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Abstract—In this paper, we investigate the performance of 
energy detection-based spectrum sensing over F composite fading 
channels. To this end, an analytical expression for the average 
detection probability is firstly derived. This expression is then 
extended to account for collaborative spectrum sensing, square-
law selection diversity reception and noise power uncertainty. 
The corresponding receiver operating characteristics (ROC) are 
analyzed for different conditions of the average signal-to-noise 
ratio (SNR), noise power uncertainty, time-bandwidth product, 
multipath fading, shadowing, number of diversity branches and 
number of collaborating users. It is shown that the energy 
detection performance is sensitive to the severity of the multipath 
fading and amount of shadowing, whereby even small variations 
in either of these physical phenomena can significantly impact the 
detection probability. As a figure of merit to evaluate the detection 
performance, the area under the ROC curve (AUC) is derived 
and evaluated for different multipath fading and shadowing 
conditions. Closed-form expressions for the differential entropy 
and cross entropy are also formulated and assessed for different 
average SNR, multipath fading and shadowing conditions. Then 
the relationship between the differential entropy of F composite 
fading channels and the corresponding ROC/AUC is examined 
where it is found that the average number of bits required for 
encoding a signal becomes small (i.e., low differential entropy) 
when the detection probability is high or when the AUC is large. 
The difference between composite fading and traditional small-
scale fading is emphasized by comparing the cross entropy for 
Rayleigh and Nakagami-m fading. A validation of the analytical 
results is provided through a careful comparison with the results 
of some simulations. 

Index Terms—Area under curve, diversity reception, energy 
detection, entropy, F composite fading channel, noise power 
uncertainty, receiver operating characteristics. 

I. INTRODUCTION 
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of Electrical and Computer Engineering, Khalifa University, Abu Dhabi 
127788, UAE, and also with the Department of Electrical Engineering, Tam­
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G. K. Karagiannidis is with the Department of Electrical and Computer 
Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece 
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THE detection of unknown signals is an important issue in 
many areas of wireless communications such as carrier-

sense multiple access based networks, radio detection and 
ranging (RADAR) systems and cognitive radio [1]. Also, 
it is expected to be useful in numerous emerging wireless 
technologies, such as in vehicle-to-vehicle communications, 
as well as in Internet-of-Things (IoT) based applications, 
where numerous devices are expected to perform sensing in 
order to communicate to each-other or with other systems or 
networks [2–4]. As a result, there have been a number of signal 
detection techniques proposed in the literature, e.g., matched 
filter detection (MFD), cyclostationary feature detection (CFD) 
and energy detection (ED) [5–8]. Compared to the MFD and 
CFD techniques, ED is quite attractive as it does not require 
a priori knowledge of the primary signal, i.e., it is a non-
coherent detection method. Thus, ED simply measures the 
received signal energy level over an observation interval and 
compares it with a pre-determined threshold to determine the 
presence or absence of the primary signal. Due to its ease of 
implementation, ED has understandably gained much attention 
and has been widely used [8–10]. In particular for cognitive 
radio, ED is commonly used as a spectrum sensing mechanism 
in order for the secondary users (SUs) to determine whether 
a primary user (PU) is present or absent in a given frequency 
band. 

Since the effectiveness of ED-based spectrum sensing is 
greatly impacted by the fading conditions experienced within 
the operating environment, its performance has been investi­
gated for a number of commonly encountered fading channels 
[11–16]. For example, the behavior of ED-based spectrum 
sensing over traditional fading channels, such as Rayleigh 
[11], [12], Rician [11], [12] and Nakagami-m [11–15], has 
been studied in terms of the false alarm probability (Pf ) and 
detection probability (Pd) or equivalently missed-detection 
probability (Pm = 1 − Pd). While all of the aforementioned 
studies have provided important contributions to the under­
standing of the performance of ED-based spectrum sensing 
over fading channels, they are restricted to multipath fading 
channels only. However, in practice, the wireless signal may 
not only undergo multipath fading but also simultaneous 
shadowing. 

To take into account concurrent multipath fading and shad­
owing, several composite fading models have been proposed 
for conventional and emerging communications channels. Ac­
cordingly, the performance of ED-based spectrum sensing has 
also been evaluated over these composite fading channels [17– 

mailto:geokarag@auth.gr
mailto:muhaidat@ieee.org
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22]. For example, in [17–19], the detection performance was 
investigated within the context of lognormal-based composite 
fading channels. However, due to the intractability of the 
lognormal distribution, the Rayleigh / lognormal [18] and 
Nakagami-m / lognormal [19] composite fading models were 
approximated using the semi-analytic mixture gamma (MG) 
distribution. Moreover, a comprehensive performance analysis 
of ED-based spectrum sensing over generalized K (KG) 
composite fading channels [20] and gamma-shadowed Rician 
fading channels [21] has been conducted for both single-
branch and diversity reception cases. More recently, the per­
formance of ED-based spectrum sensing over κ-µ, η-µ and α­
µ fading channels and their respective generalized composite 
fading channels, namely κ-µ / gamma, η-µ / gamma and α-µ 
/ gamma, has been studied in [16] and [22], respectively. In 
the latter, again due to the inherent mathematical complexity 
of the formulations, an MG distribution was employed to 
approximate semi-analytically these three composite fading 
models. 

More recently, in [23], the authors have proposed the use of 
the Fisher-Snedecor F distribution to model composite fading 
channels in which the root mean square (rms) power of a 
Nakagami-m signal is assumed to be subject to variations 
induced by an inverse Nakagami-m random variable (RV). In 
[23], it was demonstrated that in most cases the F composite 
fading model provides a better fit to real-world composite 
fading channels compared to the KG composite fading model. 
Most importantly, when comparing the analytical forms of 
the key statistical metrics and performance measures, the F 
composite fading model shows significantly less complexity 
than the KG composite fading model. Motivated by these 
observations, in this paper, we analyze the performance of ED-
based spectrum sensing over F composite fading channels.1 

Based on the fact that the entropy of the received signal de­
pends on whether the primary signal is present or absent [25], 
we also evaluate the differential entropy and cross entropy 
over F composite fading channels. In particular, differential 
entropy constitutes a core part of information theory as varying 
the involved parameters, i.e., multipath fading, shadowing and 
average signal-to-noise ratio (SNR), is useful for studying 
the corresponding impact on the information content. To help 
with the understanding of the relationship between energy 
detection and differential entropy, in this paper, the evaluation 
of differential entropy is carried out in parallel with the 
quantification of these effects on the detectability of unknown 
signals in cognitive radio and RADAR systems. This relation­
ship provides important insights on how the energy detection 
of these signals and their respective information content are 
simultaneously affected by the incurred composite fading 
conditions. In addition, the differential entropy is considered a 

1During the revision process associated with this manuscript, the authors 
became aware of an another simultaneous and independent work which has 
studied ED-based spectrum sensing over F composite fading channels [24]. 
It is worth highlighting that in the present manuscript, different to the work 
performed in [24], we introduce a slight modification to the underlying inverse 
Nakagami-m PDF used to formulate the PDF of the F composite fading 
model. This approach ensures stability across the ensuing performance analy­
sis whereas the expressions proposed in [24] require constrained consideration 
of the SNR PDF of the F composite fading model to achieve the same. 

useful criterion when comparing the ROC and AUC measures 
as interesting insights can be developed on their behavior and 
sensitivity on how the differential entropy varies for specific 
values of ROC and AUC. The main contributions of this paper 
are summarized as follows: 

1) We derive a computationally tractable analytic expres­
sion for the average detection probability ( P̄d) for ED-
based spectrum sensing over F composite fading chan­
nels. 

2) We then extend this to the cases of collaborative spec­
trum sensing and square-law selection (SLS) diversity 
to improve the detection performance. 

3) We	 analyze the performance of ED-based spectrum 
sensing over F composite fading channels using the 
receiver operating characteristic (ROC) curves. Compre­
hensive numerical results provide useful insights into the 
performance of ED over F composite fading channels 
for different average SNR levels, time-bandwidth prod­
uct, multipath fading conditions, shadowing conditions, 
number of diversity branches and number of collabo­
rative users. Furthermore, we investigate the effect of 
noise power uncertainty on the detection performance. 
All of these results will be useful in the design of energy-
efficient cognitive radio systems for emerging wireless 
applications. 

4) We derive a closed-form expression for the area under 
the ROC curve (AUC) and evaluate this for different 
multipath fading and shadowing conditions. 

5) We derive closed-form expressions for the differential 
entropy and cross entropy over F composite fading 
channels. 

6) The behavior of the differential entropy and cross en­
tropy is then evaluated for different conditions of the av­
erage SNR levels, multipath fading and shadowing con­
ditions.Most importantly, we provide important insights 
into the relationship between the differential entropy and 
energy detection performance, i.e., how different fading 
conditions affect the sensing of the signal energy and its 
information content. Useful insights are also provided 
when comparing the ROC and AUC measures as a 
function of the differential entropy. 

The remainder of the paper is organized as follows: In 
Section II, we briefly review the principle of ED and the 
statistical characteristics of the F composite fading model. 

¯In Section III, we present analytical expressions for the Pd 

over F composite fading channels for the cases of single user 
spectrum sensing, collaborative spectrum sensing, SLS diver­
sity reception and noise power uncertainty. Subsequently, a 
closed-form expression for the AUC is presented in Section IV. 
In Section V, we also provide exact closed-form expressions 
for the differential entropy and cross entropy over F composite 
fading channels. Section VI provides some numerical and 
simulation results while Section VII presents some concluding 
remarks. 
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II. ENERGY DETECTION AND THE F COMPOSITE FADING 
MODEL 

A. Energy Detection 

The received signal r(t) at the output of an ED circuit can 
be described as [11]  

n(t), H0 r(t) = (1)
h(t) s(t) + n(t), H1 

where s and n denote the transmitted signal and noise2 

respectively, h represents the complex channel gain and t is 
the time index. The hypothesis H0 and H1 signify the absence 
of the signal and the presence of the signal, respectively. As 
shown in Fig. 1, a typical ED set-up consists of a noise pre 
filter (NPF), squaring device, integrator and threshold unit. 
The received signal is first filtered by an ideal bandpass filter 
within a pre-determined bandwidth (W ) and then the output of 
the filter is squared and integrated over an observation interval 
(T ) to produce the test statistic (Y ). The corresponding test 
statistic is compared with a pre-determined threshold (λ). 

The test statistic Y can be modeled as a central chi-square 
RV where the number of degrees of freedom is equal to twice 
the time-bandwidth product (u = TW ), i.e., 2u degrees of 
freedom, under hypothesis H0 [11]. On the other hand, under 
hypothesis H1, it is modeled as a non-central chi-square RV 
with 2u degrees of freedom and non-centrality parameter 2γ, 
where γ = |h|2Es/N0 is the SNR with Es and N0 denoting 
the signal energy and single-sided noise power spectral density, 
respectively. As a result, the corresponding probability density 
function (PDF) of the test statistic Y can be expressed as [11]: ⎧ u−1   y y 

exp − , H0 
⎪⎪⎪⎪⎨ 2uΓ (u) 2

fY (y)= (2) 
u−1        ⎪⎪⎪⎪ 21 y 2γ+y⎩ exp − Iu−1 2γy , H1

2 2γ 2

where Γ[·] denotes the gamma function [26, eq. (8.310.1)] and 
Iv(·) represents the modified Bessel function of the first kind 
and order v [27, eq. (9.6.20)]. Based on the test statistic above, 
the Pf and Pd of ED over AWGN channels are given by [11] 

Γ (u, λ/2)
Pf = Pr (Y > λ|H0) = (3)

Γ (u) 

and    √ 
Pd = Pr (Y > λ|H1) = Qu 2γ, λ (4) 

where Γ(·, ·) and Qu(·, ·) represent the upper incomplete 
gamma function [26, eq. (8.350.2)] and the generalized Mar-
cum Q-function [28, eq. (1)], respectively. 

B. The F Composite Fading Model 

Similar to the physical signal model proposed for the 
Nakagami-m fading channel, the received signal in an F 
composite fading channel is composed of separable clusters 

2For the purposes of modelling, the noise is assumed to be additive white 
Gaussian noise (AWGN). 

NPF
Threshold 

deviceY
|·|2 ∑ 

r(t)

Fig. 1. System model of energy detection [8]. 

of multipath, in which the scattered waves have similar delay 
times, with the delay spreads of different clusters being rela­
tively large. However, in contrast to the Nakagami-m signal, in 
an F composite fading channel, the rms power of the received 
signal is subject to random variation induced by shadowing. 
Following this description, the received signal envelope, R, 
can be expressed as 

mm 
R2 = A2I2 + A2Q2 (5)n n 

n=1 

where m represents the number of clusters; In and Qn are 
independent Gaussian RVs with E[In] = E[Qn] = 0 and 
E[I2] = E[Q2 ] = σ2 , with E[·] denoting the statisticaln n

expectation. It is remarking that In and Qn denote the in-
phase and quadrature phase components of the cluster n, 
respectively. In (5), A is a normalized inverse Nakagami-m 
RV where ms is the shape parameter and E[A2]=1, such that 

ms 
  

2(ms − 1) ms − 1 
fA(α) = exp − . (6)

+1Γ (ms) α2ms α2

Using the same approach in [23], we can obtain the corre­
sponding PDF of the received signal envelope, R, in an F 
fading channel as follows 

ms 2m−12 mm(ms −1) Ωms r
fR(r)= ,ms > 1 (7)m+msB (m, ms) [mr2 + (ms −1) Ω]

where B(·, ·) denotes the beta function [26, eq. (8.384.1)]. 
It is worth highlighting that in this paper, we have slightly 
modified the underlying inverse Nakagami-m PDF from that 
used in [23] and subsequently the PDF for the F composite 
fading model.3 The form of the PDF in (7) is functionally 
equivalent to the F distribution.4 In terms of its physical 
interpretations, m denotes the fading severity whereas ms 

controls the amount of shadowing of the rms signal power. 
Moreover, Ω = E[r2] represents the mean power. As ms → 1, 
the scattered signal component undergoes heavy shadowing 
conditions. In contrast, as ms → ∞, there exists no shadowing 
in the channel and therefore it corresponds to a Nakagami-m 
fading channel. Furthermore, as m → ∞ and ms → ∞, the F 
composite fading model becomes increasingly deterministic, 
i.e., an AWGN channel. 

The corresponding PDF of the instantaneous SNR, γ, in an 

3While the PDF given in [23] is completely valid for physical channel 
characterization, unfortunately we have not been able to determine the 
parameter range over which the entropy and energy detection performance 
are computable. On the other hand, the redefined PDF for the F composite 
fading model given in (7) is well consolidated. 

24Letting r = x, m = d1/2, ms = d2/2, Ω = d2/(d2 − 2) and 
performing the required transformation yields the F distribution, fX (x), with 
parameters d1 and d2. 
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F composite fading channel can be straightforwardly obtained 
using the transformation of variable γ = γ̄r2/Ω, such that 

γms γm−1mm(ms −1)ms ¯
fγ (γ) = (8)

B (m, ms) [mγ + (ms − 1) ̄γ ]m+ms 

where γ̄ = E[γ] is the average SNR. 

III. ENERGY DETECTION OVER F COMPOSITE FADING
 
CHANNELS
 

A. Single User Spectrum Sensing 

When the signal undergoes fading, the average false alarm T = 
probability of ED-based spectrum sensing does not change as 

¯Pf is independent of the SNR fading statistics, while the Pd 

of ED can be obtained by averaging over the corresponding 
SNR fading statistics as follows  ∞ 

P̄d = Pd fγ (γ) dγ. (9) 
0 

¯To this end, the Pd of ED-based spectrum sensing over F 
composite fading channels can be obtained by substituting (4) 

With the aid of [26, eq. (3.383.5)] and making use of the gen­
eralized Laguerre polynomials [30, eq. (07.03.02.0001.01)]5, 

¯the Pd can be expressed as (13), at the top of the next 
page. In (13), 1F1 (·; ·; ·) represents the Kummer confluent 
hypergeometric function [26, eq. (9.210.1)]. It is worth noting 
that [26, eq. (3.383.5)] is only valid when m + ms is not a 
positive integer number, i.e., m + ms  = N. Nonetheless, this 
potential singularity can be straightforwardly circumvented by 
introducing an infinitely small perturbation term that can be 
added to m+ms, if required. Furthermore, with the aid of [30, 
eq. (07.20.16.0006.01)], (13) can be rewritten as (14) which 
is shown at the top of the next page, where U(·; ·; ·) denotes 
the confluent hypergeometric function of the second kind. 

5Although the main title of [30] is Wolfram Research, the page title 
depends on the id specified along with the reference. In the case of [30, 
eq. (07.03.02.0001.01)], (07.03.02.0001.01) indicates the id. Conseqeuntly, 
http://functions.wolfram.com/07.03.02.0001.01 indicates that the title of the 
page is LaguerreL (Generalized Laguerre function). 

It is noted that the infinite series representation in (14) is 
convergent and only few terms are required in practice of its 
truncation. However, in the analysis of digital communications 
over fading channels, it is essential to determine the exact 
number of truncation terms to guarantee target performance 
or quality of service requirements. Based on this, we derive 
an upper bound for the truncation error of (14), which can be 
computed straightforwardly because it is expressed in closed-
form in terms of known and built-in functions. Based on this, 
the truncation error, T , for the infinite series in (14) if it is 
truncated after T0 − 1 terms, is given as 

Γ (n + u, λ/2) Γ (n + m)
∞

Γ (n + 1) Γ (n + u) 

(ms − 1) ̄γ 
m 

m 

(15)Tn= 0 

−U + 1 ; × + ;m m m n .s s 

Since the confluent hypergeometric function of the second 
kind is monotonically decreasing with respect to n, T can 
be bounded as 

(ms − 1) ̄γ T ≤ U m + ms; ms − T0 + 1 ; 
m 

and (8) into (9), such that (16)m∞
dγ. m+ms n=T0−1) ̄γ ]

Γ (n + u, λ/2)Γ (n + m) ∞ √ γms γm−1 ×mm(ms −1)ms ¯ . 
P̄d = Γ (n + 1) Γ (n + u)Qu 2γ, λ 

0 B(m, ms)[mγ+(ms 
(10) With the aid of the monotonicity properties of the upper 

m 

Recognizing that the generalized Marcum Q-function in (10) incomplete gamma function, Γ(a, x) < Γ(a, 0) = Γ(a), the 
can be equivalently expressed as [29, eq. (29)], namely above expression can be upper bounded as follows 

∞ ∞m√ γn Γ (n + u, λ/2) (ms −1)γ̄ Γ(n+m)(11) . (17)Qu 2γ, λ = exp (−γ) T <U m+ms; ms −T0 +1; 
Γ (n + 1) Γ (n + u) m Γ(n+1) 

n=0 n=T0 

¯then substituting (11) into (10), the Pd of ED-based spectrum Since we add up strictly positive terms, the summation above 
∞ ∞

Γ(n+m)sensing over F composite fading channels can be equivalently Γ(n+m)can be rewritten as . To this effect ≤Γ(n+1) Γ(n+1)rewritten as n=0n=T0 

and by also recalling the Pochhammer symbol identities, it 
follows that 

m∞
B (m, ms) Γ (n + 1) Γ (n + u) 

mm(ms −1)ms γ̄ms Γ (n + u, λ/2)
P̄d = m∞

n=0 

n=0 (12) (ms −1) ̄γ (m)n Γ(m) 
n! 

.  ∞ γn+m−1 exp (−γ) T < U m+ms; ms −T0 +1; 
mdγ. ×

[ mγ + (ms −1) ̄γ ]m+ms 
(18)0 

It is evident that the above infinite series representations can 
be expressed in closed-form as 

(ms −1) ̄γ T < U m+ms; ms −T0 +1; Γ(m)1F0(m; ; 1) 
m 

(19) 
where 1F0(·; ·; ·) is the generalized hypergeometric function. 

B. Collaborative Spectrum Sensing 

The detection performance of ED-based spectrum sensing 
can be significantly improved using collaborative spectrum 
sensing [31], [32] which exploits the spatial diversity among 
SUs (i.e., sharing their sensing information). For simplicity, we 
assume that all N collaborative SUs experience independent 
and identically distributed (i.i.d.) fading and employ the same 
decision rule (i.e., the same threshold). For the OR-rule or 
equivalently 1-out-of-n rule, the final decision is made when 
at least one SU shares a local decision. In this case, the 

http://functions.wolfram.com/07.03.02.0001.01
http:07.03.02.0001.01
http:07.03.02.0001.01
http:07.20.16.0006.01
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 ∞ msm1 Γ(n+u, λ/2)Γ(n − ms) (ms −1) ̄γ (ms −1) ̄γ
P̄d = 1F1 m+ms; ms −n+1; 

B(m, ms) Γ(n+1) Γ(n+u) m m 
n=0  (13)

n
(ms − 1) ̄γ B (n + m, ms − n) (ms −1) ̄γ 

+ 1F1 n+m; n−ms +1; 
m Γ (n − ms) m

∞
γms m(ms − 1)ms ¯ Γ (n + u, λ/2)Γ (n + m) (ms −1) ̄γ

P̄d = U m+ms; ms −n+1; (14)
B(m, ms) mms Γ (n + 1) Γ (n + u) m 

n=0 

collaborative detection probability (P OR) and false alarm d 
probability (P OR) under AWGN can be written as follows f 

P OR N
= 1 − (1 − Pd) (20)d 

and 
P OR N 
f = 1 − (1 − Pf ) . (21) 

On the other hand, for the AND-rule, the final decision is 
made when all SUs share their local decision. In this case, the 
P AND and P AND 
d f under AWGN can be written as follows 

P AND N 
d = Pd (22) 

and 
P AND N 
f = Pf . (23) 

Based on this, the average detection probability of ED system 
over F composite fading channels with N collaborative SUs 
can be obtained by substituting (14) into (20) and (22) for 
the OR- and AND-rule respectively, yielding the following 
analytical representations given in (24) and (25), which are 
shown at the top of next page. 

C. Square-Law Selection Diversity Reception 

Using diversity reception techniques is one of the most well-
known methods which can be used to mitigate the delete­
rious effects of fading in wireless communication systems. 
Among other competing schemes, SLS diversity reception is 
efficient and highly regarded due to its simplicity. As shown 
in Fig. 2, in an SLS scheme, the energy detection process is 
performed before combining. Consequently, an SLS scheme 
selects the branch with the highest resultant test statistic, i.e., 
Y SLS = max {Y1, Y1, . . . YL} [15]. Under hypotheses H0, the 
false alarm probability for an SLS scheme (P SLS) over AWGN f 
channels can be determined as follows   L

Γ (u, λ/2)
P SLS = 1 − 1 − (26)f Γ (u)

where L represents the number of diversity branches. On the 
contrary, under hypothesis H1, the detection probability for an 
L-branch SLS scheme (P SLS) over AWGN channels can be d 
expressed as 

L    } √ 
P SLS = 1 − 1 − Qu 2γi, λ . (27)d
 

i=1


Consequently, for an L-branch SLS system operating over 
i.i.d. F composite fading channels, the average detection 

SLS

NPF

NPF

NPF
Receive 

antennas

Transmit 
antenna

1st

ith

Lth

|·|2 

|·|2 

|·|2 ∑ 

∑ 

∑ 

Fig. 2. System model of energy detection for an L-branch SLS diversity 
scheme [33]. 

probability, P SLS, can be obtained as d 

L} ∞   √ 
P SLS¯
d = 1 − 1 − Qu 2γi, λ fγi (γi) dγi 

0i=1
 

L
   ∞ ∞} √ 
= 1− fγi (γi)dγi − Qu 2γi, λ fγi

(γi) dγi
0 0i=1


L
}   
¯= 1 − 1 − Pd (γi) . 

i=1

(28) 

By substituting (14) into (28), an analytical expression for 
P SLS is obtained as (29), at the top of the next page d 

D. Noise Power Uncertainty 

In all of the previous cases considered, the detection prob­
ability has been grounded on the assumption that the noise 
power is accurately known. However, in practice, noise power 
varies with time and location, which is often referred to as 
the noise power uncertainty [34]. Clearly, any change in the 
noise power will affect the detection performance, with the 
main sources of this uncertainty including the non-linearity 
and the thermal noise of the components in the receiver and 
environmental noise caused by the transmissions of other wire­
less users [35–37]. Therefore, in practice, it is very difficult 
to obtain a precise knowledge of the noise power. 

Assuming that the uncertainty in the noise power estimation 
can be characterized by the term β (which is expressed 
in decibels), the noise power uncertainty in energy detec­
tion can be appropriately modeled as existing in the range 
[σW /α, ασW ] where σW denotes the nominal noise power 
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 	  N∞
γms m(ms −1)ms ¯ Γ(n+u, λ/2)Γ(n+m)	 (ms −1) ̄γ 

P̄ OR =1 − 1−	 U m+ms; ms −n+1; (24)d B(m, ms) mms Γ(n+1) Γ(n+u)	 m
n=0  	  N∞

γms m(ms −1)ms ¯ Γ(n+u, λ/2)Γ(n+m)	 (ms −1) ̄γ 
P̄ AND =	 U m+ms; ms −n+1; (25)d B(m, ms)mms Γ(n+1) Γ(n+u)	 m

n=0  	  
L	 msi ∞}	 m(msi−1)msi γ̄ Γ(n+u, λ/2) Γ(n+mi)	 (msi −1) ̄γi

P̄ SLS	 i= 1 −	 1 − U −n+1; (29)d	 mi +msi ; msiB(mi,msi ) mi
msi Γ(n+1) Γ(n+u)	 mii=1	 n=0 

and α = 10β/10 > 1 quantifies the size of the uncertainty 
[34]. Therefore, when the noise power is overestimated as 
σ̄W = ασW (i.e., for the worst case scenario), the detection 
probability can be obtained as [38] 

√ 
P NU 
d = Qu 2γ, α2λ . (30) 

Hence, to evaluate the performance of (30) over F composite 
P̄NUfading channels, the average detection probability, , can d 

be directly obtained by scaling the detection threshold with 
the noise uncertainty, i.e., λ is replaced by α2λ in (14). 

IV.	 AVERAGE AREA UNDER THE ROC CURVE FOR F 
COMPOSITE FADING CHANNELS 

The ROC curve is usually employed to evaluate the detec­
tion performance. However, for multiple energy detectors, it is 
difficult to visually compare their performance based on their 
ROC curves. Following the Area Theorem presented in [39], 
the AUC can be used as an alternative measure of detection 
capability, where the AUC is simply defined as the area 
covered by the ROC curve. This represents the probability of 
choosing the correct decision at the detector is more likely than 
choosing the incorrect decision [40], [41]. As the threshold 
used in the detector varies from ∞ to 0, the AUC varies from 
0.5 (poor performance) to 1 (good performance). 

A. AUC for the Instantaneous SNR 

Let A (γ) denote the AUC which is a function of instan­
taneous SNR value γ. For the ROC curve of Pd versus Pf , 
A (γ) can be evaluated as [42] 

1 

A (γ) = Pd (γ, λ) dPf (λ). (31) 
0 

As both Pd (γ, λ) and Pf (λ) are functions of the threshold λ, 
we can use the threshold averaging method [43] to calculate 
the AUC. When the value of Pf (λ) varies from 0 to 1 
(0 → 1), it is equivalent to λ ranging from ∞ to 0 (∞ → 0). 
Consequently, (31) can be rewritten as 

∞ ∂Pf (λ)
A (γ) = − Pd (γ, λ) dλ (32)

∂λ 0 

where ∂Pf (λ) denotes the partial derivative of Pf with respect ∂λ 
to λ, which is obtained from (3) 

λu−1∂Pf (λ)	 λ 
= − exp − . (33)

∂λ 2uΓ (u) 2 

By substituting (4) and (33) into (32), A(γ) is expressed as 
∞m	 γn exp (−γ)

A (γ) = 
2uΓ (u) Γ (n + 1) Γ (n + u)

n=0 (34)
∞ λ 
λu−1× exp − Γ (n + u, λ/2) dλ 

20 

which with the aid of [44, eq. (12)], it can be obtained as 
u−1 lmm γil + u − 1	 γ 

A (γ) = 1 −	 exp − (35)
l − i i! 2 l+u+i 2 

l=0 i=0   
awhere	 represents the binomial coefficient. b

B. Average AUC for F Composite Fading Channels 

The corresponding average AUC (Ā) for F composite 
fading channels can be evaluated through averaging (35) by 
the corresponding SNR fading statistics, such that [42] 

∞ 

Ā = A (γ) fγ (γ) dγ. (36) 
0 

¯Substituting (8) and (35) into (36), A can be expressed as 
u−1 lmm l + u − 1	 mm(ms − 1)ms γ̄ms 

Ā = 1 − 
l − i i! 2l+u+iB(m, ms)

l=0 i=0   (37)
∞ γm+i−1 − γ exp 2× dγ. 

0 [mγ + (ms −1)γ̄]
m+ms 

Since the integral in (37) is the same form as that given in (12), 
Ā can be similarly obtained with the aid of [26, eq. (3.383.5)] 
and [30, eq. (07.20.16.0006.01)], such that 

u−1 lmm l+u−1	 (ms −1)ms γ̄ms Γ(m+i)
Ā = 1− 

l−i i! 2l+u+ms mms B(m, ms)
l=0 i=0	 (38) 

(ms −1) ̄γ × U m + ms; ms − i + 1; 
2m 

which is expressed by an exact closed-form expression that 
involves known functions that are built-in in popular software 
packages such as Maple, Matlab and Mathematica. 

V. ENTROPY FOR F COMPOSITE FADING CHANNELS 

A. Differential Entropy 

It is recalled that the differential entropy denotes the amount 
of information contained in a signal and indicates the average 

http:07.20.16.0006.01
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0 

number of bits required for encoding this information. For 
continuous RVs with PDF, pX (x), it is given by H(p) =n ∞− pX (x) log2 (pX (x)) dx [45]. Thus, for the case of F 
composite fading channels, it can be expressed by substituting 
(8) into pX (x), such that 

∞ γms γm−1mm(ms −1)ms ¯
H(p) = − m+ms 

0 B (m, ms) [mγ + (ms −1) ̄γ ]
(39) 

mm(ms −1)ms γ̄ms γm−1 

× log2 dγ. 
B (m, ms) [mγ+(ms −1) ̄γ ]m+ms 

Using the logarithmic identities and after some algebraic 
manipulations, (39) can be rewritten as (40) which is shown at 
the top of the next page, Performing a simple transformation 
of variables and applying [26, eq. (4.293.14)] along with some 
algebraic manipulation, (40) can be expressed in closed-form, 
such that 

(m+ms)ψ(m+ms)−(m−1)ψ(m)−(ms +1)ψ(ms)
H(p) = 

ln(2) 
B (m, ms)(ms −1) ̄γ 

+ log2 m 
(41) 

where ψ (·) represents the psi (polygamma) function [26, eq. 
(8.360)]. Similar to the average detection probability and AUC, 
as shown in (41), the differential entropy is also expressed 
in terms of the m, ms and γ parameters. This may suggest 
that there exist a relationship between the energy and the 
information content of a signal. It should be noted that a 
similar expression to (41) was presented in [46], [47]. Nev­
ertheless, (41) provides useful insights as it is based on the 
physical parameters of the F composite fading model, i.e., 
m (multipath fading severity), ms (shadowing severity) and γ 
(average SNR). 

B. Cross Entropy 

The cross entropy measures the average number of bits 
required to encode a message when a distribution pX (x) 
is replaced by a distribution qX (x). The cross entropy be­
tween two continuous RVs with PDFs pX (x) and qX (x) isn ∞given by H(p, q) = − pX (x) log2 (qX (x)) dx [45]. In the 

0 
present analysis, pX (x) represents the F distribution while 
the Rayleigh and Nakagami-m distributions are considered for 
qX (x). To understand what happens when composite fading 
is not taken into account, the corresponding cross entropy 
with respect to the Rayleigh and Nakagami-m distributions 
are respectively given by 

∞ γms γm−1mm(ms −1)ms ¯
HRay(p, q)=− 

0 B (m, ms) [mγ + (ms −1) ̄γ ]m+ms 

(42)
1 γ × log2 exp − dγ 
γ̄R γ̄R 

and 
∞ mm(ms −1)ms γ̄ms γm−1 

HNak(p, q)=− m+ms
 
0 B (m, ms) [mγ + (ms −1) ̄γ ]


(43)
ˆ m−1mγ ˆm̂ mγˆ× log2 exp − dγ 

mΓ( ̂m) γ̄ ˆ ¯N γN 

where γ̄R is the average SNR of the Rayleigh distribution, 
m̂ and γ̄N denote the fading severity parameter and average 
SNR of the Nakagami-m distribution, respectively. In a similar 
manner to Section V.A, by performing the necessary transfor­
mation of variables and applying [26, eq. (3.194.3)] and [26, 
eq. (4.293.14)] along with some algebraic manipulation, (42) 
and (43) can be expressed in closed-form as follows 

γ̄
HRay(p, q)= γR) + log2 ( ¯ (44)

ln (2) ̄γR 

and 
m̂m̂γ̄ m̂

HNak(p, q) = − log2 mln(2) ̄γN Γ( ̂m) γ̄ ̂N 

m̂− 1 m 
+ ln −ψ (m) + ψ (ms) . 

ln(2) (ms − 1) ̄γ 
(45) 

It is noted that (42) and (46) can be computed straightfor­
wardly since ψ(·) is included as a built-in function in most 
popular scientific software packages. 

VI. NUMERICAL AND SIMULATION RESULTS 

Capitalizing on the derived analytic results, we next quantify 
the effects of F composite fading conditions for different 
communication scenarios and fading severity conditions. It 
is worth remarking that the number of terms utilized in the 
numerical results was 101.6 

A. Energy Detection 

We firstly analyze the performance of ED-based spectrum 
sensing over F composite fading channels in terms of the 
corresponding ROC curves. As an example, Fig. 3 shows the 
ROC curves for different values of the average SNR (γ̄), time-
bandwidth product (u), multipath fading (m) and shadowing 
(ms) parameters. It can be seen that the performance of 
ED-based spectrum sensing improves when the average SNR 
increases (higher values of γ̄), or when the time-bandwidth 
product decreases (lower values of u), or when the severity of 
multipath fading and shadowing decreases (higher values of 
m and ms). It is worth remarking that we have also included 
the results of some simulations (shown as symbols) in Fig. 3, 
which were performed to validate the derived analytic ex­
pressions. Owing to the simplicity of the F composite fading 
model, these simulated sequences, each consisting of 100,000 
realizations, were straightforwardly generated in MATLAB 
through the calculation of the ratio of two gamma RVs. 

The F composite fading model inherit all of the generality 
of the Nakagami-m fading model [11]. Thus, it includes as 
special cases the Nakagami-m and Rayleigh fading models. 
More specifically, in the absence of shadowing in the channel 
(i.e., ms → ∞), the F composite fading model coincides with 
the Nakagami-m fading model. Likewise, the Rayleigh fading 
model is readily obtained by setting m = 1 and ms → ∞. 
Consequently, some of the special cases of the ROC curves 

6With 101 truncation terms, the numerical results provided a good accuracy. 
For instance, when compared to the Pd values computed using (10) and (14), ¯

the truncation error was found to be approximately 2.31704 × 10−12 . 

http:4.293.14
http:4.293.14
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mm(ms − 1)ms γ̄ms mm(ms − 1)ms γ̄ms 

H(p) = − log2 − 
B (m, ms) B (m, ms) ln(2) ⎡ 

m+ms 
⎤ (40)∞ γm−1 ∞ γm−1 ln [mγ + (ms − 1) γ̄]γm−1 ln⎣ ⎦× dγ − dγ m+ms m+ms 

0 [mγ + (ms − 1) γ̄ ] 0 [mγ + (ms − 1) γ̄ ]

Fig. 3. ROC curves for F composite fading channels considering different 
γ̄, m, ms and u values. 

which coincide with those for the Rayleigh and Nakagami-m 
fading channels are illustrated in Fig. 4 as a further validations 
and insights. It is evident that the considered composite model 
is more versatile as it can effectively account for the difference 
between Rayleigh and Nakagami-m fading conditions, leading 
to more accurate and reliable results. The versatility is further 
evident by the fact that this model can also account for 
shadowing, unlike the standard Nakagami-m and Rayleigh 
fading models. 

Fig. 5 illustrates the ROC curves for collaborative ED-based 
spectrum sensing with N = 2, 4, 8 using the OR and AND 
rules with m = 3.5, ms = 4.3, γ̄ = 3 dB and u = 2. 
For comparison, the ROC curve for non-collaborative ED-
based spectrum sensing (i.e., single user spectrum sensing) 
is also shown in Fig. 5. As expected, the energy detection 
performance improves as the number of collaborative SUs 
increases. It is also observed that the OR rule provides a 
better performance compared to the AND rule. Fig. 6 shows 
the detection performance variation with increasing number 
of diversity branches (L) and time-bandwidth product (u) 
for an L-branch SLS scheme. It is clear that lower u and 
higher L provides a better performance. Furthermore, when 
L = 1 the ROC curves for an L-branch SLS scheme become 
equivalent to those for F composite fading channel. Again, 
the simulation results provide a perfect match to the analytical 
results presented in Fig. 5 and Fig. 6. 

Fig. 7 demonstrates how the detection performance varies 
with γ̄ over F composite fading channels with m = 1.3, 
ms = 2.7, u = 2 and λ = 7.78 under a number of different 
conditions of noise power uncertainty. It is apparent that the 

Fig. 4. ROC curves for some special cases of the F composite fading channel: 
Rayleigh (asterisks) and Nakagami-m (circles). 

Fig. 5. ROC curves for collaborative ED-based spectrum sensing with OR 
and AND rules over F composite fading channels, with m = 3.5, ms = 4.3, 
γ̄ = 3 dB, u = 2 and N collaborating users with N = 2, 4 and 8. 

detection performance decreases as noise uncertainty increases 
and the effects of noise uncertainty are non negligible. For 

P̄NUexample, the value of for γ̄ = 6 dB and β = 0 dB (i.e., d 
perfect noise power estimation) was approximately 0.52 while 

P̄NUthe value of for β = 2 dB was found to be approximately d 
P̄NU0.15. Furthermore, to achieve = 0.9, the ED-based d 

spectrum sensing with β = 2 dB requires an additional 5 dB 
compared to when β = 0 dB. To illustrate both the isolated 
and combined effects of multipath and shadowing on the AUC 
for F composite fading channels, Fig. 8 shows the estimated 
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Fig. 6. ROC curves for an L-branch SLS system with L = 1, 2 and 4 over 
i.i.d. F composite fading channels, with m = 5.6, ms = 1.1, γ̄ = 7 dB and 
u ={1, 3}. 

Fig. 8. Average AUC in an F composite fading channel as a function of 
the multipath fading (m) and shadowing (ms) parameters, with u = 2 and 
γ̄ = 2 dB. 

P NUFig. 7. Average detection probability ( ¯ ) versus average SNR (γ̄) over Fd 
composite fading channels, with m = 1.3, ms = 2.7, u = 2 and λ = 7.78 
under different conditions of noise power uncertainty. 

AUC values for different multipath fading (1.0 ≤ m ≤ 15) 
and shadowing (2.0 ≤ ms ≤ 15) conditions, with u = 2 and 
γ̄ = 2 dB. It is clear that smaller values of the AUC (close to 
0.5) occurred when the channel was subject to simultaneous 
heavy shadowing (ms → 2) and severe multipath fading 
(m → 1), i.e., intense composite fading, whereas the higher 
AUC values (close to 1) appeared when both the multipath 
and shadowing parameters became large (m, ms → 15), i.e., 
light composite fading. 

B. Entropy 

Fig. 9 shows the estimated differential entropy for different 
multipath fading and shadowing intensities of F composite 
fading channels, i.e., 3 ≤ m ≤ 10, 3 ≤ ms ≤ 10 and 0 
dB ≤ γ̄ ≤ 20 dB. It is obvious that higher values of the 
differential entropy appear at higher γ̄, lower m and lower ms. 
This may indicate that more bits are required to encode the 
corresponding message when the channel is subject to higher 

Fig. 9. Differential entropy in an F composite fading channel as a function 
of its key parameters: multipath fading (m), shadowing (ms) and average 
SNR (γ̄). 

average SNR, severer multipath fading and heavier shadowing. 
As already shown in Fig. 3 and Fig. 8, the ROC curves 
and AUC are also highly dependent upon multipath fading 
and shadowing conditions experienced in F composite fading 
channels. Motivated by this, we compare the behavior of the 
differential entropy and ROC curves. 

Fig. 10 shows the estimated differential entropy and ROC 
curves as a function of (a) average SNR (γ̄) with fixed fading 
parameters m = ms = {2, 10} and u = 2; (b) multipath 
fading (m) with γ̄ = {5, 15} dB, ms = 3 and u = 2; 
(c) shadowing (ms) with γ̄ = {5, 15} dB, m = 3 and 
u = 2. It is worth noting that realistic values of Pf in the 
range 0 to 0.3 (i.e., low false alarm probability) were mainly 
considered in Fig. 10. Similarly, Fig. 11 compares the behavior 
of the differential entropy and AUC for different values of 
the multipath fading (m) and shadowing (ms) parameters at 
γ̄ = 2 and 5 dB. It can be easily seen that the value of the 
differential entropy increases when the average SNR increases 
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Fig. 10. Behavior of the differential entropy and ROC curves as a function 
of (a) average SNR (γ̄), (b) multipath fading (m) and (c) shadowing (ms) 
parameters, respectively. 

(higher γ̄), or when the severity of multipath fading increases 
(lower m), or when the shadowing conditions become heavier 
(lower ms). On the other hand, the values of the average 
detection probability and AUC increase when the average SNR 
increase (higher γ̄), or when the severity of multipath fading 
decreases (higher m), or when the shadowing conditions 
become lighter (higher ms). Consequently, it can be inferred 
that higher detection capability requires less number of bits 
for encoding the signal at the same value of γ̄. 

Table I depicts the estimated differential entropy and cross 

Fig. 11. Behavior of the differential entropy and AUC as a function of 
multipath fading (m) and shadowing (ms) parameters at γ̄ = {2, 5} dB. 

entropy for different values of the fading parameters at γ̄ = 5, 
15 and 25 dB. It is worth remarking that the corresponding 
average detection probability (when Pf = 0.1 and u = 2) and 
AUC are also presented in Table I for the further investigation 
of the impact of multipath fading, shadowing and average 
SNR on the energy detection and information content of 
unknown signals. To obtain the Nakagami-m and Rayleigh 
fading parameters of the distributions used to encode the F 
distribution, we first generated a set of F RVs and used the 
maximum likelihood estimation (MLE). The corresponding 
parameter estimates are also presented in Table I. Interestingly, 
irrespective of the multipath fading (m) and shadowing (ms) 
conditions, the estimated γ̄R and γ̄N are the same as γ̄. 
Consequently, the cross entropy between the F and Rayleigh 
distributions, i.e., (44), is dependent upon the average SNR 
only. When comparing the cross entropy for Rayleigh and 
Nakagami-m, for all of the cases, the Nakagami-m distribution 
provided lower entropy than the Rayleigh distribution. 

From Table I, it is also evident that the differential entropy 
was smaller than the cross entropy for all of the considered 
cases. Overall this demonstrates the importance of consider­
ing composite fading models when characterization wireless 
transmission in conventional and emerging communication 
systems. It is worth remarking that for the light shadowing 
conditions (e.g., ms = 30), the cross entropy for Nakagami­
m distribution is almost the same as the differential entropy. 
This is due to the fact that the F distribution coincides with 
the Nakagami-m distribution when ms → ∞. Consequently, 
its relative entropy7 (also known as the Kullback-Leibler 
divergence), which is a measure of the distance between two 
distributions, was close to zero. 

VII. CONCLUSION 

In this paper, a comprehensive performance analysis of ED-
based spectrum sensing over F composite fading channels has 
been carried out. A novel analytic expression for the average 
energy detection probability was derived and then extended 
to account for collaborative spectrum sensing, SLS diversity 

7The relative entropy is given by D(p||q) � H(p, q) − H(p) [48]. 
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TABLE I
 
DIFFERENTIAL ENTROPY AND CROSS ENTROPY FOR DIFFERENT FADING PARAMETERS (m, ms ) AND AVERAGE SNR (γ̄) ALONG WITH THE AVERAGE
 

DETECTION PROBABILITY(P̄d ), AUC AND THE CORRESPONDING PARAMETER ESTIMATES OF THE RAYLEIGH AND NAKAGAMI-m DISTRIBUTIONS
 

(m, ms, γ̄) H(p) P̄d AUC 
Rayleigh Nakagami-m 

γ̄R H(p, q) m γ̄N H(p, q) 

(2, 3, 5 dB) 3.005 0.494 0.772 5 dB 3.104 1.14 5 dB 3.096 

(2, 30, 5 dB) 2.959 0.551 0.805 5 dB 3.104 1.89 5 dB 2.960 

(20, 3, 5 dB) 2.730 0.537 0.803 5 dB 3.104 2.11 5 dB 2.913 

(20, 30, 5 dB) 1.870 0.606 0.845 5 dB 3.104 11.99 5 dB 1.876 

(2, 3, 15 dB) 6.327 0.905 0.934 15 dB 6.426 1.14 15 dB 6.418 

(2, 30, 15 dB) 6.281 0.978 0.980 15 dB 6.426 1.88 15 dB 6.282 

(20, 3, 15 dB) 6.051 0.966 0.969 15 dB 6.426 2.11 15 dB 6.235 

(20, 30, 15 dB) 5.191 0.999 0.999 15 dB 6.426 11.98 15 dB 5.198 

(2, 3, 25 dB) 9.649 0.954 0.954 25 dB 9.748 1.14 25 dB 9.740 

(2, 30, 25 dB) 9.603 0.983 0.983 25 dB 9.748 1.88 25 dB 9.604 

(20, 3, 25 dB) 9.374 0.971 0.971 25 dB 9.748 2.12 25 dB 9.557 

(20, 30, 25 dB) 8.514 0.999 1.000 25 dB 9.748 11.96 25 dB 8.520 

reception and noise power uncertainty. Additionally, as a figure 
of merit to determine the performance of ED-based spectrum 
sensing, a closed-form expression for the AUC was also 
derived. It was shown that the detection performance increased 
when the average SNR increased, the time-bandwidth product 
decreased, or when the multipath fading and shadowing sever­
ity decreased. As anticipated, the detection performance was 
significantly improved as the number of diversity branches 
increased. Furthermore, when more collaborative users shared 
their local decision information, a better detection performance 
was achieved for both the OR- and AND-rules. Among these 
rules, the OR-rule was observed to provide a better detection 
performance compared to the AND-rule. To validate the an­
alytical expressions presented in the paper, simulation results 
were also presented. 

Most importantly though, it is noted that the analytical form 
of the average detection probability for ED-based spectrum 
sensing over the generalized K fading channels given in [20, 
eq. (7)] is only valid for integer value of m. However, the 
analytical expression presented in the paper is valid for any 
m value meaning that ED-based spectrum sensing may now 
be tested over a much greater range of multipath fading condi­
tions, which is essential in demanding scenarios such as ED-
based spectrum sensing and RADAR systems. Additionally, 
the analytical expression presented in this paper shows much 
less complexity due to the computation of a smaller number 
of special functions and a rapidly converging infinite series. 

Novel expressions for the differential entropy and cross 
entropy were also derived in closed-form. The behavior of the 
differential entropy was evaluated for different values of the 
key parameters of F composite fading channels. Similar to the 
average detection probability and AUC, the differential entropy 
is expressed in terms of the multipath, shadowing and average 
SNR parameters. Hence, there is a relationship between the 
energy and the information content of a signal and how these 
are affected by the incurred fading conditions. As a result, 
we compared the differential entropy with the behavior of 

ROC and AUC, offering useful insights on the relationship of 
these measures, i.e., how different fading conditions affect the 
sensing of the energy of the signal and its information content. 
More specifically, this can account for the information content 
difference for small or large variations of the ROC and AUC 
measures. For example, in critical values of these measures, 
such around 0.95, small variations can show the direct change 
of the differential entropy. Conversely, it can indicate how even 
slight variations of the differential entropy affect the ROC and 
AUC. Given that these measures are functions of the involved 
fading parameters and average SNR, these insights are useful 
in enabling an accurate and robust detector decision. Overall, 
it was shown that the more bits were required to encode the 
corresponding message when the channel was subject to higher 
average SNR, severer multipath fading and heavier shadowing. 
Moreover, the cross entropy with the Rayleigh and Nakagami­
m distributions demonstrated the information loss encountered 
when the composite fading was not taken into account. 
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