

A Method for Constructing Automotive
Cybersecurity Tests, a CAN Fuzz
Testing Example

Fowler, DS, Bryans, J, Cheah, M, Wooderson, P & Shaikh, S
Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

Fowler, DS, Bryans, J, Cheah, M, Wooderson, P & Shaikh, S 2019, A Method for
Constructing Automotive Cybersecurity Tests, a CAN Fuzz Testing Example. in 2019
IEEE International Conference on Software Quality, Reliability and Security
Companion (QRS-C). IEEE Computer Society, IEEE International Conference on
Software Quality, Reliability and Security Companion , Sofia, Bulgaria, 22/07/19.
https://dx.doi.org/10.1109/QRS-C.2019.00015

DOI 10.1109/QRS-C.2019.00015

Publisher: IEEE

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

https://dx.doi.org/10.1109/QRS-C.2019.00015

A Method for Constructing Automotive
Cybersecurity Tests, a CAN Fuzz Testing Example

Daniel S. Fowler
Systems Security Group

Coventry University
Coventry, UK

fowlerd3@coventry.ac.uk

Jeremy Bryans
Systems Security Group

Coventry University
Coventry, UK

jeremy.bryans@coventry.ac.uk

Madeline Cheah
Horizon Scanning

HORIBA MIRA Limited
Nuneaton, UK

madeline.cheah@horiba-mira.com

Paul Wooderson
Vehicle Resilience Technology Centre

HORIBA MIRA Limited
Nuneaton, UK

paul.wooderson@horiba-mira.com

Siraj A. Shaikh
Systems Security Group

Coventry University
Coventry, UK

siraj.shaikh@coventry.ac.uk

Abstract—There is a need for new tools and techniques to
aid automotive engineers performing cybersecurity testing on
connected car systems. This is in order to support the principle
of secure-by-design. Our research has produced a method to
construct useful automotive security tooling and tests. It has been
used to implement Controller Area Network (CAN) fuzz testing (a
dynamic security test) via a prototype CAN fuzzer. The black-box
fuzz testing of a laboratory vehicle’s display ECU demonstrates
the value of a fuzzer in the automotive field, revealing bugs in the
ECU software, and weaknesses in the vehicle’s systems design.

Index Terms—cybersecurity testing, controller area network,
fuzz testing, automotive engineering, systems security, embedded
systems, dynamic software testing, black-box testing, SAE J3061

I. INTRODUCTION

At Black Hat 2015, the premier convention for hackers,
security researchers Miller and Valasek showed the first remote
exploitation and control of an unmolested mass production
car [1]. Their research provided a demonstration of cyber-
physical hacking that could potentially cause harm to the
vehicle’s occupants, other road users, and pedestrians. Their
widely reported research once again showed that any type of
device that has connectivity could become a target for a cyber-
attack and highlighted the potentially severe consequences of
a compromised connected car. If car manufacturers were not
already addressing the cybersecurity of their products, then
their research showed the importance of doing so.

The automotive industry is responding to the cybersecurity
threat to their products. In the SAE J3061 guidelines [2] the
use of Threat Analysis and Risk Assessment (TARA) and
designing security into systems is advocated. The goal of
secure-by-design [2]–[4] is to raise assurance levels [4], [5]
in the software and hardware within vehicle systems. High
assurance is important in order to maintain confidence [5] in
a connected car’s operation and safety.

Jointly funded by Coventry University and HORIBA MIRA Limited.

The secure-by-design goal is verified with security test-
ing [2], [4]. One of the goals of our research is to examine
how a class of security testing, called fuzz testing, can have
an impact on the automotive systems engineering field. Fuzz
testing is a successful dynamic security testing technique used
in traditional information systems [7]. However, there is a
scarcity of detailed published works in the application of fuzz
testing to vehicle systems [6].

Within vehicle systems several types of data networks are
used, here, the Controller Area Network (CAN) is chosen as
the target for fuzz testing, for several reasons [6]:

• it is a commonly used in-vehicle network;
• many of the computers in a vehicle have a CAN interface;
• the design of CAN makes it very susceptible to attack;
• tools and techniques for manipulating the CAN protocol

are inexpensive and readily available.

In our research we examine how a new, easy to use, and
easy to install prototype automotive fuzz testing tool, a CAN
fuzzer, can be used to test the security properties of a vehicle’s
computers.

An in-vehicle computer is commonly called an Electronic
Control Unit (ECU). In our research a laboratory vehicle’s
display ECU is used as the Target of Evaluation (ToE) [8],
a.k.a. the system-under-test. The results from the fuzz testing
found weaknesses in the display ECU and the associated lab
vehicle’s systems design. Additional engineering to address
the discovered weaknesses would improve the assurance of
the target vehicle against CAN based attacks.

The work presented here builds upon our previously pub-
lished work, see Section II. In Section III a brief refresher on
the CAN protocol is given. Section IV adds our methodology
for constructing automotive security tests and its application to
CAN fuzz testing. The new results from fuzz testing a display
ECU are covered in Section V, this is followed by a discussion
in Section VI and a conclusion in Section VII.

II. PREVIOUS WORK

In our previous work [6] we examined the use of fuzz testing
within the automotive field. Fuzz testing is used by security
researchers, software testers and attackers. The aim of fuzz
testing is to discover software and hardware issues that may
then be used to compromise a system’s security properties, its
confidentiality, integrity, and availability.

Fuzz testing is a dynamic software stress test (equivalent
to injecting noise into computer electronics when performing
hardware fault injection tests):

1) High volumes of random or malformed data are sent
into the system’s interfaces by a fuzzer.

2) The system’s reaction to the fuzz testing is monitored.
3) Conditions at a point of failure or interest are recorded

for analysis.
4) Fuzz testing is highly automated for efficiency, and to

cover a wide value space.
5) Analysis of fuzz testing results may reveal a system’s

weaknesses.
6) An attacker will use weaknesses to try and compromise a

system. A software tester will use the results to improve
system design, and hence a system’s assurance levels.

Automotive fuzzers are summarised in Table I. The be-
Storm [9] and Defensics [10], [11] fuzzers are general purpose
commercial products. The booFuzz [12] fuzzer is open source
but was configured to work with commercial software. The
Peach fuzzer is advertised as supporting automotive use,
but there are no published results or use cases available.
There is an open source version of Peach available. Most
of the approaches to fuzz testing are based upon protocol
information, i.e. based upon knowledge derived from network
or interface specifications. For automotive CAN this means
using the format of the CAN data packets, see Section III. This
is common for black box testing, performed in our research,
where little is known about the system internals. However, a
white box approach can also be used, for example, if there is
pre-existing knowledge of CAN data packet contents acquired
from source code running in an ECU. The complex features,
functionalities, and algorithms of the existing commercial
fuzzers will the subject of further research.

TABLE I
AUTOMOTIVE FUZZERS

Fuzzer License Approach
beStorm [9] Commercial Protocol based
Defensics [10], [11] Commercial Protocol based
booFuzz [12] Mixed Design based
Peach (www.peach.tech) Mixed Protocol based
Prototype CAN Fuzzer [6] Commercial Protocol based

The addition to Table I from its previous publication is the
interesting solution to the oracle problem provided by [11].
They propose fuzz testing a ToE alongside an identical system
(not subjected to the fuzz testing) as a reference point, and
comparing the output from the fuzzed ToE to the reference

system. This proof-of-concept system uses two model cars,
one as the ToE and one as the reference, with the models’
systems controlled by CAN busses. A dSPACE Hardware-in-
loop (HIL) system is linked to the Defensics fuzzer. (HIL,
software-in-the-loop, and model-in-the-loop, are methods used
to emulate systems and components during automotive devel-
opment.) The dSPACE HIL can load, start and stop the fuzzer.
When the fuzzer is active the measured analog and digital
signals from the two models are compared and any differences
are logged as errors.

Information on the performance of the system would be
useful, for example, does the analysis of the outputs keep up
with system operation? Further, there is no discussion of the
acceptable variation between the ToE and the reference system.
How much of a difference between the output of the fuzz
tested ToE and the reference system is required before an error
condition is considered? An interesting point is made about
the reference systems. If a model of the system can run on
the HIL, and the model is accurate, then the reference system
could be virtual, used within the HIL system itself.

As we have previously noted in our own research [6], they
also mention the lack of available knowledge on automotive
fuzz testing. Most publications are overview experiences of
implementing a commercial fuzzer, rather than detailed data on
the effectiveness of the fuzz testing, the practical experimental
methods used, and lessons to be learnt from the experiences.
There is a need, and opportunity, to add to the fuzz testing
knowledge in the automotive field. This lack of knowledge
does not only apply to CAN. There are many technologies in
use in a vehicle, the large attack surface provides plenty of
scope for more research into applying fuzz testing to vehicle
systems. This motivates our research to address the gaps.

III. THE CAN BUS

There is plenty of publicly available information on the
technical details of the CAN bus, the following is a brief
overview.

Fig. 1. Overview of a CAN data packet. The software in an ECU or fuzzer
sees the CAN data as an id, data length, data byte values and status condition.
The CAN network hardware handles the control bits during data transmission
and reception.

CAN uses twisted-pair wires to provide a data network
between ECUs in a car. The transmission speed of the standard
CAN protocol is modest, designed to support up to 1Mb/s. A
simplified CAN data packet is shown in Fig. 1. The CAN
hardware in an ECU handles the details of the data protocol,
including error handling. The ECU software views the CAN

TABLE II
EXAMPLES OF CAN PACKETS LOGGED FROM A CAR

Time (ms) Id Length Data
5328.009 043A 8 1C 21 17 71 17 71 FF FF
5329.008 0296 8 00 00 00 00 00 00 00 60
5331.029 04F2 8 00 53 6C 00 00 00 00 00
5338.165 0215 7 00 1C 01 00 00 01 40

packet as an identifier, data length, payload bytes and network
status information. Any ECU can initiate data transmission,
however, only one ECU at a time is allowed to transmit.
For a CAN packet the arbitration identifier (id), determines
transmission priority. The lowest id continues transmission in
the event of packet collision (two or more ECUs attempting
simultaneous transmission). Examples of CAN packets logged
from the lab vehicle are shown in Table II. CAN was designed
prior to vehicle connectivity and without consideration for
cybersecurity. It has vulnerabilities and is susceptible to several
types of attack [15], including packet sniffing and replay,
injecting false values, denial of service via flooding, jamming
(known as bus-off) and spoofing data from ECUs.

IV. A METHOD FOR CONSTRUCTING AUTOMOTIVE
SECURITY TESTS

Our research has identified seven phases in the development
of an automotive security testing technique, shown in Fig. 2.

Fig. 2. Systematically constructing automotive security tests.

1) Establishment and validation of a test environment -
The complexity and costs of the modern vehicle provides
a challenging environment in which to develop new
security testing methods. For a new vehicle design the
access to the car’s internal systems and components may
not be possible in the early stages. The use of a testing
environment, in the form of a reusable testbed, provides
a controlled setting for developing new security testing
methods. In our research a commercial vehicle design
and development system is deployed as a security testing
rig. Such systems are traditionally used for functional
testing, but our research [14] confirms they can be
used for the development of security tooling, a similar
approach taken by other researchers [11]–[13].

2) Determine a security test to develop or perform -
SAE J3061 identifies three classes of security test that
can be executed against a vehicle system or component.

The outcome of this phase is for the researcher to
choose one of vulnerability, fuzz, or penetration testing.
However, each of these three tests will have specific
testing requirements based upon the technology of the
ToE (see the next phase), for example a penetration test
for a WiFi interface would differ in its details to one
targeted at Bluetooth.

3) Determine the technology/ToE to test - Vehicles con-
tain multiple digital technologies. There are many types
of components, sensors, interconnections, interfaces, and
communication protocols. For this research CAN was
chosen for its ubiquity within vehicle systems. However,
many vehicle technologies require new research on
security testing techniques.

4) Development of the test tooling - To execute the cho-
sen security test against the chosen technology tooling
support is required. In testing digital systems this in-
variably means some form of software, but may include
interfacing and measurement equipment. The software
and equipment can be commercially sourced, or may
require bespoke design and development, or both. This
research required a simple CAN fuzzer. Simplicity here
is in terms of ease of use and deployment. Our previous
work [6] discusses the development of the prototype
CAN fuzzer. It uses off-the-shelf hardware to interface to
CAN. The testbed provided the controlled environment
to enable the development of the tooling. It is anticipated
that developing specialised tooling for other vehicle
technologies will be required.

5) Validation of the tooling - Any security test tooling
will need to be performant for its intended application.
Therefore, it needs to be validated. In this research
validation of the CAN fuzzer was performed during its
development. A similar validation phase is required for
security tooling used against other technologies. Issues
with validation results in further tooling development.

6) Experimental methods using the tooling - In this phase
the established test environment and the new test tooling
is used, performing the determined security test and
recording the results. However, the lack of knowledge
in security testing of vehicle systems means that the
experimental methods will require refining as testing
experience is gained. For example, the experimental
use of the prototype CAN fuzzer revealed unforeseen
issues. Thus, as well as evaluating the results of the
experiments, it is important to refine the experimental
techniques used, this requires the next phase.

7) Method and tooling improvements - The final phase is
used to improve the effectiveness of the security testing
methods and tooling against the targeted technologies.
Use of the security tooling can suggest, or require,
improvements for future experiments, security tests and
use cases. This improvement is illustrated by the dashed
line in the schematic in Fig. 2. The near continuous
development of new and improved technologies in the
automotive field will, likewise, require continuous im-

provements in security testing tooling and techniques.
The method, summarised in Fig. 2, for the construction of

automotive security tests and tooling, was derived from our
work on producing a prototype CAN fuzzer tool. The method
applied to CAN fuzz testing is summarised in Figure 3.

Fig. 3. CAN fuzz testing development method.

The implemented prototype CAN fuzzer is a simple to
install Windows PC application. The fuzzer communicates
with CAN using a PEAK System1 USB to CAN interface. No
other expensive software, special packages, or specific versions
of libraries are required. It has several Graphical User Interface
(GUI) screens for configuring the CAN interfaces, fuzz testing
and logging. One of the screens in shown in Fig. 4.

Fig. 4. One of the prototype CAN fuzzer’s configuration screens.

Having used the prototype CAN fuzzer against ToEs in
our previous work, here it was deployed against a vehicle’s
display ECU. As well as allowing for an examination of the
ECUs security properties (Section II), it provides for further
refinement of the fuzzer, i.e. stage 7. of the method.

Aside from the display ECU having a CAN interface, its
screen was a factor in its choice as a ToE. It had been noted in
our research that a problem with fuzz testing vehicle systems
is the cyber-physical aspect – the software side of a ToE may
induce changes on the physical side. A CAN data packet may
not cause a detectable reaction from an ECU via a CAN bus
reply. This is because the CAN packet is triggering an external,
real world response. Experimenting on an ECU with a built-
in real world, and visible, aspect allows for testing that is not
reliant upon other vehicle parts, such as sensors, actuators or
lights.

1https://www.peak-system.com/

V. RESULTS FROM FUZZ TESTING A DISPLAY ECU
The target Display Interface (DI) ECU operating in the lab

vehicle is shown in Fig. 5. It’s position within the vehicles
CAN networks is illustrated in Fig. 6, derived from the vehicle
electrical service manual. The functions of the vehicle’s ECUs
are listed in Table III.

Fig. 5. The Display Interface (DI) ECU in the laboratory vehicle, a variety
of messages are displayed in response to occupants operating the vehicle.

Fig. 6. Networks connecting ECUs in the lab vehicle, 3 High Speed (HS)
CAN busses run at 500Kbps, and one Medium Speed (MS) CAN at 125Kbps.

TABLE III
ECUS IN A SMALL VEHICLE

ECU Reference ECU Functiona

OBD On-Board Diagnostics connector
IP Instrument panel
PS Power steering control

AIM Audio Interface Module
OCS Occupant (Passenger) sensing
RF Key fob functions
RC Restraint control

ABS Anti-lock brake system
TC Transmission control
PC Powertrain control

TP/SM Tire pressure and security module
BC Body control
DI Display interface

GPS Global positioning system
AC Audio control

aAbbreviations changed for commercial confidentiality.

In our experience fuzz testing may damage components and
so another display ECU was purchased for the experiment.
The purchased ECU does not have the full color display but
functions correctly within the vehicle, see Fig. 7. The ECU’s
internal CAN connection was confirmed to run at 500Kbps,
and the observed CAN packets have an eight-byte payload.

Fig. 7. The ECU obtained for bench testing operating in the lab vehicle.
Despite ordering the correct used unit, it is a lower specification component
(there is a small difference in the part numbers), it does functions correctly.

For the bench-based fuzz testing, custom cabling, correctly
terminated2, was used to connect to the PC based CAN fuzzer.
A bench supply, to power the ECU, replicated the 12.4 volts
that was measured at the vehicle.

The fuzzer was configured to randomise the standard CAN
id range from 0 to 2047. At the fuzzer’s default transmission
rate of one packet per millisecond, it would take less than three
seconds to run through the standard range of id values (2048 ·
0.001s = 2.048s). The CAN packet payload was configured
to be fixed at eight bytes, as observed on the car’s CAN bus.
The byte values were randomised over their full range of 0 to
255.

It was observed that the display ECU, as with other ECUs
that have been tested, enters a standby mode when no CAN
communications are present on the CAN bus. This can cause
the CAN fuzzer to report communications errors. This is
because the initial CAN packet transmission from the fuzzer
does not get acknowledged, due to the ECU waking from its
standby mode. If the ECU does not wake up quickly enough
then the fuzzer’s CAN interface can enter what is known as
a bus-off state. To overcome this problem a second CAN
interface is configured within the CAN fuzzer and attached
to the CAN bus. This second interface allows for the initial
CAN packets from the fuzzer to be acknowledged, while the
ECU awakens from standby. This prevents the possible bus-off
state.

When power is applied to the ECU the screen is blank. The
fuzz testing is started. After a short period (10s of seconds)
the screen flashed a message (Park brake applied), see Fig. 8.
This physical response to the fuzz testing demonstrated that
the fuzzer had generated a packet that the ECU is programmed
to process.

The use of the fuzzer to provoke a response from the ECU
allowed for the opportunity to use the results for reverse
engineering. Knowledge on the internal operation of vehicle
systems and components is difficult to obtain for researchers
(and attackers), mainly due to commercial confidentiality.
However, reverse engineering vehicle systems is useful for
several reasons:

• For operational knowledge, by commercial competitors
(vehicle manufacturers and component suppliers) and
independent repair companies.

2https://tekeye.uk/automotive/can-bus-cable-wiring

Fig. 8. Displayed message during fuzz testing.

• Functional safety engineers, to understand the operation
of vehicle systems.

• Security engineers, to use system operational knowledge
to aid penetration and vulnerability testing.

• Attackers who have an interest in compromising vehicle
systems.

Having the log file from the fuzz testing, and knowing
the ECU responded to the testing, it allowed for the CAN
data that caused the response to be determined. There is a
constraint because transmitted CAN packets may not invoke
an immediate reaction from the ECU, due to processing delays.
The short time delays also mean that correlation between the
transmitted CAN packet and the ECU’s reaction is difficult to
determine from observation alone. However, by playing back
the logged CAN data packets, and systematically reducing the
number of packets being played back, it is possible, by a
process of elimination, to determine the packet that invokes
an ECU reaction.

A. Binary search for a CAN packet

The fuzzer has a log file playback function. The file from the
fuzz testing was divided in half and transmitted to the display
ECU. This was repeated if the observed message was seen,
otherwise the other half of the sub-divide file was played back.
This was a binary search for the packet affecting the ECU.
This binary search worked until the last four lines of the log
file remained, at which point, the display of the message was
inconsistent.

Several attempts at playing back the last few log file search
lines would, or would not, cause a message to be displayed
on the ECU’s screen. This made it difficult to zero in on the
CAN packet responsible. One cause is the ECU entering the
standby mode prior to a play back. Another cause is the rate
of packet transmission. The ECU would ignore packets if they
are sent at too high a rate. However, using the fuzzer’s single
shot mode to send each of the remaining search packets, a
CAN packet with the id of 793 was found responsible for
displaying the seen message.

B. Determining display ECU’s functionality

Having found the packet that causes the ECU to react, the
next test was to determine what functionality the individual

bytes in the CAN packet perform. The identified packet has
eight bytes of data. Testing the effect of the byte values can
be done in different ways:

1) Treat the individual bits in a byte as flags. Testing
involves setting and clearing different bits in each of
the packet’s bytes.

2) Treat the data bytes as integer numbers and increment
the values from 0 to 255.

3) Generate random values over a byte’s range from 0 to
255.

For 2) and 3) there is a combinatorial explosion problem.
For an eight byte data packet, with eight bits per byte, the 64
bits give 264 value combinations, or nearly 18.5 Exa (Exa =
1018) possible values. Thus, methods to simplify the search
of the value space for the meaning of a CAN packet’s byte
values are required.

One method is to view the packet contents as individual
bit flags. This vastly reduces possible combinations by testing
each bit individually. This bit setting was chosen for its
simplicity, testing the 64 packet bits using this method:

1) At the start, data bytes in the CAN packet are zeroed.
2) The CAN packet is transmitted to the display ECU.
3) The display ECU’s screen is observed for any reaction.
4) Each bit is set to one in order (starting at the first bit in

the first byte).
5) If the last bit has been set then finish, otherwise go to

step 2.
To aid with the single bit testing the prototype CAN fuzzer’s

single shot functionality was modified to make it easy to
increment the byte values, see Fig. 9.

Fig. 9. The CAN fuzzer’s single shot packet functionality was modified to
aid with testing the display ECU. The arrows next to each byte increment or
decrement the value by one (values can be entered directly).

The setting of individual bits within the CAN packet (id
793) did result in messages being displayed. The results for
the first two bytes are shown in Table IV, space restrictions
prevent all the results being included.

The messages found were compared to the messages listed
in the user manual for the car, available from the manufac-
turer’s customer website (the reference has been redacted due
to commercial disclosure reasons). The user manual lists 78
possible messages that the display may show. Some of the

TABLE IV
DISPLAY ECU CAN PACKET ID 793 BIT SETTING RESULTS FOR BYTES 1

AND 2, ALL THE OTHER 5 BYTES WERE SET TO ZERO

Byte 1 Byte 2 Message
0000 0000 0000 0000 none (blank screen)
0000 0001 0000 0000 Press brake and clutch to start
0000 0010 0000 0000 Press brake to start
0000 0100 0000 0000 Press clutch to start
0000 1000 0000 0000 Active City Stop Auto braking
0001 0000 0000 0000 Active City Stop not available
0010 0000 0000 0000 Active City Stop Sensor blocked Cle. . .
0100 0000 0000 0000 Check tyre pressures
1000 0000 0000 0000 Tyre pressure sys malfunction Servic. . .
0000 0000 0000 0001 Engine on OK (not in manual)
0000 0000 0000 0010 MyKey active Drive safely
0000 0000 0000 0100 MyKey Speed limited to 160 km/h)
0000 0000 0000 1000 MyKey vehicle at top speed
0000 0000 0001 0000 none
0000 0000 0010 0000 none
0000 0000 0100 0000 none
0000 0000 1000 0000 none

possible messages relate to options and equipment that may
not be present due to the vehicle model.

For packet 793, out of the total 64 bit positions, there are
22 bits that result in a message being displayed. However,
the message Park brake applied was seen twice. Furthermore,
two messages are not present in the user manual (Engine on
OK and Selector lever unlocked). Therefore, the bit testing
for CAN id 793 revealed 20 of the 78 messages listed in the
manual.

The CAN fuzz testing, packet discovery, binary search and
bit setting was repeated to find another CAN packet, id 752,
that controls the display ECU. For the second round of testing
the previously found id, 793 was excluded from the fuzz
testing, by entering it into an exclusion list in the fuzzer (see
Fig. 4). Fig. 10 shows one of the messages displayed by packet
752.

Fig. 10. The CAN data sent to the display ECU is manipulated to reverse
engineer the ECU’s functionality.

For packet 752, out of a total of 64 bit positions, there
are 55 bits that result in a message. However, not all 55 bit
positions result in a unique message. Two messages that are
displayed via CAN packet 752 are also displayed by CAN
packet 793. Two messages are repeated by a bit in different
bytes. One message is not listed in the user manual, whilst in

three messages the text is not identical to the messages in the
user manual. Two messages are repeated by several bits.

Taking the results from the bit testing, and excluding
repeated messages, and the one unlisted message, then at least
44 messages in the user manual are displayed via CAN packet
752. This means that CAN packets 752 and 793 can display
64 of the 78 messages listed in the user manual, suggesting
that one or more additional packets could be responsible for
the remaining messages, see the Discussion in Section VI.

C. Varying CAN packet data byte length

The technique to discover the display ECU’s functionality
was proving successful. One variable that had not been altered
was the length of the payload data. This was tried against the
two discovered packet ids, 793 and 752. The following method
is used to test the variation in the data length.

1) The CAN fuzzer’s single shot function was configured
to transmit CAN packets 793 and 752 to the display
ECU.

2) The data length of the CAN packet was varied from the
maximum of 8 to the minimum of 0.

3) All the data values were fixed at zero. These Values were
known not to cause the display of a message.

4) The display ECU was observed for a reaction when the
configured CAN packets were transmitted.

Varying the data length had an unexpected effect, the results
are shown in Table V. When the data length is set to 8, with
all bytes set to a value of zero, the display ECU does not show
any messages. This is expected and was seen in the bit setting
experiments. However, reducing the payload data length does
result in messages being displayed, even though the bytes
values are all zero. As the number of bytes in the payload
decreases the messages beginning displayed changed, in some
cases several messages are seen. In Table V the values that
would have resulted in the seen messages have been entered
in bold red and underscored, with the actual zeroed and sent
data entered in blue. What the results indicate is that the
display ECU’s program always reads eight full bytes from a
data buffer. This appears to be a classic buffer overflow error.
Such a finding, if found prior to production, would require
a bug report to be raised. The software in the ECU should
ignore any message not of the correct length.

VI. DISCUSSION

On first appearances the display ECU appears to be simple
in operation, a screen for communicating status messages to
the vehicle occupants. However, there is a degree of complex-
ity. It was observed that packet transmission rates influence
its operation. Furthermore, the vehicle’s user manual shows
78 possible messages, but many of them would only be seen
if a fault occurs or certain vehicle options are fitted (e.g. a
manual transmission compared to an automatic transmission).
Experimental use of the CAN fuzzer was able to reveal the
data required to display the messages, and other operational
characteristics that would have otherwise remained hidden, this
could be useful to an attacker.

TABLE V
UNEXPECTED MESSAGES WERE DISPLAYED WHEN THE CAN PACKET

DATA LENGTH WAS DECREASED FROM THE OBSERVED 8 BYTES.

Id Data length Msgs. Sent vs decoded data (hex)
793 8 0 00 00 00 00 00 00 00 00
793 7 1 00 00 00 00 00 00 00 80
793 6 1 00 00 00 00 00 00 01 00
793 5 1 00 00 00 00 00 00 01 00
793 4 2 00 00 00 00 00 80 01 00
793 3 2 00 00 00 00 01 40 00 00
793 2 1 00 00 00 01 00 00 00 00
793 1 2 00 09 00 00 00 00 00 00
793 0 3 90 01 00 00 00 00 00 00
752 8 0 00 00 00 00 00 00 00 00
752 7 1 00 00 00 00 00 00 00 0F
752 6 1 00 00 00 00 00 00 00 0F
752 5 1 00 00 00 00 00 01 00 00
752 4 3 00 00 00 00 00 18 40 00
752 3 2 00 00 00 40 00 01 00 00
752 2 3 00 00 01 48 00 00 00 00
752 1 2 00 04 00 20 00 00 00 00
752 0 5 06 06 00 20 00 00 00 00

Reverse engineering of ECU functionality is needed to
determine how systems work. System knowledge is useful to
hackers, pen testers, functional safety engineers, rival manu-
facturers, and parts suppliers. The reverse engineering of the
display ECU could be continued. Indeed, another run of the
fuzz testing, with the found ids excluded, found a CAN packet
with id 753 responsible for an additional 4 messages. However,
the focus of our research is not to fully reverse engineer a
component, as the primary aim is to determine the usefulness
of fuzz testing to improve automotive systems assurance levels.
To that end the results from testing against the ECU have
provided useful evidence to support the use of automotive fuzz
testing. Furthermore, the results were used to inject unexpected
messages into the lab vehicle.

A. Injecting display ECU messages

One aim of security experiments is to learn enough about
a component in order to use the knowledge to compromise a
vehicle. In doing so it provides evidence needed to improve
the component design, system design and mitigate the attack.

For the display ECU the knowledge to control what is shown
to vehicle occupants is useful for attackers. In this case it
allows for the display of incorrect messages to the vehicle
users, including messages that may not be understood because
they are not in the user manual. Displaying those messages
would be disturbing in a variety of situations.

It can be seen, Fig. 6, that the display ECU is not con-
nected to the On-Board Diagnostics (OBD) port, a common
entry when attacking vehicle CAN busses. Thus, the CAN
packets needed to display a rogue message must be sent via a
connection to the vehicle’s internal CAN bus. This is achieved
using a man-in-the-middle connection close to another ECU
under the dashboard, see Figure 11.

Thus, the message injection is not as straightforward as it
could be. However, access to the network is not difficult and
certainly possible by someone who is knowledgeable. There is

Fig. 11. Splicing into the lab’s vehicle’s internal CAN network via an Audio
Interface Module (AIM) ECU located below the dashboard. This provided an
access point for injecting invalid CAN data.

the argument that if physical access is required then some other
attack would be performed. However, the principles behind the
discovery of the display ECU functionality, and the message
injection, are applicable to future security testing. Furthermore,
there are multi-stage scenarios in which a similar, or the same,
type of attack would be useful to certain adversaries, for
example state actors or unscrupulous repair businesses planting
controllable devices in a vehicle, in order to facilitate stopping
a vehicle or a false repair. Although an attack is possible it
may not necessarily be used, however, there are always lessons
to learn, and knowledge that can be applied elsewhere.

In Figure 12 the message injection can be seen in action.
The injected messages cause a loud beeping sound within the
vehicle, which is not heard during the bench-based experi-
ments, and would heighten anxiety for vehicle users.

Fig. 12. CAN packets are injected into the lab vehicle’s internal network
to display false messages. The messages are incorrect because the vehicle
requires the brake to be pressed to start, and the brake fluid level is correct.

VII. CONCLUSION

The full range of processes required for automotive security
testing are not trivial due to the attack surface of vehicles.
Furthermore, complexity is increasing with the advent of
autonomous driving. We have developed a method that is
suitable for developing testbeds, tooling and security tests.
Our method has been applied to automotive fuzz testing,
starting with insecure CAN, which is present within all mass
manufactured vehicles. We have developed an easy to use and

easy to deploy prototype CAN fuzzer to supplement TARA
and secure-by-design with a dynamic test method.

The fuzzer was used against a display ECU and it revealed
problems with the software, confidential operational informa-
tion, and system integrity issues. If this security fuzz testing
had been available, and was performed prior to production,
then beneficial system design changes and bug fixes would
have been made. It is also applicable to the post-production
vehicle life cycle, where security testing can be applied to
design iterations. Therefore, the development of security tests
is a requirement in automotive engineering, and supplements
traditional functional testing. A validated security test, as with
the CAN fuzz testing, does improve system security assurance.

One area that requires further research, and noticeably
absent from the literature, is how to gather useful metrics on
fuzz testing. The fuzzer will be used to explore this issue
within the automotive field.

Finally, our method and research will be used to develop
other security tests and tooling, aimed at expanding the
knowledge within the relatively new automotive cybersecurity
field in the literature

REFERENCES

[1] C. Miller, and C. Valasek, “Remote Exploitation of an Unaltered
Passenger Vehicle,” Black Hat USA, 2015.

[2] SAE International, “J3061 - Cybersecurity Guidebook for Cyber-
Physical Vehicle Systems,” Warrendale, 2016.

[3] BSI, “PAS 1885:2018 The fundamental principles of automotive cyber
security - Specification,” 2018.

[4] P. Wooderson and D. Ward, “Cybersecurity Testing and Validation,” SAE
Technical Paper, 2017.

[5] K. M. Goertzel, T. Winograd, H. L. McKinley, L. Oh, M. Colon, T.
McGibbon, E. Fedchak, and R. Vienneau, “Software Security Assurance
State-of-the-Art Report,” DTIC, Fort Belvoir, Technical Report, 2007.

[6] D. S. Fowler, J. Bryans, S. A. Shaikh, P. Wooderson, “Fuzz Testing for
Automotive Cyber-security,” 4th Workshop on Safety and Security of
Intelligent Vehicles (SSIV 2018), 2018.

[7] C. Chen, B. Cui, J. Ma, R. Wu, J. Guo, and W. Liu, “A systematic review
of fuzzing techniques,” Computers and Security, 75, pp. 118-137, 2018.

[8] ISO, “ISO/IEC 15408-1:2009(E) Information technology - Security
techniques - Evaluation criteria for IT Security,” 2014

[9] R. Nishimura, R. Kurachi, K. Ito, T. Miyasaka, M. Yamamoto, and
M. Mishima, “Implementation of the CAN-FD protocol in the fuzzing
tool beSTORM,” 2016 IEEE International Conference on Vehicular
Electronics and Safety (ICVES), pp. 1–6, 2016.

[10] D. K. Oka, A. Yvard, S. Bayer, and T. Kreuzinger, “Enabling Cyber
Security Testing of Automotive ECUs by Adding Monitoring Capabili-
ties,” Embedded Security in Cars Conference, 15th escar Europe, Berlin,
isits AG, 2016.

[11] R. Kurachi, and T. Fujikura, “Shift Left: Fuzzing Earlier in the Auto-
motive Software Development Lifecycle using HIL Systems,” 16th escar
Europe, Brussels, isits AG, 2018.

[12] P. Lapczynski, H. Heinemann, T. Schöneberger, and E. Metzker, “Au-
tomatically Generating Fuzz Tests from Automotive Communication
Databases,” 5th escar USA, Detroit, isits AG, 2017.

[13] P. S. Oruganti, M. Appel, and Q. Ahmed, “Hardware-in-loop Based
Automotive Embedded Systems Cybersecurity Evaluation Testbed,” Pro-
ceedings of the ACM Workshop on Automotive Cybersecurity, AutoSec
’19, New York, NY, USA, pp. 41–44, ACM, 2019.

[14] D. S. Fowler, M. Cheah, S. A. Shaikh, and J. Bryans, “Towards a
Testbed for Automotive Cybersecurity,” Software Testing, Verification,
and Validation, ICST, International Conference on, Tokyo, IEEE Com-
puter Society, pp. 540–541, 2017.

[15] J. Liu, S. Zhang, W. Sun and Y. Shi, “In-Vehicle Network Attacks and
Countermeasures: Challenges and Future Directions,” in IEEE Network,
vol. 31, no. 5, pp. 50-58, 2017.

	IEEE
	PID5981531

