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Identification and Frequency Domain Analysis of Nonstationary and Nonlinear 

Systems Using Time-Varying NARMAX Models 

This paper introduces a new approach for nonlinear and nonstationary (time-varying) system 

identification based on time-varying NARMAX (TV-NARMAX) models. The challenging model 

structure selection and parameter tracking problems are solved by combining a multi-wavelet basis 

function expansion of the time-varying parameters with an orthogonal least squares algorithm. 

Numerical examples demonstrate that the proposed approach can track rapid time-varying effects in 

nonlinear systems more accurately than the standard recursive algorithms. Based on the identified time 

domain model, a new frequency domain analysis approach is introduced based on a time-varying 

generalized frequency response function (TV-GFRF) concept, which enables the analysis of nonlinear 

nonstationary systems in the frequency domain. Features in the TV-GFRFs which depend on the 

TV-NARMAX model structure and time-varying parameters are investigated. It is shown that the high 

dimensional frequency features can be visualized in a low dimensional time-frequency space. 

Keywords: Generalized frequency response functions; nonlinear and nonstationary systems; system 

identification; time varying systems; wavelet basis functions 

1. Introduction 

Many processes are inherently nonstationary, including a large number of physical, physiological, and 

biochemical systems (Fitzgerald, Smith, Walden, and Young 2000). Modeling and identification of 

nonstationary processes have been widely studied for linear systems. Traditional techniques for identifying 

linear time-varying (LTV) systems are primarily based on adaptive recursive methods, for example recursive 

least squares (RLS), least mean squares (LMS), and the Kalman filter (Ljung and Soderstrom 1983; Ljung 

and Gunnarsson 1990; Bermudez and Bershad 1996). More recently, approaches based on expanding the 

time-varying (TV) coefficients using a finite sequence of basis functions, such as Legendre, Fourier or 

wavelet bases, have been proposed (Zou, Wang, and Chon 2003; Niedzwiecki 1988; Tsatsanis and Giannakis 

1993; Niedzwiecki and Klaput 2002; Zheng, Lin, and Tay 2001; Li, Wei, and Billings 2011) mainly for 

polynomial LTV models (e.g. TV-ARMA, and TV-ARX models). This approach reduces the initial TV 

problem to a time invariant model identification problem and provides significant improvements on the 

tracking of rapid changes in TV coefficients. For such LTV systems, providing the correct model structure 
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can be identified and tracked in time, the models can be mapped into the frequency domain (Zou and Chon 

2004; Ball, Gohberg, and Kaashoek 1995) which is important for the model analysis and especially for real 

applications, e.g. geophysical, electrophysiological signals (EEG, EMG, etc) (Billings 2013, Wei, Billings, 

and Liu 2010; Li, Wei, Billings, and Sarrigiannis 2011). 

However, many real systems are nonlinear. If a process is nonlinear and the transition is relatively slow and 

smooth, LTV models can be used to approximate the ‘true’ nonlinear process and track the nonstationary 

effects. Such approaches are widely used and can often provide good approximations in real-time 

implementations, e.g. model predictive control, and online adaptive control (Peng, Nakano, and Shioya 2007; 

Chowdhury 2000). Nevertheless, when analyzing the characteristics of a system in the frequency domain, 

such a LTV approximation can never reproduce nonlinear effects such as harmonics, intermodulations and 

energy transfer which can only be produced from a nonlinear model. Such features are critically important 

when the frequency behavior of a system is crucial to the analysis, such as in nonlinear vibrations, nonlinear 

communications, and neurophysiological signals. A key aim therefore of this study is to be able to identify 

and track nonstationarity in nonlinear systems and directly map the time-varying nonlinear behavior into the 

frequency domain. 

A wide class of nonlinear time-invariant (NTI) systems can be represented by Volterra series models 

(Schetzen 1980; Marmarelis 1981) or Nonlinear Auto-Regressive Moving Average with eXogenous variable 

(NARMAX) models (Billings, 2013, Leontaritis and Billings 1985). Polynomial NARMAX models have 

been demonstrated to be a computationally efficient approach that can well capture nonlinear effects for a 

diverse range of nonlinear continuous and discrete time systems (Zheng and Billings 1999; Billings and Li 

2000). However, limited studies exist on nonlinear and nonstationary system identification. Until recently, 

approaches based on time-varying Volterra series combining artificial neural networks (Iatrou, Berger, and 

Marmarelis 1999) or principal dynamic modes (Zhong, Jan, Ju, and Chon 2007) as well as time variable 

parameters (TVP) estimation based dynamic harmonic regression (DHR) (Young 2011) have been proposed, 

however the model structure selection problem is still an unsolved issue and the frequency domain analysis 
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based on Volterra models can be computationally costly, while the DHR method only provide 

pseudo-spectrum analysis for a small class of nonlinear systems. In this study, a new procedure is proposed 

for the identification of nonlinear and nonstationary dynamic systems based on the time-varying NARX 

(TV-NARX) model. The basis function expansion strategy proposed for LTV identification is extended to 

more general nonlinear time-varying cases. The TV parameters in TV-NARX models are expanded using 

multi-wavelet basis functions, as a result the TV-NARX model is transformed into an expanded time 

invariant model, and the challenging TV model selection and parameter estimation problem can then be 

solved by using the orthogonal least squares (OLS) algorithm (Chen, Billings, and Luo 1989; Billings, Chen, 

and Korenberg 1989). This identification approach is also extended to more general time-varying NARMAX 

models by introducing a modified extended least squares (ELS) algorithm. 

After the TV-NARX model has been identified in the time domain, the model is mapped into the frequency 

domain so that the nonlinear and nonstationary effects can be characterized and analyzed. Conventionally, 

the frequency domain representation of a NTI system can be obtained by employing the multi-dimensional 

Fourier transformation of the Volterra series expansion of the system. This yields the so-called generalized 

frequency response functions (GFRFs), which can be estimated using non-parametric approaches (Boyd, 

Tang, and Chua 1983; Chua and Liao 1989) or parametric approaches based on nonlinear differential 

equations or the NARMAX models (Billings and Tsang 1989a; Peyton Jones and Billings 1989; Billings and 

Peyton Jones 1990). The latter approach is computationally more attractive and the analytical expressions of 

the GFRFs up to any order can be obtained. However, the frequency domain representation of a nonlinear 

time-varying system has not yet been discussed in the literature. In this paper, the concept of time-varying 

GFRFs (TV-GFRFs) is proposed, which allows the computation and analysis of time-dependent GFRFs of 

nonlinear and nonstationary systems. More importantly, ‘features’ in the TV-GFRFs which functionally 

depend on the TV-NARX model structure and TV parameters can be analyzed systematically. It is shown 

that the gain of the TV-GFRFs up to any order can be transformed and visualized in a two-dimensional 
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time-frequency space. The results obtained in this work greatly facilitate the understanding and practical 

analysis of the frequency characteristics of nonlinear and nonstationary systems. 

The paper is organized as follows. Section II presents the time domain identification procedure based on 

TV-NARX models. In section III, the frequency domain analysis of the identified TV-NARX models is 

proposed, including the novel characteristic analysis of GFRFs and the visualization of TV-GFRFs. Two 

simulation examples are provided in section IV, and conclusions are given in section V. 

2. Identification of Time-Varying Nonlinear Systems 

A wide range of NTI systems can be represented using NARMAX models (Leontaritis and Billings 1985): 

( )( ) ( 1), , ( ), ( 1), ( ), ( 1), ( ) ( )y u ey t f y t y t n u t u t n e t e t n e t= − − − − − − +
                       

(1)
 

where f is a nonlinear function, u(t) and y(t) are the sampled input and output sequences, with maximum lags 

nu and ny, respectively; The stochastic variable e(t) is assumed to be to be independent, bounded and 

uncorrelated with the input u(t). For many practical problems, the nonlinear function f(·) is generally 

unknown. The most commonly used approach to approximate the unknown function f(·) is to employ a  

polynomial NARMAX expression (Chen and Billings 1989). The NARX model, a subset of NARMAX 

model without considering the moving average noise terms in (1), can be further expressed in a 

linear-in-the-parameters form: 

( ) ( ) ( )Ty t t e t = +                                                                          (2) 

where ( )t  is the regressor vector, containing monomials of lagged input and output terms;   is the 

parameter vector; e(t) here is simply a zero mean i.i.d. measurement noise sequence. Because the NARX 

model is the core part required for the frequency domain analysis of a nonlinear system (Peyton Jones and 

Billings 1989), the modeling and identification procedure of time-varying NARX model is firstly introduced 

in Section 2.1 and later extended to the more general time-varying NARMAX cases in Section 2.2.  
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2.1 Identification of a TV-NARX Model 

When modeling a time-varying system, the parameter vector θ in a NARX model (2) is replaced with a 

time-varying parameter vector θ(t) to obtain a polynomial time-varying NARX (TV-NARX) model. 

1

1

, 1

0 , 1 1 1
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( ) ( , , , ) ( ) ( )
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= = = = +

= +

=  − −
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(3) 

where ( )ny t  is the nth-order output of the system and M is the order of the nonlinearity, with p q n+ = , 

1, ,ik K= , 
1 1, 1 1 1

.
p q p q

K K K

k k k k+ += = =
    The TV parameter vector is 0,1 0,1 1,0( ) [ (1, ), , ( , ), (1, ), ,t c t c K t c t =

, ( , , , )]T

p qc K K t . The model (3) is linear-in-the-parameters, however, it consists of a large number of 

candidate terms, which increases dramatically as the order (M), the number of input and output terms (q and 

p) and the corresponding maximum lags (K) of the model increases. The linear TV-ARX model is a special 

case of the TV-NARX model which only includes the linear terms of the polynomial expression in (3). A 

general procedure for identifying a nonlinear TV system is presented in following paragraphs, including 

selection of the appropriate model structure for the TV-NARX model, and parameter estimation. 

When modeling a time-varying nonlinear system using the TV-NARX model (3), the classical 

identification procedure can still be applied in which the model structure is determined first and the TV 

parameters are then estimated. However, the standard model subset selection algorithms, such as forward 

OLS, and principal component analysis approximation (Kaipio and Karjalainen 1997), cannot be applied 

directly for a TV system. These approaches were originally proposed and are only applicable for time 

invariant systems, and cannot distinguish parametric time-varying effects from extra linear or nonlinear 

regression terms. 

To identify a TV-NARX model, two strategies can be considered. One strategy is to approximate the 

time-varying parameters using basis functions (e.g. wavelets, Fourier bases) expansion, so that the 
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TV-NARX is transformed into an expanded time invariant regression model, and the subset selection (e.g. 

OLS) algorithm can then be applied to the extended model to select the significant basis functions which can 

then be used to recover the relevant TV parameters in the original TV model. The other strategy is to first 

divide the input-output time series into several sub-intervals, by treating each segment as a time invariant 

model (e.g. NARX) and selecting the corresponding model structure using, for example, forward OLS, 

finally a ‘common’ model structure can be determined by comparing the selected model terms from different 

intervals. Based on the selected model structure, a recursive algorithm (e.g. RLS, LMS) can be used to 

estimate the TV parameters. 

The first strategy is theoretically elegant as the forward regression OLS can be used to determine the model 

structure of the expanded time invariant model, and therefore ensure the correctness of the original TV model 

structure thanks to the basis function transformation. Also the algorithm can easily track the rapid changes in 

the TV parameters due to the properties of the basis functions, for example wavelets and the introduction of 

multi-wavelet decompositions. In this study, a novel identification procedure is proposed based on the first 

strategy, while the second strategy can be used as a complement to pre-process the data and to reduce the 

candidate model set especially for large scale problems. The detailed algorithm is introduced in the following 

paragraphs. 

Firstly, each TV parameter in (3) is expanded using multi-wavelet basis functions: 

, 1 , , 1( , , , ) ( , , )
m

m m

p q p q p q l p q l

m l

t
c k k t k k

N
 + +



 
=  

 


                                              

(4) 

where ( )m

l   are wavelet basis functions, with the shift indices ml ,  : 2 1j

m k m l = −   − , and wavelet 

scale j. The superscript m denotes the order of the wavelet basis functions. 
, ( )m

i l   are the corresponding 

expanded basis function parameters which are time invariant. N is the number of measurement data. There 

are various types of wavelet basis functions which can be combined with different orders in order to track 

both rapid and slow variations of TV parameters. For example, cardinal B-splines are an important class of 
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basis function and can be used for multi-resolution wavelet decompositions (Ahuja, Lertrattanapanich, and 

Bose 2005). The B-spline function of mth-order can be computed recursively according to (de Boor 1978; 

Chui and Wang 1992) and several low order B-spline functions are provided in (Wei and Billings 2006). 

Then the ( )m

l   can be expressed from the mth-order B-spline (Bm) with the scale j and shift indices l: 

/2

, ( ) 2 (2 )m j j

j l mx B x l = −                                                                   (5) 

since the function variable x t N=  is normalized within [0,1] and 2 1jm l−   − . The higher the value j, the 

more basis functions are used and thus the resolution improves, however, this will also introduce more 

parameters and increase the computational cost. Normally j is selected to be 3 or a larger number according to 

the criteria given in (Wei and Billings 2002), and the wavelets are usually selected from { : 2,3,4,5}m

l m = . 

By substituting (4) into (3), the TV-NARX model is expanded as 

1

, , 1

1 0 , 1 1 1

( ) ( , , ) ( ) ( ) ( )
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y t k k y t k u t k e t

N

t e t

 

 

+

+

+

= = =  = = +

  
=   − − +  

  

= +

    

          

(6) 

where ( )t  is the expanded regressor vector at time t, and 
0,1, 1,0, , ,[ , , , , , ]m m m T

l l p q l   =  is the 

corresponding expanded time invariant parameter vector. 

The original TV-NARX model is now transformed into a time invariant regression model which is also 

linear-in-the-parameters. This enables the parameter estimation problem to be solved within the least squares 

framework. However, the number of candidate regression terms ( )t  can be very large if the number of 

wavelet basis functions, the maximum lags and/or the order of the TV-NARX model is large. Hence, 

detecting the correct structure and reducing the number of terms in the expanded model becomes a crucial 

step in the identification of the original nonlinear time-varying problem. The forward regression OLS 

algorithm is an efficient approach to deal with such model term selection problems (Chen, Billings, and Luo 

1989; Billings, Chen, and Korenberg 1989). By applying the forward regression OLS to (6), an appropriate 
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parsimonious model structure can be determined and the relevant coefficients, 
, , ( )m

p q l  , can be estimated. By 

re-substituting those estimated parameters into (4), the original TV parameters ( )ic t can then be recovered. 

For a nonstationary process, it is very difficult and possibly impossible to validate the TV model using 

standard approaches such as splitting the data into training and testing sets, due to the time-varying nature of 

the model. Also the whiteness or auto-correlation test in the residuals is insufficient for a nonlinear system 

(Billings and Voon 1983). In order to balance the model complexity (in terms of the number of basis 

functions) and the value of MSE, a model order determination technique, such as the generalized 

cross-validation (GCV) criterion (Golub, Heath, and Wahha 1979) or Akaike information criterion (AIC) 

(Akaike 1974), can be employed to select an appropriate number of wavelet basis functions to be included in 

the parsimonious model. 

2.2 The Stochastic TV-NARMAX Model Identification 

To ensure unbiased estimation and accommodate the stochastic perturbations or additive colored (process or 

measurement) noise in the systems, time-varying moving average (MA) noise terms may need to be further 

included into the TV-NARX model (3) to form a polynomial TV-NARMAX model: 

1

1 1 1

1

, 1 , , 1

0 , 1 11 1

( ) ( ) ( )

( ) ( , , , ) ( ) ( ) ( ) ( ) ( )
n

p q n n

M

n

n

p p qn K K K

n p q p q i i k k n

p k k k k ki i p

y t y t e t

y t c k k t y t k u t k b t e t k e t k
+ −

=

+

+

= = = == = +

= +

=  − − + − −



    
   (7) 

where sequence e(t) is assumed to be independent, bounded and uncorrelated with the input u(t). (7) can be 

represented as ( ) ( ) ( ) ( ) ( )T Ty t t t t t   = + , where ( )t  is the stochastic prediction error vector and ( )t  is 

the corresponding parameter vector. Because the stochastic variable e(t) cannot be measured directly, the 

unobserved noise sequence has to be estimated during identification using a predication error method - 

known as extended least squares (ELS) algorithm, which has been successfully applied for time invariant 

NARMAX model identifications (Billings and Zhu 1991). Here, a modified ELS algorithm is proposed and 



 10 

incorporated with the identification procedure discussed in Section 2.1, to solve the identification of 

TV-NARMAX model (7) as follows: 

Step 1: Set s = 0. Fit a TV-NARX model (3) to the measurement data, and using the identification procedure 

proposed in Section 2.1 to determine the TV-NARX model structure and estimate model parameters. 

Step 2: Compute the one-step-ahead prediction errors from the identified TV-NARX model as: 

( )

( )

ˆˆ( ) ( ) ( ) ( ) ( ( 1), , ( 1), )

ˆ( ) ( ) ( )

s

T s

e t y t y t y t f y t u t

y t t t 

= − = − − −

= −
                                         (8) 

Step 3: Set s = s + 1, and update the prediction error vector 
( ) ( 1)( ) ( )s st t  −= . When s = 1, a candidate 

prediction error set structure ( ) ( 1) ( 1) ( 1)

1 1 2( ) ( ), , ( ) ( ),s s s st e t k e t k e t k − − − = − − −   is firstly arbitrarily 

selected and this prediction error model structure will be iteratively selected and updated as s increases. Now 

a complete TV-NARMAX model (7) is employed and the identification procedure is similar to the approach 

proposed in Section 2.1. More specifically, both TV-NARX and prediction error (TV-MA) model 

parameters, 
( ) ( )s t  and 

( ) ( )s t , are now expanded using B-spline basis functions (5). By using forward 

regression OLS approach on the expanded model, the prediction error model structure is therefore selected 

(the TV-NARX model structure is selected in step s = 0 and assumed fixed here) and all the time varying 

parameters in TV-NARMAX model are estimated. The model prediction error can now be updated as 

 

( ) ( 1)

( ) ( ) ( )

ˆˆ( ) ( ) ( ) ( ) ( ( 1), , ( 1), , ( 1), )

ˆ ˆ( ) ( ) ( ) ( ) ( )

s s

T s s T s

e t y t y t y t f y t u t e t

y t t t t t   

−= − = − − − −

= − −
                              (9) 

This step is repeated until the termination conditions in step 4 are satisfied. 

Step 4: Termination tests. The iteration in Step 3 can be terminated when one of the following two 

convergence tests is satisfied 

( ) ( 1)

1( )

s s

s

 




−−
        or      ( ) ( 1)

2

1 s se e
N

−−                                              (10) 

where 1  and 2  are small tolerance values, and ||·|| denotes l2-norm.  
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3. Frequency-Domain Analysis of Time-Varying Nonlinear Systems 

Compared to time domain identification, the frequency domain analysis of nonlinear time-varying systems is 

an even greater challenge that does not appear to have been studied in the literature. As an extension of linear 

FRF, the frequency domain analysis of NTI systems is mainly based on the generalised frequency response 

function (GFRF) theory. The n-th order GFRFs are defined as the multiple Fourier transform of the n-th order 

Volterra kernel: 

1 12 ( )

1 2 1 2 1

0 0

( , , , ) ( , , , ) n nj f f

n n n n nH f f f h e d
      

 

− + +
=                                       (11) 

The concept of GFRFs, introduced based on the Volterra model (Schetzen 1980), can be extended to the 

NARMAX model case (Billings and Tsang 1989a; Peyton Jones and Billings 1989; Billings and Peyton 

Jones 1990). The general expression of the nth-order GFRF for a time invariant NARX model is given in 

(Peyton Jones and Billings 1989). It is important to note that the nth-order GFRF is a function of the NARX 

model coefficients which are constants, while the structure of the GFRF expression purely depends on the 

NARX model structure. As only parametric TV effects are taken into account in this work without 

considering the time variation in the model structure, previous results obtained for NARX models can be 

extended to TV-NARX cases, while an extra time dimension relating to the time ‘t’ needs to be introduced to 

accommodate the parametric TV effects and then the TV parameters can be regarded as ‘constants’ in a local 

region without affecting the model structure and thus the formulations of the GFRFs. Hence, by replacing the 

time invariant parameters with TV parameters and including the time dimension t, the nth-order time-varying 

GFRFs (TV-GFRFs) with respect to a TV-NARX model (3) can be proposed as 

1 1
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1 1 1
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( , , , )
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H f f t H f f t H f f t
H f f t

c k t e
− + +

=

+ +
=

−
                                 (12) 

where the contributions of the pure input, output and cross-product non-linearities, 
unH , 

ynH and
uynH , are 

defined in the Appendix; fs is the sampling frequency. For example, the 1st and 2nd-order TV-GFRFs are 

explicitly given as: 
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(14) 

where 1,0 1( )c k  are the parameters of the linear output terms; 0,2 1 2( , )c k k , 2,0 1 2( , )c k k  and 1,1 1 2( , )c k k  are the 

parameters of the bilinear input, output and cross-product terms, i.e. 1 2( ) ( )u t k u t k− − , 1 2( ) ( )y t k y t k− − , 

1 2( ) ( )u t k y t k− − . For a time invariant system (ignoring the time index t, or assuming t=tk), the 2nd-order 

GFRF (14) can be visualized in a 3-dimensional (3D) space, while higher order GFRFs can be computed 

recursively from the lower order GFRFs according to (12). 

3.1 How the Frequency Domain Features Depend on NARX Model Structure and Parameters 

When analyzing the linear frequency response or the 1st-order GFRF of a nonlinear system, the main interest 

is often to identify the ‘peaks’ in the frequency response, as it will indicate at which frequency ranges the 

output response would be stronger. When analyzing a higher order GFRF of a nonlinear system, we are 

interested in not only revealing the ‘peaks’ but more importantly in identifying the ‘ridges’ where the gain of 

the GFRF reach their maxima. The locations of the ‘ridges’ indicate the frequency combinations in the input 

excitation that produce strong intermodulation, harmonic, or significant d.c. shift effects in the output 

(Billings and Tsang 1989b; 1990; Yue, Billings, and Lang 2005a). 

In order to analyze and visualize a time-varying nonlinear system in the frequency domain with 

corresponding TV-GFRFs, an important question that needs to be answered is whether the features and 
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especially the directions and locations of the ‘ridges’ in a GFRF (i.e. TV-GFRF at a specific time) 

functionally depend on the structure of the TV-NARX model, or on the parameter values, or both.  

By analyzing the general expressions of the 2nd- and higher order TV-GFRFs in (14) and (12), and 

according to the characteristic analysis of GFRFs given by (Yue, Billings, and Lang 2005b; Jing, Lang, 

Billings, and Tomlinson 2006), it can be revealed that the features in the GFRFs in general depend on both 

the structure and the parameter values of the model.  However, this study will demonstrate that the directions 

of the ‘ridges’ are mainly dependent on the NARX model structure, and are rarely affected by changes in one 

or a few parameters, while the positions and magnitudes of the ‘ridges’ depend on the model parameters. This 

result is summarized in Proposition 1. 

Proposition 1:  The directions of the ‘ridges’ in the nth-order GFRF (gain) mainly depend on the NARX 

model structure. There always exist ‘ridges’ along the f1+f2+···+fn=Ci direction, and often with extra ‘ridges’ 

along the ‘off-diagonal’ directions of subspaces in the n-dimensional frequency domain, i.e. fj=Ci, fj+fj+1=Ci 

,…, f1+···+fj+n-2=Ci with  1, ,j n  depending on the model nonlinear part structure. The positions of the 

above mentioned ‘ridges’ only depend on the parameters of the linear output terms, i.e. 

1 1 2

1 2
1

2 ( )

1,0 1

1

arg min 1 ( , ) n s

n

K
j k f f f f

i
f f f

k

C c k t e
− + + +

+ + +
=

= −  

while the magnitudes of the ‘ridges’ can depend on all the parameters of the NARX model. 

Proof: The proof begins with the 2nd-order GFRF, and the results are generalized to higher-order GFRFs 

later. As discussed in (Yue, Billings, and Lang 2005b), the factors in the denominator jointly determine the 

maxima of the nth-order GFRF. Since the ‘ridges’ are a subset of the maxima, only the denominator is 

required to be analyzed. By substituting the 1st-order GFRF expression (13) into the 2nd-order GFRF (14), the 

denominator of the GFRF becomes 

1 1 1 2 1 1 2

1 1 1

2 2 2 ( )

1,0 1 1,0 1 1,0 1

1 1 1

1 ( , ) 1 ( , ) 1 ( , )s s s

K K K
j k f f j k f f j k f f f

k k k

c k t e c k t e c k t e
  − − − +

= = =

     
−  −  −     

     
  

              

(15) 
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The denominator in (15) is the product of three parts; the first term is introduced from H1(f1,t), the second 

term is introduced from H1(f2,t), and the last term is the default denominator in (14). At a specific time and 

frequencies when the gain of any of these parts reaches a minimum, the overall gain of the GFRF will reach a 

large value. A subset of these ‘large values’ will appear as a ‘ridge’ in the GFRF gain plot.  

For some models with specific structures, only the last part in the denominator (15) exists, if i) there are no 

linear input terms (i.e. 1( )u t k− ), or ii) there exist linear input terms in the linear part, but there exist only 

pure nonlinear input terms without any other 2nd-order nonlinear terms. For the above two cases, the ‘ridges’ 

in the 2nd-order GFRF are always along the direction defined by 1 2 if f C+ = , where the constants 
iC  

determine the position of the ridges when the first part of (15) reaches a minimum, that is 

1 1 2

1 2
1

2 ( )

1,0 1

1

arg min 1 ( , ) s

K
j k f f f

i
f f

k

C c k t e
− +

+
=

= −                                                        (16) 

It is obvious that the positions of the ridges only depend on the parameters of the linear output terms, since 

iC  only functionally depends on 1,0 1( , )c k t
 
in (16) when the model structure (i.e. k1) is fixed. It is also 

straightforward to demonstrate that if there is only one linear output delay term (i.e. K=1) in the model, 

0iC = . Otherwise, if there are more than one linear output terms, 
iC  can be non-zero. 

Moreover, if there are linear input terms in the model, and either cross-product or pure output nonlinear 

terms exist, then the second or both the second and third parts in (15) would be present together with the first 

part. Hence extra ridges that are perpendicular to either or both the frequency axis, i.e. 1 if C=
 
and/or 2 if C=

, can be observed additional to the ridges along the direction 1 2 if f C+ = . Again, the positions of those ridges 

also depend on the parameters of the linear output model. 

The above results can be generalized to the higher-order GFRFs. By substituting (26)-(28) into (12), the 

denominator of the nth-order GFRF can be expressed as 
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( )1 11 1 1

1 1 1

1
22 2 ( )

1,0 1 1,0 1 1,0 1

1 1 11 1

1 ( , ) 1 ( , ) 1 ( , ) n si s i i s

n nK K K
j k f f fj k f f j k f f f

k k ki i

c k t e c k t e c k t e
  +

−
− + +− − +

= = == =

     
− −   −     

     
   

   

    

(17) 

As long as the nth-order GFRF exists for a given nonlinear system, the last part in (17) always exists, while 

other parts may appear depending on the NARX model structure. This indicates that there always exists a 

ridge in the hyperspace along 1 2 n if f f C+ + + = , and sometimes with extra ridges within one or a few of 

the sub-spaces, for example j if C= , 1j j if f C++ = ,  2, , 1, ,j j n if f C j n+ −+ + =  , which again 

depends on the NARX model structure. The positions of these ridges can be determined in a similar way as 

(16). The magnitudes of the ridges are affected by both the factors in the denominator and numerator of the 

GFRF, and hence the magnitudes depend on all the model parameters up to nth-order.                                □ 

The locations and magnitudes of ridges in an nth-order GFRF can indicate the transfer of energy from input 

spectral components to the output components at their summation, known as intermodulation effects, and 

determine the strength of effects. Additionally, when 1 2 nf f f= = = , peaks in the reduced sub-plane, 

1 1 1( , , , )nH f f f , would indicate whether the nth harmonics will have significant effects on the output. 

To illustrate the statements in Proposition 1, an example is given here where only the 2nd-order GFRF will 

be discussed. The simplified NARX model from (Billings and Tsang 1990) is given as 

( ) 1.604 ( 1) 0.9493 ( 2) 0.06187 ( 1) 0.01373 ( 1) ( 1)y k y k y k u k y k y k= − − − + − − − −                         (18) 

Since a pure output nonlinear term exists in the model (18), all the three parts in the denominator (15) of the 

2nd-order will exist. Hence, the ridges in the GFRF in all three directions can be observed as in the left plot of 

Figure 1. According to (16), the positions of the ridges can be determined as 1 2 0.5f f+ =  , 1 0.5f = 
 
and 

2 0.5f =  . If the NARX model structure is modified by replacing the pure output nonlinear term (i.e. 

y(k-1)y(k-1)) with a cross-product term (i.e. y(k-1)u(k-1)) without changing the parameter value, there will be 

ridges along two directions, 1 2 0.5f f+ =  , 2 0.5f =  ,
 
as shown in Figure 1 central plot. If the nonlinear part 
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is replaced with a pure input nonlinear term (i.e. u(k-1)u(k-1)), there are no ridges along the directions of the 

axes. The only ridges are along 1 2 0.5f f+ =  . If any parameters in the linear output terms in (18) vary, only 

the positions of the ridges in Figure 1 would change without affecting their directions, and the variation of 

any other parameters only affects the magnitudes of the ridges, which clearly support the theoretical analysis 

above. 

 

Figure 1.  The contours of the 2nd-order GFRF gain plots with respect to the pure output (left), cross-product 

(central), or pure input (right) nonlinear terms in the NARX model (18). 

 

The analysis in this section indicates that the directions of the ‘ridges’ mainly depend on the NARX model 

structure, and that the parameters of the linear output terms determine their positions. However, there can be 

exceptions. This is because the overall gain of an nth-order TV-GFRF at specific times and frequencies is 

essentially a ratio between the gain of the numerator with that of the denominator of the GFRF as in (12). 

Hence, the overall direction of a ‘ridge’ in a GFRF is actually a trade-off between the two ridge directions 

that are implicitly contained in the numerator and denominator. In most cases, the ridge contained in the 

denominator dominates the overall direction. However, for some special cases when the gradient (changing 

rate) of the ridge in the denominator is extremely small, the ridge in the numerator can dominate. Such 

exceptions can only happen when all the parameters of the linear output terms are very small in magnitude, 

for example 1,0 ( , ) 0, 1, ,ic k t i K = , as a result the gain with respect to the denominator of a nth-order 

GFRF would always be close to 1 (as in (17)) with a small gradient. In such cases, the varying of any 
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parameters that change the ratio can affect the directions of the ridges. Nevertheless, such situations rarely 

occur in practice, as the parameter scales of the linear terms are usually larger or at least similar with those of 

the nonlinear terms. 

3.2 Visualization of TV-GFRFs 

When studying a time-varying nonlinear system in frequency, the nth-order TV-GFRF would be in an n+2 

dimensional space (e.g. the 2nd-order TV-GFRF would be in a 4D space), which is in general difficult to 

visualize and analyze. However, as analyzed in Section 3.1 that only several ‘ridges’ along upto very few 

directions are often observed in the GFRF of a nonlinear system, and the directions of the ridges depend on 

the (TV)-NARX model structure which can be determined from Proposition 1. An important approach to 

analysis TV-GFRFs can then be developed by averaging all the elements in a GFRF along those specific 

‘ridge’ directions at each sampling time, and the variations of the magnitudes and positions of one or several 

‘ridges’ can therefore be ‘tracked’ and visualized as the time-varying parameters change. Again considering 

the example in (18) with pure input nonlinearity, the only ‘ridges’ in the 2nd-order GFRF are along the 

1 2 if f C+ =  direction. Then the gain of TV-GFRF can be averaged along this direction as 

1 2

1 2
2 2 1 2

1
( , ) ( , , )

f f

f f f
f

H f t H f f t df
N

+

+ =
=                                                     (19) 

with 2 1 2( , , )H f f t given in (14), and the Nf denotes the number of samples along the ‘ridge’ direction at each 

frequency f, i.e. f=f1+f2. The phase of the 2nd-order TV-GFRF can be averaged in a similar way. 

Such averaging strategy can be easily extended to the visualization of higher-order TV-GFRFs. The 

nth-order TV-GFRF can be averaged along a specific ‘ridge’ direction 

( ) ( )

1 2

1 2

1 2

1 2

1

1

1
( , ) ( , , , )

1
( , ) ( , , , )

j

j

j

j

f f f

n n n
f f f f

f

f f f

n n n
f f f f

f

H f t H f f t df
N

H f t H f f t df
N

 

+ + +

+ + + =

+ + +

+ + + =

=

=





                                     (20) 
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where ( )   denotes phase. When the subscript j=n, it represents an averaging along the main ridge direction 

f1+f2+···+fn=Ci. When j<n, (20) represents averaging along the other ridges in the j+1 dimensional subspace, 

and with the rest (i.e. n-j) frequency dimensions fixed.  

4. Simulation Examples 

Two examples are studied in this section. One is a simulated nonlinear time-varying system with 

measurement data generated from a known TV-NARX or TV-NARMAX system. It is demonstrated that the 

proposed algorithm can accurately identify the true system structure and estimate the time-varying and time 

invariant parameters. Also based on the new frequency domain analysis approach, the identified TV-NARX 

model is mapped to the TV-GFRFs to be analyzed and visualized. The second example is based on a 

simulated model of a true nonlinear time-varying damping system, which is a 2nd-order continuous-time 

differential equation with 3rd-order nonlinearity. It is demonstrated that the proposed TV-NARX approach 

can estimate and recover the time-varying parameters of the continuous-time nonlinear and nonstationary 

system, and the corresponding frequency domain analysis can then be investigated based on the identified 

discrete-time TV-NARX model. 

4.1 A TV-NAR(MA)X Example 

The measurement data were generated from the following TV-NARX system: 

2

1,0 1,0 0,1 0,2( ) (1, ) ( 1) (2, ) ( 2) (1, ) ( 1) (2,2, ) ( 2) ( )y k c k y k c k y k c k u k c k u k e k= − + − + − + − +                   (21) 

where the time-varying and time invariant parameters are given as: 

1,0 1,0

1, 0 0.2

(1, ) 0.4, 0.2 0.4 , (2, ) 0.3,

0.8, 0.4 1

k t s

c k k t s c k

k t s

  


=    = −
   

 

0,1 0,2

0.2, 0 0.6

(1, ) 0.1, (2,2, ) 0.5, 0.6 0.8

0.3, 0.8 1

k t s

c k c k k t s

k t s

  


= =   
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The input u(k) was a Gaussian random sequence with sampling time Δt = 0.0025s (fs =400Hz), and 

variance 1. e(k) was the additive Gaussian i.i.d. noise, with variance σ2 = 0.0004, to give a signal-to-noise 

ratio (SNR) of around 16dB. The set of initial candidate model terms was selected as {y(k-1), y(k-2), u(k-1), 

u(k-2), u(k-1)2, u(k-1)u(k-2), u(k-2)2} with corresponding parameters c1,0(1,k), c1,0(2,k), c0,1(1,k), c0,1(2,k), 

c0,2(1,1,k), c0,2(1,2,k), c0,2(2,2,k). B-spline basis functions were then used to expand the time-varying 

parameters and transform them into constant kernel parameters. The B-spline basis functions were selected 

from { : 3,4,5}m

l m = , with scale index j=4. Then the OLS algorithm was applied to select the appropriate 

model structure from the expanded candidate terms and estimate the parameters only based on the available 

input and output data. After selection and estimation, the original time-varying parameters can be 

re-constructed and are displayed in the Figure 2 (right plot). For comparison, the parameter estimates using 

RLS (with forgetting factor λ=0.95) is also provided in Figure 2 (left plot). 

 

Figure 2. Parameters estimates of candidate model terms using RLS (left) and wavelet with OLS approach 

(right), with true TV parameter values are shown as dashed lines. 

Figure 2 demonstrates that standard RLS estimation fails to track the rapid changes in the time-varying 

parameters, e.g. c1,0(1), c0,2(2,2). In contrast, the proposed wavelet with OLS approach can accurately 

estimate and track the time-varying parameters, estimate time invariant parameters, and set all the other 

parameters of the ‘redundant’ candidate terms to 0. The estimation results have been tested under different 

SNRs, and the proposed algorithm can effectively identify and track the TV parameters even with an SNR of 

13dB. The advantages of using the wavelet expansion based approach compared to other classical recursive 
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approaches, e.g. LMS, Kalman filer, have been demonstrated in the literature (e.g. Tsatsanis and Giannakis 

1993; Li, Wei, and Billings 2011) for linear systems which show excellent rapid tracking behavior with 

smaller estimation variances. The proposed approach can therefore successfully identify the model structure 

for a discrete-time nonlinear and nonstationary system, and accurately estimate the time-varying and time 

invariant parameters. To test a more realistic and general noise situation, the data generated from the 

following TV-NARMAX model is used as a new input-output measurement set, 

 2

1,0 1,0 0,1 0,2 1( ) (1, ) ( 1) (2, ) ( 2) (1, ) ( 1) (2,2, ) ( 2) ( ) ( ) ( 1)y k c k y k c k y k c k u k c k u k e k b k e k= − + − + − + − + + −   (22) 

where the deterministic part of the TV-NARMAX model is the same as TV-NARX model (21) but with an 

extra moving average term, and b1(k)=0.5sin(2πkΔt). The initial candidate input and output model terms are 

set to be the same as the TV-NARX case and with extra moving average candidate set {e(k-1), e(k-2), e(k-1)2,  

e(k-1)e(k-2), e(k-2)2}.  By applying the proposed identification algorithm in Section 2.2, and after 6 iterations 

in step 3 the algorithm terminated with the correct moving average terms selected. The parameter estimates 

of the deterministic part of the model are given in Figure 3. 

 

Figure 3. Parameters estimates of TV-NARMAX model terms using proposed ELS approach, with true TV 

parameter values are shown as dashed lines. 

 Figure 3 demonstrates that the by using the proposed algorithm the time-varying parameters in the 

TV-NARMAX model can still be relatively well identified and tracked in time. However, because the 

time-varying moving average noise terms enter into the output of the system iteratively as in (22) and such 

effect will affect the estimation accuracy, both parameter estimates of time-varying and time invariant 
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parameters in the TV-NARMAX model are not as accurate as the TV-NARX case in some time intervals as 

given in Figure 2. The following frequency domain analysis results are based on the identification results of 

the TV-NARX system in Figure 2. 

Based on the estimated time domain TV-NARX model, the 2nd-order GFRF at two different sampling time 

points was computed from (14). The gain plots are illustrated in Figure 4. 

 

Figure 4. The gain of 2nd-order GFRF (i.e. H2(f1,f2,t)) at different sampling times: kΔt = 0.3s (left) and kΔt = 

0.7s (right)  

As shown in Figure 4, the ridges of the 2nd-order GFRF are always along the 
1 2 if f C+ =  direction, although 

with different positions (i.e. Ci = ±80 and ±40) and magnitudes. This indicates there would be a significant 

intermodulation effect on the output response whenever frequencies of the input excitation sum to Ci. Based 

on the proposed approach in Section III, the time dependent 1st and the averaged 2nd order TV-GFRFs can be 

computed according to (13) and (19), and the contours of corresponding gain plots are illustrated in Figure 5. 

 

Figure 5.  The contours of the 1st-order TV-GFRF (H1)  (left) and the averaged 2nd-order TV-GFRF (H2) 

(right) gain plots based on the estimated TV-NARX model. Ridges are marked with black dashed lines. 
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Figure 5 presents the complete time-frequency characteristics of the identified time-varying system, and 

clearly demonstrates how the features in TV-GFRFs rely on the time-varying parameters. As expected from 

the theoretical analysis, the positions in the 1st-order TV-GFRF purely depend on the parameters of the linear 

output terms (i.e. 1,0 (1, )c t  and 1,0 (2, )c t ) while the magnitudes depend on both the linear input and output 

terms. Here, 1,0 (1, )c t  is the only time-varying parameter within the linear terms, so the positions and 

magnitudes of the ridges in the 1st-order TV-GFRF change only as this parameter varies, as in the left plot in 

Figure 5. For the 2nd-order TV-GFRF, the ridge positions are still only affected by the parameters of the linear 

output terms. Nevertheless, the magnitudes of the ridges are affected by the time-varying parameters of both 

the linear and nonlinear terms as shown in the right plot in Figure 5. Such visualization of TV-GFRFs greatly 

facilitates the analysis of time-varying nonlinear systems in practice. For instance, with the positions and 

magnitudes of the ridges known, it is easy to tell when there are significant intermodulation effects on the 

output response if the sum of frequency components in input excitation is close to a specific ridge and how 

strong the effects are, without actually computing the output spectrum from the real experiments or 

simulations. 

4.2 Time-Varying Nonlinear Damping Oscillator 

Time-varying and nonlinear damping systems have been observed in various fields of engineering, such as 

the rain-wind induced vibrations to the dynamics of cable-stayed bridges (van der Burgh and Hartono 2004), 

and the negative aeroelastic damping in a wind turbine (Murtagh and Basu 2007). The modeling and 

identification of such systems are important for many practical purposes, including response prediction, 

real-time monitoring and diagnosis, load identification and control. A general representation of time-varying 

nonlinear autonomous damping systems is provided in (Jang, Baek, Kim, and Moon 2011), by further 

including the input signals u, a modified representation is given as follows 

( ) ( ) ( ) ( ( )) ( ( )) ( )my t ky t t f y t r y t u t+ = + +                                                     (23) 
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where m and k are constants, ( )r   and ( )f   denote general nonlinear functions of the displacement y and the 

velocity y , ( )t  is the time-varying damping coefficient. For illustration, a simple model is discussed here 

with ( )f y y=  and 
3( ) 0.1r y y= . The time-varying damping coefficient is set to λ(t) = 2(1+0.5sin(t)), and the 

input excitation is given by 1 2( ) sin( ) sin( )u t A t A t = +  with a sampling time Δt = 0.02s, where A = 2, ω1 = 

2π, and ω2 = 1.6π. This continuous time-varying system can be modeled and identified using a discrete-time 

TV-NARX model based on a numerical integration scheme (e.g. Euler, or Runge-Kutta method). Here, by 

using the Euler method, i.e. [ ( ) ( )]y y t t y t t + −   and [ ( ) ( )]y y t t y t t + −  , the original differential 

equation model (23) can be approximated as  

2 2 3 2( ) (2 ( ) ) (( 1) ) (1 ( ) )( ( 2) ) 0.1 ( ( 2) ) ( ( 2) )y k t t t y k t t t t y k t t y k t t u k t  = −  −  − −  + −  −  −  − −        

(24) 

When the sampling time Δt is relatively small, (24) can provide an accurate approximation to (23). The above 

TV-NARX model was two time-varying parameters in the linear output terms, c1,0(1,t) = 2-λ(t)Δt and c1,0(2,t) 

= 1-λ(t)Δt+Δt2. After the TV-NARX model (24) is identified using the procedure in Section II, the 

time-varying damping coefficient in (23) can be estimated from 

1,0
ˆ2 (1, )ˆ( )
c t

t
t


−

=


   or   
2

1,0
ˆ1 (2, )ˆ( )
c t t

t
t


+ + 

=


                                                    (25) 

The estimation results of the time-varying damping coefficient λ(t) using the proposed multi-wavelet 

expansion approach and the standard RLS approach are illustrated in Figure 6. It is shown that parameter 

estimates can follow the true time-varying coefficient very well using the new algorithm, while RLS fails to 

track the true parametric variation.  
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Figure 6.  The estimation of the time-varying damping coefficient λ(t) based on the multi-wavelet basis 

function expansion (solid red) and the RLS (dot blue). 

Figure 6 also shows that the time-varying damping parameter oscillates between values of 1 and 3. The 

contours of the 3rd-order GFRF gain plots with the damping coefficient at those two extreme values (i.e. 

λ(t)=1 and λ(t)=3) are given in Figure 7. Since the existence of nonlinear output terms (i.e. y(k-2)3) in the 

system (24), the ridges along f1+f2+f3=Ci, f1(f3)=Ci, f2=Ci directions can be observed in both cases (ridges 

along f1(f3)+f2=Ci, f1+f3=Ci, are overlapped with f1+f2+f3=Ci,  f1(f3)=Ci, since f1=f3), although with different 

positions (i.e.  Ci=0.35 and 0). 

 

Figure 7. The contours of the 3rd-order GFRF gain plots (i.e. H3(f1,f2, f3,t), f1= f3) when the damping 

coefficient: λ(t)=1 (left) and λ(t)=3 (right). 

The complete time-dependent frequency domain information in the 1st and averaged 3rd-order TV-GFRFs 

is illustrated in Figure 8. Since the time-varying damping coefficient λ(t) only affects the parameters of the 

linear output terms in the TV-NARX model (24), both the 1st and averaged 3rd-order TV-GFRFs present very 

similar contours in the gain figures although with different magnitudes. The right plot in Figure 8 

demonstrates how the ridges positions in the 3rd-order GFRF (along the f1+f2+f3 direction) vary as a result of 
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the periodic nonstationarity in the damping coefficient. At some time point, only a single ridge along 

f1+f2+f3=0 is observed, but gradually it evolves to two ridges which later converge to one ridge again. This 

indicates the time-varying damping coefficient significantly affects the frequency range at which the 

intermodulation effects can be introduced and the strength of the effects, although there are no time-varying 

effects in the nonlinear part of the system. This result provides a complete time-frequency view of the system 

under investigation that summarizes the key features in the sampled GFRFs at all time, which cannot be 

achieved by existing standard techniques. 

 

Figure 8. The contours of the 1st-order TV-GFRF (H1) gain plot (left) and the averaged 3nd-order TV-GFRF 

(H2) gain plot along the f1+f2+f3 direction (right) based on the estimated TV-NARX model. 

5. Conclusions 

The identification of nonlinear and nonstationary systems has long been a challenging task, and the frequency 

domain analysis of such systems has not been investigated systematically. In this study, a complete 

identification procedure has been proposed based on the multi-wavelet basis function expansion of the 

TV-NARX model parameters and an OLS algorithm. The system nonstationarity is automatically detected, 

and the system nonlinearity is identified as part of the model selection process. The numerical examples 

indicate the proposed approach can estimate and track fast changing time-varying parameters as well as any 

time invariant model parameters, which are more accurate than traditional RLS algorithm. Furthermore, 

based on the identified time domain model, a novel frequency domain analysis approach is presented based 

on a TV-GFRF concept. How features in the TV-GFRFs depend on the TV-NARX model structure and 
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time-varying parameters have been theoretically quantified. The results enable the analysis of nonlinear 

nonstationary systems in the frequency domain, where the high dimensional TV-GFRFs can be visualized in 

a low dimensional time-frequency space. 

 

Appendix 

The contributions of the pure input, output and cross-product non-linearities in (12) are given as 
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The contribution of the pth order non-linearity in y(t) to the nth order TV-GFRF, , ( )n pH  , can be recursively 

computed according to (Peyton Jones and Billings 1989) as 

( )1

1
2

, 1 , 1 1

1

( ) ( , , , ) ( , , , ) i p s

n p
j f f k f

n p i i n i p i n

i

H H f f t H f f t e


− +
− + +

− − +

=

 =                                       (27) 

The above recursion finishes with p=1, where the ,1 1( , , , )n nH f f t  is defined as 

( )1 12

,1 1 1( , , , ) ( , , , ) i sj f f k f

n n n nH f f t H f f t e
− + +

=                                                   (28) 
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