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Uncertainty Modelling and Stability Robustness Analysis of Nucleic
Acid-Based Feedback Control Systems

Nuno M.G. Paulino†1, Mathias Foo2, Jongmin Kim3 and Declan Bates†4

Abstract— Recent advances in nucleic acid-based chem-
istry have highlighted its potential for the implementation of
biomolecular feedback circuits. Here, we focus on a proposed
design framework, which is able to approximate the input-
output behaviour of key linear operators used in feedback
control circuits by combining three elementary chemical re-
actions. The implementation of such circuits using DNA strand
displacement introduces non-linear internal dynamics due to
annihilation reactions among different molecular species. In
addition, experimental implementation of in silico designs
introduces significant levels of uncertainty and variability in
reaction rate constants and equilibrium concentrations. Previ-
ous work using this framework has overlooked the practical
implications of these issues for the construction of nucleic acid-
based feedback control circuits. Here, we analyse the impact
of these nonlinearities and uncertainties on the stability of a
biomolecular feedback loop. We show that a rigorous analysis of
its nucleic acid-based implementation requires an investigation
of the associated non-linear dynamics, to decide on realisable
parameters and acceptable equilibrium concentrations. We also
show how the level of experimental uncertainty that is tolerated
by the feedback circuit can be quantified using the structured
singular value. Our results constitute a first step towards the
development of a rigorous robustness analysis framework for
nucleic acid-based feedback control circuits.

I. INTRODUCTION

A primary aim of synthetic biology is the development of
systematic design and analysis frameworks for biomolecular
feedback control systems that can regulate concentrations of
molecular species inside the cell [1]. The recently proposed
use of chemical reaction networks (CRNs), implemented via
nucleic acid-based chemistry, as a programming language
for the design of such systems [2], has made it possible to
conceptualise many biological circuits in line with classical
feedback control ideas, [3], [4].

However, a direct translation of abstract mathematical
operators (e.g. gain, summation) into biomolecular circuits
via chemical reactions is often not straightforward. For
example, implementation of the subtraction operator using
CRNs generally results in a one-sided operation, (i.e. it can
only compute a positive difference between two inputs),
whereas in feedback control the error signal generated by
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the difference between the measured and the desired values
can take both positive and negative values. This is a critical
limitation, as a one-sided error computation can lead to poor
control performance or even instability [5], [6].

To get around this problem, Oishi and Klavins [3] pro-
posed a formalism that can perform a two-sided subtraction,
by letting each signal in the circuit be the difference in
the concentration of two chemical species, x+ and x−. In
this way, a systematic framework for implementing simple
linear biomolecular feedback controllers can be developed
using three elementary reactions, and the same formalism
has recently been extended to include more complicated
mathematical operators [7] and non-linear controllers [8], [9].

While previous studies have indicated satisfactory stability
and performance properties for controllers designed using
this framework, no formal robustness analysis of these
circuits has so far been attempted. This is an important
issue, because the implementation of CRNs using nucleic
acids requires the matching of specified reaction rates for
the required biomolecular reactions to realise a particular
operator, which can be problematic in real experimental
implementations.

The use of nucleic acids to implement CRNs is appealing
because a simple kinetic model of toehold-mediated strand
displacements could explain a large number of different
strand displacement reactions from the DNA sequences [10].
However, predicting reaction rate constants from sequence
information alone, i.e. without experimental inputs, is still
challenging and can result in large deviations from pre-
dicted design values. Improved biophysical models [11] and
computational tools [12] can help improve the precision
of predicted kinetics of hybridization and toehold-mediated
strand displacement. It is also reasonable to assume that
the different reactions may be characterised and the rates
measured. Finally, varying the concentrations of auxiliary
species [2] can also be used to iteratively bring the reaction
rates closer to their design values. Based on the above
considerations, it is estimated that environmental factors,
together with uncertainty of the characterisation, i.e., the
difference between measured rates and the actual reaction
rates in the implementation, could result in uncertainty in
the values of rate constants of between 10% to 20%.

Thus, it is crucial to be able to formally quantify in
advance the robustness of proposed CRN-based designs to
specified levels of uncertainty. Although some formal defi-
nitions of robustness in systems biology have been proposed
[13], the rigorous analysis of the effects of perturbations and
uncertainties in synthetic circuits calls for more structured
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Fig. 1. Representation for µ-analysis, where the nominal linear system
G(s) is interconnected with the uncertainty structured in the system ∆.

mathematical formulations for robustness analysis, estima-
tion and model-based prediction [14].

Here, we investigate the internal stability of the com-
plete set of reactions resulting from an implementation of
a linear feedback control circuit using nucleic acid-based
chemistry. The assumption of high concentrations of inter-
mediary species allows some simplification of the reactions,
but still captures an important aspect missing from the input-
output behaviour of the system: the circuit has non-linearities
due to the annihilation reactions, which are not observable
in the input-output dynamics. We show that the presence
of these hidden internal dynamics has an impact on the
equilibrium of the system, and also imposes lower bounds
on the concentrations of the intermediary species. More
importantly, the attraction of the equilibrium condition and
its stabilising role also needs to be characterised. Secondly,
we use the structured singular value (SSV) tool [15], [16]
from robust control theory to perform a formal validation
of the robustness of the proposed controller. An informal
robustness and sensitivity analysis was carried out in [3],
where the system was subjected to a square wave as reference
input over 50 simulations in the presence of random ± 10%
variability in the reaction rates. This led to mismatches in
some of the reactions rates, causing significant steady state
errors in the input tracking. In contrast to simulation-based
approaches, the SSV analysis does not rely on statistics,
making it a very strong certification method as long as the
modelling of the underlying uncertainty is representative.

The use of SSV, or µ-analysis, has been previously inves-
tigated in systems biology [17] in an attempt to quantify and
validate robustness in natural biochemical networks [18], and
it is now widely used in other domains such as aircraft [19],
[20] and space engineering [21]. Once the uncertainty in the
circuit is established, it can be aggregated in an uncertain
system ∆ interconnected with the nominal system (see Fig.
1), representing an infinite family of systems accounting for
all possible combinations of the uncertain parameters, where
any variation of the parameters will cause a deviation from
the nominal response. The SSV analysis searches for the
µ value (see e.g. [19]), which is a metric defining how far
the system is from losing stability. If the domain of ∆ does
not contain destabilising parameter combinations, then robust
stability is guaranteed for the specified level of uncertainty.

II. UNCERTAINTY MODELLING

Fig. 2 shows the configuration of the feedback control sys-
tem analysed throughout this work. It is a single-input/single-
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Fig. 2. The analysed feedback loop with proportional-integral controller
from [3].

output (SISO) system with a single state ξ4 where the output
of a constant plant P = 1/(1 +%) tracks a reference input u
by the action of a proportional and integral controller. The
closed-loop feedback trajectories evolve accordingly to:

ξ̇4 = kIξ1 = kI (u− y) (1)
y = P (kP ξ1 + ξ4)

A. CRN Approximation of a Linear Feedback Control Circuit

Following the formalism introduced in [3], the configura-
tion shown in Fig. 2 is approximated by a circuit composed
of CRNs, where the negative and positive parts of a signal
ξ are represented respectively by concentrations of two
different species x+ and x−. The final value of the signal is
retrieved with ξ = x+ − x−.

The proposed CRNs for each of the operations in the
circuit are based on three elementary reactions, namely catal-
ysis, annihilation and degradation. Here, the nomenclature
x± represents compactly the two different species x+ and

x−. Similarly, the notation x±
γ±

−−→ y± represents compactly
two simultaneous reactions

x+
γ+

−−→ y+, x−
γ−

−−→ y− (2)

The element ∅ is used when the result of a reaction degrades,
gets sequestered, or is removed, and no longer participates
in the reactions.

Thus, the subtraction block ξ1 = u − ξ5 is approximated
by the reactions:

u±
γ±
1−−→ u± + x±1 , x±5

γ±
2−−→ x±5 + x∓1 (3)

x±1
γ±
3−−→ ∅ , x+1 + x−1

η−→ ∅

For the weighted integrator ξ̇4 = kIξ1, the CRNs are:

x±1
k±I−−→ x±1 + x±4 , x+4 + x−4

η−→ ∅ (4)

Finally, for the weighted summation y = ξ5 = kpξ1 +ξ4, we
have:

x±1
γ±
7 k

±
P−−−−→ x±1 + x±5 , x±4

γ±
8−−→ x±4 + x±5 (5)

x±5
γ±
9 (1+%)
−−−−−→ ∅ , x+5 + x−5

η−→ ∅

The parameters γi, kP , kI , and η represent the rates of the
reactions, and % is a constant (set to % = 2 as in [3]). Using
the law of mass action, where the rate of a chemical reaction



is proportional to the product of the concentrations of the
reactants (see e.g. [22]), the dynamics of the CRNs in (3)-
(5) can be modelled using the ordinary differential equations
(ODE):

ẋ+1 = −γ+3 x
+
1 + γ−2 x

−
5 + γ+1 u

+ − ηx+1 x
−
1 (6)

ẋ−1 = −γ−3 x
−
1 + γ+2 x

+
5 + γ−1 u

− − ηx+1 x
−
1 (7)

ẋ+4 = k+I x
+
1 − ηx

+
4 x

−
4 (8)

ẋ−4 = k−I x
−
1 − ηx

+
4 x

−
4 (9)

ẋ+5 = −γ+9 (1 + %)x+5 + γ+7 k
+
P x

+
1 + γ+8 x

+
4 − ηx

+
5 x

−
5 (10)

ẋ−5 = −γ−9 (1 + %)x−5 + γ−7 k
−
P x

−
1 + γ−8 x

−
4 − ηx

+
5 x

−
5 (11)

The input-output systems have states computed by the dif-
ference in concentration of the species tracking the positive
and negative components of the signal with ξi = x+i − x

−
i .

Considering the nominal case where γ+i = γ−i , the dynamics
of the CRNs are linear and are given by

ξ̇ =

 −γ3 0 −γ2
kI 0 0
γ7kP γ8 −γ9(1 + %)

 ξ +

 γ1
0
0

u (12)

With the right choice of rates γi, and controller parameters
kI and kP , the input-output behaviour of (12) mimics the
input-output behaviour of the linear system shown in Fig. 2.
In this sense, the abstract CRNs of (3)-(5) can implement
a similar input-output response to the feedback system (1)
with biomolecular reactions, albeit with the inclusion of extra
dynamics.

B. Implementation with Nucleic Acids
The abstract CRNs given above can be implemented exper-

imentally using DNA strand displacement (DSD) reactions
[2],[3],[11]. The parameters γ±i , k±I , and k±P in the CRNs
are set as functions of nominal strand displacement rates q±i .
The individual dependencies of γ±i on q±i are inferred from
the DSD implementation in [3], and set as

γ±i =
1

2
q±i Cmax, i ∈ {1, 2, 3, 7, 8, 9} (13)

k±I =
1

2
q±5 Cmax, k±P =

q±7
q±8

(14)

The scaling parameter Cmax results from the DSD im-
plementation of the feedback system in [3], which relies
on bimolecular reactions mediated by intermediary auxil-
iary species with initial concentrations given by Cmax. If
Cmax � x±i (t), the concentration of the auxiliary species
can be considered almost constant, and the set of reactions of
the DSD network can be approximated by the unimolecular
reactions of the CRNs in (3)-(5). Thus it is important to
consider a set of parameters where the concentrations remain
small with respect to Cmax.

The annihilation reaction η depends on a maximum
displacement rate qmax [2], and the DSD implementation
proposed in [3] results in the equivalency

η =
1

2
qmax (15)

If η � γi, the annihilation reaction keeps the concentrations
x+i and x−i minimal without changing the transmission of
the signal ξi [3]. Often this entails that for steady state, if
ξi > 0 then x+i ≈ ξi and x−i ≈ 0. For ξi < 0 we have the
inverse with x−i ≈ ξi and x+i ≈ 0.

C. Implications of Non-Linear Dynamics
While the CRN model provides a framework to approxi-

mate the dynamics in (1) using concentrations of chemical
species, when dealing with the DSD implementation it is
important to note that the dynamics of ξi do not provide
a complete description of the system. For example, the
requirement that x±i (t) � Cmax cannot be verified from
the input-output response alone, since the concentrations of
xi are not observable in the states ξi, or y.

In addition, the stability and steady states of the sys-
tem cannot be inferred from (12) alone, due to the ab-
sence of the non-linear annihilation reactions. Consider the
non-negative state vector of species concentrations x =[
x+1 , x

−
1 , x

+
4 , x

−
4 , x

+
5 , x

−
5

]T ∈ R+
0 . The system of ODE’s

in (6)-(11) can be represented compactly as

ẋ = Ax+Bu− ηg(x) (16)

The input vector u = [u+, u−]
T contains both positive and

negative components of the reference input, and the linear
part of the model is given by

A =



−γ+3 0 0 0 0 γ−2
0 −γ−3 0 0 γ+2 0

k+I 0 0 0 0 0

0 k−I 0 0 0 0

γ+7 k
+
P 0 γ+8 0 −γ+9 (1 + %) 0

0 γ−7 k
−
P 0 γ−8 0 −γ−9 (1 + %)



B =


γ+1 0

0 γ−1
0 0
0 0
0 0
0 0

 , C = [ 0 0 0 0 1 −1 ]

A non-linear term g(x) is now present containing the
multiplications due to bimolecular annihilation reactions:

g(x) =



x+1 x
−
1

x+1 x
−
1

x+4 x
−
4

x+4 x
−
4

x+5 x
−
5

x+5 x
−
5


As mentioned above, the states ξi ∈ R are obtained from

the six non-negative components x±i ∈ R+
0 . This subtraction

results in the projection of the trajectories x±i in a R3

manifold, defined by the projection matrix Ψ : R6 → R3

Ψ =

 1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

 (17)

Applying this projection to the non-linear system in (16) we
have that Ψ · g(x) = 0, and the trajectories of ξi result from
the linear dynamics

ξ̇ = Ψ (Ax+Bu− ηg(x)) =
1

2
ΨAΨT ξ + ΨBu (18)
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Fig. 3. Probability density function fitted to the distribution of the
equilibrium estimation (1 + e6) = x0+5 /r̂5 (solid black), and the limits
(dotted red) containing 99.9% of the respective cumulative distribution
function (dashed red).

An immediate consequence is that the steady state of (18)
tells us nothing about the steady state of the DNA strand
concentrations, which are the solution to (16).

The other significant consequence is that, in our example,
while 1

2ΨAΨT is Hurwitz, the matrix A is not. The stability
of the experimental implementation using DSD depends also
on ηg(x) and the equilibrium solution. For example, with
initial conditions x(0) = 0, at t = 0 the system in (16)
is unstable (g(x) = 0 and A is not Hurwitz). The non-
linear term ηg(x) is an adaptive stabilising term, where
the state x needs to converge to an equilibrium where
the system becomes stable. By collapsing the trajectories
with the projection (17), this information about the internal
stability is hidden.

D. Equilibria Change with Uncertainty on the Parameters

Our objective is to measure the robustness of the system to
uncertainty. The strand displacement rates q±i depend on the
designed DNA toehold sequences [10], which can be hard to
predict. Even after experimental characterisation, there will
always be an error between the measured and real value of
the reaction rates. Here, we consider that the reaction rates
are never perfectly known and are therefore uncertainties in
the system.

Considering the start of the time response to be when
u+ = u− = 0, the equilibrium condition x0 is the non-trivial
solution to the non-linear equation

η · g(x0) = Ax0 (19)

Thus the solution depends on the parametrisation of A
and the strand displacement rates q±i . Since it depends
directly on the uncertain parameters, the solution is a moving
equilibrium, [23], that changes with the values of the rates.

However, through numerical simulation of the dynamics in
(16) it is possible to produce an arbitrary number of pairs as-
sociating an equilibrium condition x0 with the corresponding
values of q±i , opening the way for estimation techniques. The
SSV analysis framework requires rational representations of

uncertainty, and therefore each of the equilibrium compo-
nents must be approximated by a polynomial function of the
rates. To do this, the 14 uncertain rates q±i are organised in
a column vector q̄, and an estimator is obtained through the
linear function

x0 = r(q̄) + ε = V q̄ + ε (20)

The samples of x0 and q̄ are arranged respectively as
columns of R and Q, and V = RQT

(
QQT

)−1
is the

outcome of a Least Squares (LS) fitting. The fit of each
of the components is further improved by expressing the LS
fitting error εi, i ∈ {1, . . . , 6} as a quadratic function of
ri(q̄):

r̂i(q̄) = ri(q̄) +
(
αi + βiri(q̄) + ρi (ri(q̄))

2
)

+ ϑi (21)

This new function reduces quadratic distortions of the errors
and εi < ϑi. The fittings of the matrix V and the three
column vectors α, β, and γ in (21) were done using 10000
random samples of q±i in the intervals in Table I, to arrive
at the estimation function and error

x0(q̄) = r̂(q̄)(1 + e) (22)

Despite the presence of a small estimation error, we have
now computed a rational function that relates the uncertain
parameters and the equilibrium state.

To account for the estimation error we add correspond-
ing uncertainties, as suggested in [23], obtained from the
distributions of the fitting errors for each component ei.
These were fitted with a probability density function (p.d.f.).
Limits of variability for ei were defined containing 99.9%
of the cumulative density function to define six additional
uncertainties, which cover the error in tracking the moving
equilibria x0i = r̂i(q̄) · δei. The resulting limits of all
uncertainties δei in the presence of 13% of uncertainty on
q±i are listed in Table I. See the case of error (1 + e5) in
Fig. 3 when estimating x0+5 .

Linearising (16) around the equilibrium point (x, u) =
(x0, 0) then allows for a frequency representation of the
system’s response around its equilibrium, which is suitable
for analysis within the SSV framework. The error dynamics

TABLE I
UNCERTAIN SET ∆ COMPRISED BY THE REACTION RATES qi AND THE

FITTING ERROR OF THE EQUILIBRIUM δei .

Name Nominal Variability
q±i ,i ∈ {1, 2, 3, 5, 7, 8, 9} 800 [13, 13] %

δe1 1 [0.967081 1.09241]
δe2 1 [0.967098 1.09217]
δe3 1 [0.962463 1.06614]
δe4 1 [0.962197 1.06822]
δe5 1 [0.961924 1.09484]
δe6 1 [0.96421 1.10709]
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Fig. 4. Top: reference input u = u+ − u− and its two components.
Bottom: output of the projected CRN in (18) (dashed black) approximates
the response of the ideal linear model in (1) (blue).

around equilibrium x0 are

ẋe =
∂f

∂x

∣∣∣∣
x0

xe +
∂f

∂u

∣∣∣∣
x0

ue

=
(
A− ηJ(x0)

)
xe +Bue (23)

ye = x+5e − x
−
5e (24)

where xe = x − x0, ue = u − u0, and y = ye − y0. The
Jacobian matrix J(x0) is given by

J(x0) =
∂g(x)

∂x

∣∣∣∣
x0,0

=



x0−1 x0+1 0 0 0 0
x0−1 x0+1 0 0 0 0

0 0 x0−4 x0+4 0 0
0 0 x0−4 x0+4 0 0
0 0 0 0 x0−5 x0+5
0 0 0 0 x0−5 x0+5

 (25)

The function in (22) is used to include ∆ in the Jacobian
through J(r̂i(q̄) · δei) to account for the moving equilibrium
conditions. In this way, the equilibrium becomes correlated
with the uncertainty, as in the original non-linear system.
This step is important in order to remove the conservatism
that would be introduced by assuming an independent vari-
ability of the equilibrium conditions.

III. ANALYSIS RESULTS

The model in (16) for the non-linear system was imple-
mented and simulated in Matlab/Simulinkr, and analysed
with the Robust Control Toolbox from Mathworks [24].

In our example, Cmax = 1µM and the displacement rates
qi = 800M−1s−1 (as in [3]). The maximum rate was set
to qmax = 106M−1s−1. The reference input u(t) is given
by a square wave oscillating between ±4 × 10−9M . The
desired alternating step input is composed of the difference
between two concentrations in the presence of the annihila-
tion reaction u+ +u−

η−→ ∅ (see Fig. 4). The trajectories x±i
for the complete nominal system in (16) are shown in Fig. 5
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Fig. 5. Trajectories of the states for the non-linear system in (16), with
initial conditions around the equilibrium solution of (19).

when the initial conditions are set to x0. The tracking error
ξ1 = x+1 −x

−
1 can assume positive and negative values and is

null at steady state. The trajectories of x±1 are not inferable
from ξ1, where x+1 and x−1 are always positive, and alternate
their role with each new step on the reference.

For the robustness analysis we consider that variability
is present for all 14 strand displacement reaction rates
independently, which can allow for q+i 6= q−i . The nominal
and uncertain values for q±i and the fitting errors δei are
summarised in Table I. The final system has a high repetition
of uncertainties, and for strictly real uncertainties it can
be computationally hard to obtain good lower bounds on
the SSV (= 1/µ). However, it is sufficient to demonstrate
that the upper-bound of the SSV is less than 1 for all
frequencies to guarantee that the system is stable for all
possible parameterisations (see e.g. [19]).

As shown in Fig. 6, for uncertainty in the reaction rates
of up to 13%, the SSV analysis guarantees that the closed-
loop system is stable for all uncertain parameters shown in
Table I, since the upper bound on 1/µ remains below 1 for
all frequencies. For levels of 14% or more the analysis is
not conclusive. Since the fitting errors δei introduce conser-
vatism, which does not exist in the non-linear system where
the equilibrium is always the true value, a better description
of r̂(q̄) would improve the accuracy of the bound. Even
with this extra artificial conservatism, however, our analysis
shows that the system is guaranteed to be robustly stable
for a 13% variation in the reaction rates, which falls within
the expected 10 − 20% level of experimental uncertainty.
This represents crucial information to help experimentalists
estimate the accuracy with which reaction rates need to be
implemented for successful construction of these circuits.

IV. CONCLUSIONS

In this paper we investigated the problem of designing
linear feedback control circuits that can be practically im-
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Fig. 6. Upper bounds on destabilising 1/µ, for different levels of
uncertainty. The upper bounds are lower than 1 across all frequencies for
uncertainty levels of 13% or lower.

plemented using nucleic acid-based chemistry. We showed
how the implementation of even simple linear circuits with
distinct chemical species depends on non-linear terms that
drive important dynamics which are not observable in the
system’s input-output response. Rigorous analysis of the
robustness of such circuits requires that we focus on the
dynamics of the complete state vector and analyse the
internal stability of the system. This provides information
about closed loop stability and the system’s steady state that
is highly relevant when choosing experimental parameters.

The use of the SSV framework provides a method for the
rigorous quantification of how much the circuit implemen-
tation deviates from the ideal response in the presence of
experimental uncertainty, and allows a certification of the
stability of the system around its equilibrium conditions. To
achieve a linear representation, it was necessary to express
the equilibrium conditions as a function of the uncertainty,
to account for shifts due to parameter variability. We found
the system to be robustly stable around its equilibrium for
experimentally feasible uncertainty levels in the reaction
rates. Further work is ongoing to investigate the significance
of the non-linear terms in the dynamics of more complex
feedback circuits, to improve the estimation of the moving
equilibrium, to include additional sources of uncertainty,
to quantify the effects of uncertainties on performance,
and to obtain improved estimates of likely ranges of the
uncertainties based on experimental data.
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