
the large network into several smaller sub-networks, as one can assume metabolites that are far away from each other would 
have weaker interactions (this may not always be true, e.g. long-range allosteric regulation, so one needs to carefully partition 
the network according to the specific pathway structure). In such a way, within each sub-network with relatively small number 
of metabolites, multi-output GPR and the proposed time-dependent regulation analysis can still be applied. 

There are other parametric or non-parametric modeling methods can be used to interpolate the data and then estimate time 
derivatives, such as local polynomial regression or smoothing splines. The advantage of using GP over these approaches are i) 
GP can be easily used to fit a wide range of functions or data without assuming the data are characterized by a specific function; 
ii) the estimation errors (for both time-course data and derivatives) can be automatically obtained from a GP posterior, whereas 
other interpolation methods (e.g. nonlinear regression or splines) often only provide a maximum a posteriori (MAP) point 
estimate and can be very difficult to determine the estimation errors. This is important for this work, as we are interested to 
know the estimation errors of the regulation coefficients. 

The use of GPR in this work requires the additive Gaussian noise assumption and the noise in a metabolic pathway can 
be introduced from intrinsic or extrinsic stochasticity of molecular interactions (e.g. enzyme gene expression) or from the 
measurement process. Simulation studies (25, 26) have demonstrated that linear noise approximation (with Gaussian stochastic 
distribution) would be a good approximation to the exact stochastic simulation in metabolic reactions if the enzyme kinetic 
parameters satisfy certain conditions. In more general case if we have to consider non-Gaussian stochasticity or noise effects 
in the data, using warped Gaussian process (27) would be a promising alternative to the standard GP, it would be relative 
straightforward to compute the mean values but it would be difficult to compute the confidence intervals or the distribution of 
the regulation coefficients, as a ratio between non-Gaussian distributions will need to be evaluated at each sampling time point. 

The computational or optimization cost is an important limitation of generalizing multi-output GPR to high-dimensional 
cases; apart from partitioning a large network into several smaller ones as discussed above, practically one can possibly reduce 
the optimization cost by using one of the following tricks i) sometimes we can assume some of the hyper-parameters are the 
same across different variables (e.g. set the noise standard deviations of different outputs to be one parameter if we know 
the noise levels of different variables are similar) ii) constraining the hyper-parameters into a reduced parameter space by 
setting appropriate lower and upper bounds, especially for the parameters that control the kernel length-scale and noise standard 
deviation, which often leads a more efficient optimization if we have some ideas of the smoothness of the time series data and 
the noise levels. iii) replacing the multi-output GP with a number of single-output GPs if we have sufficient number of samples. 

For cases where discrete flux measurements are available at limited time points (e.g. as in the study by (9)), the proposed 
method can be easily adapted to estimate time-dependent reaction rate profiles directly by applying multi-output GPR to the 
discrete flux data (rather than indirectly inferring these from the derivative processes using metabolite measurements). 
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1 SUPPLEMENTARY INFORMATION 

1.1 Multi-output Gaussian process 

The K M , K M and K M in (18) are defined as: ∗o o∗ ∗∗ ⎡⎢⎢⎢⎢⎢⎢⎣ 
⎤⎥⎥⎥⎥⎥⎥⎦ [Rt ×R]⎤⎥⎥⎥⎥⎥⎥⎦ [Rt ×Rt ] 
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1.2 Probablity density of the ratio between two dependent Gaussian variables 

The probability density of the ratio between two dependent Gaussian variables (i.e. z = x/y, x ∼ N(µx , σ2) and y ∼ N(µy , σ2))x y

can be calculated from the means, standard deviations and correlation coefficient of the two Gaussian variables: 

2(1 − r2σx 
2σy 

2) 1 
pz (z; µx , µy ; σx , σy ; r) = K · F 1; ; θ2(z) (28)

σ2 Z2 − 2rσx σy z + σ2 2 y x 

where ( )2
− σ2 µx z + rσx σy (µy z + µx ) − µy σ

2 
y x 

θ2(z) = 
2σx 

2σy 
2(1 − r2)(σy 

2 z2 − 2rσx σy z + σx 
2) 

σ2 2 2 σ21 y µx − 2rσx σy µx µy + µy x
K = √ · exp − 

2πσx σy 1 − r2 2(1 − r2)σx 
2σy 

2 

∞M (α, k) βk 

F(α; γ; β) = · γ = 0, −1, −2, ... 
(γ, k) k!

, 
k=0 

where the Pochhammer symbol (α, k) is defined by (α, k) = α(α + 1) · · · (α + k − 1) = Γ(α + k)/Γ(α) with Γ the Gamma 
function. r is the correlation coefficient between the two Gaussian variables. 
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