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Abstract— Fuzzy Cognitive Maps (FCMs) are a soft computing 

technique characterized by robust properties that make them an 

effective technique for medical decision support systems. Making 

decisions within a medical domain is difficult due to the existence 

of high levels of uncertainty. The sources of this uncertainty can 

be due to the variation of physicians' opinions and experiences. 

The structure of existing FCMs is based on type -1 fuzzy sets in 

order to represent the causal relations among concepts of the 

modeled system. Therefore, the ability of the FCM to handle high 

levels of uncertainties and deliver accurate results can be 

hindered. In this paper, we propose using the Interval Agreement 

Approach to model the weights of links in FCMs to capture high 

level uncertainties in the presence of imprecise data acquired from 

different medical experts to enhance its decision modelling and 

reasoning capability. The proposed model is used in identifying if 

a child is diagnosed with an Autism Spectrum Disorder (ASD) 

where the Modified Checklist for Autism in Toddlers is used as a 

standard tool to derive the inputs for the FCMs. Initial results 

demonstrate that the proposed method outperforms conventional 

FCMs in classifying ASD based on a dataset of diagnosed cases.  

Keywords—Autism; Interval computation; MCHAT; medical 

decision support sytem; type-2 fuzzy set; fuzzy cognitive map. 

 

I.  INTRODUCTION 

Autism Spectrum Disorder (ASD) is a neurodevelopmental 
disorder that appears in early life stages. As described in [1] it is 
characterized by communication deficiency and impairments in 
social interaction. Children with autism tend to have 
abnormalities represented by repetitive behavior and limited 
interests. Their understanding capacity of non-verbal activities 
is comparatively lower than neurotypical children and affects 
their communication and interaction with other children and 
adults. This can be manifested in the form of maintaining eye 
contacts and expressing emotions. Early diagnosis and treatment 
of Autism can help Autistics to reach their full developmental 
potential, engage with others, and integrate into society to lead 
normal lives. The process of diagnosing ASD is challenging due 

to the existence of different qualitative and quantitative data 
sources that need to be elicited and analyzed in order to diagnose 
the severity of the condition. Moreover, different opinions of 
different stakeholders such as teachers, parents, and physicians 
may vary and need to be taken into account.  

The aforementioned reasons suggest the necessity to create 
a decision model based on combining key indicators 
contributing to a diagnosis, which can be used to identify early 
signs, type and severity of the Autism. FCMs have been used in 
combination with learning techniques for the identification of 
ASD. Previous works [2-4], were based on knowledge elicited 
by physicians for evaluating abilities of trained FCM models for 
classifying ASD.  

One limitation of current FCMs is its ability to handle 
uncertain information and aggregate information from different 
sources [5]. In previous research, fuzzy values associated with 
the FCM concepts and links between them have normally been 
represented using type-1 fuzzy sets, which do not have the 
ability to handle various sources of uncertainty associated with 
real world knowledge, human subjective opinion and noisy data 
sources. Recent work [6] has investigated the use of triangular 
fuzzy numbers to represent the uncertain relations between the 
concepts. Extending type-1 to Interval and General Type-2 
Fuzzy Sets (GT2FS) [7-8] has the potential to improve the 
efficiency of modelling higher orders of uncertainty associated 
with the elicited domain data. Using general type-2 Fuzzy sets 
also enables the combination of inter and intra uncertainties from 
multiple experts thus representing different users’ perceptions, 
and levels of hesitancy in their working knowledge. 

The ability to generate type-2 fuzzy sets from observed and 
aggregated data also offers the means to represent true 
possibility and uncertainty distributions of the data that more 
accurately resembles real world information [9]. The use of 
type-2 fuzzy sets can therefore be combined with the modelling 
and reasoning abilities of FCMs to improve its reasoning 
capability. This paper aims to enhance the FCM through 
introducing GT2FS into the weights of directed edges of the 



FCM. The GT2FS are generated by Interval Agreement 
Approach (IAA) [9] based on the aggregated opinions of 
different physicians to capture higher order uncertainties related 
to Autism diagnosis and prognosis.  

The Modified Checklist for Autism in Toddlers (MCHAT) 
is recognized by the American Academy of Pediatrics as a 
screening tool for indicating if a child between 16 months and 
30 months of age is at risk of developing Autism [1]. The 
existing MCHAT questionnaire considers the crisp inputs 
namely yes/no for answering each of 20 questions pertaining to 
unique skills and difficulties of a toddler. Based on the responses 
of parents on the MCHAT, the physician follows subsequent 
evaluation flow charts to reach a decision on diagnosis. This 
decision can be imprecise and intuitive in nature based on the 
perception and expertise of a given physician. These procedures 
can also be time consuming with a high degree of information 
loss in the assessment procedure due to its dependents on crisp 
inputs. The proposed approach extends on previous work that 
uses FCMs for modeling MCHAT based decision making 
process [2] by using GT2FS generated from interval valued data 
obtained from the doctors to represent the FCM weights.  

This paper is structured as follows: Section II provides 
background knowledge on the use of FCM in medical domains, 
and discusses the use of Interval Agreement Approach. Section 
III proposes an enhanced FCM combined with IAA for decision-
making. Section IV illustrates the computational steps used in 
the proposed method for computing the weights between the C1 
input and C21 decision concept of the generated FCM. In section 
V, the experimental results are presented. In section VI the 
advantages of the proposed method, limitations and future works 
are discussed.  

II. BACKGROUND 

A. Fuzzy Cognitive Map in medical domain 

FCMs are a strong computational tool for representing and 
analyzing the behavior of people and systems [10]. FCM can be 
used in order to model complex environments by utilizing 
diverse data sources, including the knowledge and experience of 
human experts. FCM is a fuzzy weighted directed graph with 
feedback and it is able to exploit the benefits of fuzzy logic and 
causal maps. Compared to conventional rule based reasoning 
approaches, FCM is based on a strong mathematical structure 
that helps systematic causal propagation.  

In the graph-based structure of the FCM, knowledge is 
represented as nodes, and causal connections. The FCM graph 
consists of n nodes which stand for concepts Ci : i = 1,2,3,…n. 
These nodes represent the most important factors influencing a 
decisional environment. The weighted and directed edges of the 
FCM connecting the aforementioned nodes represent the 
relationships between those factors. Each edge eij, represents the 
causal relation from causal concept Ci to the effect or decision 
concept Cj. The strength of the causal relation between the 
concepts Ci and Cj is represented by the weight Wij of the edge 

eij, where Wij  [-1,1]. The weights of the edges between n 
concepts are associated in an nxn matrix, called connection 
matrix (weight matrix). In the process of designing an FCM, the 
number of concepts and the causal relations among them, can be 
defined by subject experts. FCMs provide excellent mechanisms 

to develop forecasting exercises, especially what-if analysis. 
Therefore, the inference process of the FCM can be performed 
to draw knowledge, analyze, assess the influence of parameters, 
and predict outcomes in complex decision-making scenarios 
[11]. 

 The inherent computational and decision-making properties 
of the FCM, have led to the development of a large number of 
FCM based applications in diverse application areas [12]. One 
of the most prominent application areas is the development of 
Medical Decision Support System (MDSS). Due to their 
capabilities for resembling the human decision making process, 
FCMs have played a significant role in developing MDSS for 
diagnosis and prognosis. The methods for constructing the FCM 
of an MDSS can be divided into two main categories: the expert 
based FCM that utilize experiences and knowledge of experts in 
order to develop a model; and the computational FCM, which 
uses historical data to develop a model around a specific 
problem. The process of constructing an FCM for medical 
decision support system comprises of two main steps: the 
identification of the key concepts that can be used for diagnosis 
(e.g. symptoms, test results, or physician observations); and the 
identification of the causal relationships among those concepts. 
After the FCM is constructed, it can receive data from input 
concepts, and implement reasoning. Hence, the medical 
decisions are inferred as values of output or decision concepts. 

In previous literature, several FCM structures have been 
used to model MDSS. In [13] a data driven nonlinear Hebbian 
learning method was presented. This method used historical data 
and was able to achieve improved performance compared to 
previous methods [13]. In [14] an FCM based method for 
characterizing brain tumors was presented. The FCM was used 
to represent and model subject experts’ knowledge, and its 
performance was enhanced by using the Activation Hebbian 
Algorithm. The experimental results demonstrated that the FCM 
model had a satisfactory accuracy compared to other machine 
learning techniques, while at the same time retained a high 
degree of transparency and interpretability [14]. In the work by 
Stylios et al., three types of FCM architectures for MDSS were 
presented [15]. These architectures included: the competitive 
FCM, which was suitable when a single diagnosis was required; 
the distributed m-FCM which was suitable for complex 
problems that included a large number of factors; and a 
hierarchical m-FCM architecture which collected information 
from the other subsystems in order to provide intelligent 
decisions [15]. A recent example of FCM-based medical 
research includes the work of Subramanian et al. [16]. The 
researchers proposed a model that combined demographic risk 
factors, with the results of screening mammograms to elicit 
hidden and impeding risk of developing breast cancer [16]. In a 
study in [17] the team presented a decision support tool for 
urinary tract infection diagnosis. This tool was based on the use 
of an FCM based soft computing technique implemented in a 
Semantic Web approach [17]. In [5] the researchers proposed a 
novel design of the FCM methodology, which was based on 
intuitionistic fuzzy sets. The team applied and tested their design 
in two experiments. The first was an industrial chemical process 
control problem, and the second an MDS problem concerning 
pneumonia risk assessment.  The proposed FCM model was able 
to address the limited ability of previous FCM designs to model 



the hesitancy, due to various reasons such as: deficient facts, 
missing info, and indecision [5]. 

B. Interval Agreement Approach 

Computing with words (CW) is a methodology, where the 
main objects of computation are natural language words. It is 
inspired by the human ability to exploit perceptions in order to 
perform mental and physical tasks and delivers the promise of 
providing machines with the same ability [18]. In order to utilize 
the Computing with Words paradigm, several techniques have 
been proposed with the ability to capture the user's perceptions 
of concepts expressed through the use of survey data. 
Demonstrative examples are:  the Interval Approach (IA), the 
Enhanced Interval Approach (EIA) and the Interval Agreement 
Approach (IAA) [9]. The main role of the aforementioned 
approaches is to generate fuzzy models from data for words or 
concepts, in order to implement the required process of 
computation and reasoning.  

IAA, which is the basic technique used in this research paper, 
was introduced in [9]. IAA's main aim is to construct fuzzy sets 
to accurately represent the information captured in the responses 
of an individual to interval valued survey questions. IAA can be 
used in order to generate different types of fuzzy sets. Based on 
the nature of the collected data, IAA can generate Type-1, 
Interval Type-2, or General Type-2 fuzzy sets [19]. IAA is able 
to deliver fuzzy sets that account for two types of uncertainty 
contained in survey data. Inter-source uncertainty representing 
the variation in the answers provided by a group of individuals 
(e.g. different subject experts may provide different opinions on 
the same question) and intra-source uncertainty which can be 
considered as the variation in the answers of a specific 
participant (e.g. an individual's responses may vary over time). 
Many experimental survey designs, as the one described in this 
paper, are based on the participants expressing their views 
through providing interval values. It can be considered, that the 
width of the interval specifies the level of uncertainty in the 
individual's response. For example, a “narrow interval” 
represents less uncertainty and a “wider interval” represents 
more uncertainty. IAA is able to model these innate 
uncertainties, through the different dimensions of the generated 
fuzzy sets [8]. Moreover, as demonstrated in [8], IAA is able to 
generate models that efficiently exploit the knowledge contained 
in data. This is due to the minimal requirements of the method 
concern with: distributions within the data; data preprocessing; 
and outlier removal. It is logical to claim that the performance 
of a computational model can be hindered, when outliers are 
included in the training of the model. However, these outliers 
may contain rich information, which are not necessarily false or 
insignificant. IAA is able to account for this information. 
Therefore, the resulting fuzzy sets are extremely useful in 
applications that require complex reasoning and decision-
making. 

IAA has been used successfully in recent research in order 
to extract and exploit the knowledge contained within interval 
valued survey answers in practical medical contexts. The studies 
in [19] and [20] have illustrated the ability of IAA to produce 
type -1 fuzzy sets, and analyze the similarity and difference in 
the meaning of words and terms to different stakeholders in a 
specific medical domain. The studies in [19] and [20] have 

explored this problem since discrepancies in the concept of 
meaning for a word by different individuals such as 
patients/doctors/physiotherapists etc. may affect the medical 
assessment and proposed treatment plan. Their results 
demonstrate that the IAA can be a powerful tool for analyzing 
the vocabulary used in a medical context, and promote effective 
communication between patient and medical practitioners [19]. 

 

III. PROPOSED FUZZY COGNITIVE MAP 

In this study the concepts used to model the proposed FCM 
are extracted from the Fuzzy MCHAT (F-MCHAT) where the 
answer of each question is modified to three options represented 
by fuzzy sets as in [2], to overcome the shortcomings of the 
existing MCHAT. The extracted concepts are listed in Table I. 
A questionnaire with 20 questions has been designed for the 
purpose of this study to collect data from the experts about the 
weight of interrelations among these concepts and a decision on 
the risk of developing ASD. The proposed FCM has 20 causal 
nodes and one decision node. From the questionnaire, experts' 
opinions are collected on a Likert Scale [21], which ranges from 
0 to 100. In Fig. 1 an example question is shown. The experts 
draw ellipses to represent their opinion about the interrelation 
between the causal and the decision concept as shown in Fig.2. 
Based on their input data the weight of interrelation between 
these two concepts are calculated. The novelty of this method is 
that instead of providing a yes/ no option, the experts can express 
the fuzzy nature of each option. The answers from each expert 
is in the form of interval valued data as shown in Fig.1. The 
motivation behind collecting the data as intervals, is to allow 
greater chance to capture uncertainty due to imperfect 
information and hesitation. The interval valued data is then 
collected and aggregated using the IAA approach.  

TABLE I.  CONCEPTS OF FUZZY COGNITIVE MAP 

 

This paper uses IAA to produce GT2FS based on z slices [9] 
to capture uncertainties around assigning the weights of edges 

C1 Enjoy being swung 

C2 Take an interest in other children 

C3 Climbing on things 

C4 Pretend other things 

C5 Pointing index finger 

C6 Indication of interest 

C7 Bringing objects to parents 

C8 Eye contact 

C9 Oversensitive to noise 

C10 Smile in response to parents face 

C11 Imitate 

C12 Response to the name 

C13 Looking at a toy when pointing 

C14 Walking 

C15 Look at things you are looking at 

C16 Unusual finger movement near his/her face 

C17 Attract your attention 

C18 Deafness 

C19 Understanding what others say 

C20 Look to your face to check reaction 



that link the nodes of the FCM. The implementation of IAA in 
this work includes the following two phases:  

  Representing intra- response/option uncertainty by Type-1 
fuzzy sets. 

  Generating GT2FS based on z slices from the Type-1 fuzzy 
sets generated in the first phase for each expert where the 
resulting z-GT2FS contain intra and inter response/option 
uncertainty.  

 It is to be noted that the second dimension of the resulting 
fuzzy sets in the first phase, represents the level of agreement 
among each of the doctors across each option (intra-option). The 
third dimension of the resulting z slices in the second phase, 
represents the overall agreement among all doctors, across all 
the responses of the three options (inter-options) of a question in 
the MCHAT questionnaire.  

  In this study, three doctors D1, D2, D3 from Sultan Qaboos 
University Hospital participated to determine the influence 
weight of each casual FCM concept on the decision concept by 
providing their responses to the questionnaire that was designed 
for this purpose. For every interrelation between a causal 
concept and the decision concept, each doctor provided three 
responses as an interval on a Likert scale to determine the 
weights based on parents’ response concepts which resulted in 
three fuzzy values. After gathering the information, we extracted 
interval-valued data. By following the aforementioned 
procedure, each interrelation between an input concept and the 
output concept is represented by nine intervals. Across each 
option ‘a’, ‘b’, and ‘c’, a type-1 fuzzy set M is generated using 
the first phase of IAA. Hence, three fuzzy sets are produced, 
namely Ma, Mb and Mc. Here option ‘a’ means “certainly not”, 
‘b’ means “at some times” and ‘c’ means “always” for question 
1.  

To find the overall agreement (weight), Ma, Mb and Mc are 
aggregated by employing IAA to generate z-GT2FS and use the 
third dimension z to represent the level of agreement among the 
type-1 fuzzy sets Ma, Mb and Mc. 

 

 

 

Fig. 1.   Sample Questionnaire 

 

Therefore, three slices Za, Zb and Zc are produced,  

where: 

                             𝑍a =
1

3
/(𝑀a ∪ 𝑀b ∪ 𝑀c)                            (1) 

    𝑍b =
2

3
/(𝑀a ∩ 𝑀b)  ∪  (𝑀a ∩ 𝑀c) ∪  (𝑀b ∩ 𝑀c)         (2) 

and 

                      𝑍c = 1/(𝑀a ∩ 𝑀b ∩ 𝑀c)                             (3) 

   The overall fuzzy agreement on weights of z-GT2FSs is 
given by (4) which is defuzzified by the centroid method in [8] 
to get the weight between the cause and decision concepts.  

                                𝐙 = (𝑍a ∪  𝑍b ∪  𝑍c)                                (4) 

Finally, all the weights are collected to form a weight matrix, 
and they are used by the FCM to predict Autistic disorder as 
follows: 

At each step, the value of Ci of a concept is calculated by 
computing the influence of the causal concepts to the decision 
concepts, according to the following equation. 
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given in (6).  
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Here m is a positive constant, which takes values as 1 or 5 
and f(x) lies between 0 and 1. 

 

IV. ILLUSTRATION 

In this section, the numerical calculations are illustrated for 
the method proposed in the previous section. The inputs are 
collected from the three doctors D1, D2, D3. For example, for 
question 1 the weight given by the three doctors for the edge 
connecting causal concept C1 (enjoy being swung) and the 
decision concept C21 (Autism) is shown in Table II. By using the 
Likert Scale for each option for question 1, the resulting interval 
values are computed and shown in Table II.  

 

 
 

Fig. 2.   Sample Answer of D1 for Q1 
 

 



TABLE II.  RELATION BETWEEN C1 AND C21 

Option for C1 D1 D2 D3 

a [0.2-0.45] [0.15-0.35] [0.05-0.25] 

b [0.05-0.25] [0.35-0.60] [0.40-0.70] 

c [0-0.15] [0.50-0.70] [0.65-0.85] 

 

Table III shows the fuzzy sets produced for the 
aforementioned relation through the implementation of the first 
phase of the IAA. 

Fig. 3 depicts the generated type-1 fuzzy sets Ma, Mb and Mc 
(intra-option) agreement and also shows that there is an area of 
agreement among the generated sets. 

After performing the calculations in the second phase of the 
IAA, by using equations (1), (2) and (3), the results are given in 

Table IV where  indicates the empty intersections of intervals. 

TABLE III.  RELATION OF C1 

Ma 

[0.05  0.45] 1/3 

[0.15  0.35] 2/3 

[0.2   0.25] 1 

Mb 

[0.05   0.7] 1/3 

[0.4    0.6] 2/3 

 1 

Mc 

[0     0.85] 1/3 

[0.65  0.7] 2/3 

 1 

 

Fig. 3.   Intra Option Type-1 Fuzzy Sets 
 

TABLE IV.  IAA RESULTS  

Option for C1 

Za = 1/3 Zb = 2/3 Zc = 1 

Interval in x Interval in x Interval in x 

[0   0.85] [0.05  0.7] [0.05  0.45] 

[0.15  0.7]   

[ 0  0.25]   

Centroid 0.275 0.0625 0.04166 

Z Centroid  W1 = 0.0875 

 

Therefore, weight W1 of the interrelation between C1 and C21 
is 0.0875, which is the overall defuzzified value of produced z-
GT2FS. By following the same procedure for all Ci to C21; i = 1, 

2, 3…, 20 the weights of Ci on C21 is calculated and shown in 
Table V. 

The proposed FCM based on the concepts listed in Table I is 
shown in Fig. 4 along with its computed weights from Table V. 
The proposed FCM is a competitive FCM with no cyclic 
relations. The rationale behind this is that the models focus is to 
emphasize the influence between each cause concept and 
diagnosis concept [15]. Future work will investigate the 
application of this approach to other FCM topologies. 

TABLE V.  WEIGHTS BETWEEN CAUSE AND DECISION CONCEPT 

W1 0.0875 W6 0.1854 W11 0.1319 W16 0.0681 

W2 0.0847 W7 0.1306 W12 0.1063 W17 0.1271 

W3 0.1271 W8 0.209 W13 0.1 W18 0.1458 

W4 0.1 W9 0.1028 W14 0.2708 W19 0.1478 

W5 0.0917 W10 0.1083 W15 0.2215 W20 0.0938 

 

 

Fig. 4.   Proposed FCM 

TABLE VI.  VALUES OF CONCEPTS 

Iteration 1 2 3 4 5 6 7 

C1 0.3 0.5744 0.6398 0.6547 0.6581 0.6588 0.659 

C2 0.55 0.6341 0.6534 0.6578 0.6588 0.659 0.659 

C3 0.6 0.6457 0.656 0.6584 0.6589 0.659 0.659 

C4 0.2 0.5498 0.6341 0.6534 0.6578 0.6588 0.659 

C5 0.69 0.666 0.6606 0.6594 0.6591 0.6591 0.6591 

C6 0.73 0.6748 0.6626 0.6598 0.6592 0.6591 0.6591 

C7 0.86 0.7027 0.6688 0.6612 0.6595 0.6592 0.6591 

C8 0.1 0.525 0.6283 0.6521 0.6575 0.6587 0.659 

C9 0.57 0.6388 0.6545 0.658 0.6588 0.659 0.659 

C10 0.4 0.5987 0.6454 0.656 0.6584 0.6589 0.659 

C11 0.5 0.6225 0.6508 0.6572 0.6586 0.659 0.659 

C12 0.62 0.6502 0.6571 0.6586 0.6589 0.659 0.659 

C13 0.6 0.6457 0.656 0.6584 0.6589 0.659 0.659 

C14 0.71 0.6704 0.6616 0.6596 0.6592 0.6591 0.6591 

C15 0.9 0.7109 0.6706 0.6616 0.6596 0.6592 0.6591 

C16 0.15 0.5374 0.6312 0.6528 0.6576 0.6587 0.659 

C17 0.25 0.5622 0.637 0.6541 0.6579 0.6588 0.659 

C18 0.45 0.6106 0.6481 0.6566 0.6585 0.6589 0.659 

C19 0.49 0.6201 0.6502 0.6571 0.6586 0.6589 0.659 

C20 0.62 0.6502 0.6571 0.6586 0.6589 0.659 0.659 

C21 0.6591 0.659 0.659 0.659 0.659 0.659 0.935552 

 

V. EXPERIMENT AND RESULT 

 After calculating the weights among the concepts using IAA, 

the effectiveness of proposed FCM is compared with FCM 

available in [2] that was used for same purpose. The results of 

similar diagnosis cases resulted in the same domain of decision 

either: definitely Autism, probable Autism or not Autism. For 

example, initial values for the concepts of one case (diagnosed 

 

µ 

x 



as definite Autism) used in the prediction evaluation in [2] are 

used with the proposed FCM. The values of the concepts are 

derived by iterating the initial values using equation (5). The 

concepts reached equilibrium after seven iterations. The initial 

and iterated values for the concepts for this case are shown in 

Table. VI. The decision concept of the proposed FCM resulted 

in a final value of 0.935552 which lies in definitely Autism and 

is comparable to the result of original approach in [2]. The 

advantage of the proposed method compared to the method 

discussed in [2] is that we are not tuning the FCM through the 

learning algorithm to obtain the desire result. Thus, the 

processing complexity is reduced. In addition, using the 

proposed FCM approach with the dataset of 40 diagnosed cases 

in [2] we found that of the 23 cases diagnosed as definite Autism, 

13 cases diagnosed as probable Autism and 4 cases diagnosed as 

not Autism, the proposed approach correctly classified 22/23, 

11/13, and 3/4 giving an accuracy of 85.04% which is higher 

compared to the 79% accuracy achieved by the FCM used in [2] 

on the same data. 
 

VI. CONCLUSION AND FUTURE WORKS 

This paper proposed a fuzzy method for evaluating the weights 

between causal and decision concepts of an FCM applied to the 

process of diagnosing ASD. The existing flow chart of MCHAT 

is limited to the consideration of crisp inputs provided by the 

parents, or caretakers of the child for making a decision on the 

risk of developing Autism. The proposed method has both 

increased the expressivity and reduced the complexity of the 

MCHAT, and improved the accuracy of the FCM weights, by 

adopting interval agreement method, which is the novelty of 

this paper. The illustration section provides the reader with a 

step by step implementation of the proposed method to facilitate 

understanding. Weights between the casual concepts are 

generated using IAA. The results produced in this paper are 

compared with previous results and are shown to be better and 

more consistent. Our current work is in the process of 

developing formal descriptions to explain these results more 

fully. Future work will further validate the approach based on a 

more extensive set of user studies. We also plan to address 

improvements of the proposed FCM through introducing IAA 

to evaluate the concepts values.  
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