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Abstract—The T-µ / inverse gamma and t-µ / inverse gamma 
distributions were recently introduced as particularly flexible and 
tractable composite fading models that provide accurate charac­
terization of multipath and shadowing effects, which are encoun­
tered simultaneously during wireless transmission in emerging 
communication scenarios such as off-body, cellular and vehicular­
to-vehicular communications. The present contribution analyzes 
the symbol error rate performance of digital communications 
over these fading channels. To this end, we derive novel analytic 
expressions for the symbol error rate of multiple amplitude based 
modulated systems under these fading conditions, which are 
subsequently used in the analysis of the corresponding system 
performance. In this context, numerous insights are developed 
on the effect of different fading conditions on the corresponding 
error rate, which are expected to be useful in the design of timely 
and demanding wireless technologies such as wearable, cellular 
and vehicular communication systems. 

I. INTRODUCTION 

Accurate characterization and modeling of fading channels 
has been a core topic in wireless communications as fading 
phenomena affect significantly the performance of conven­
tional and emerging communication systems. This has led to 
the proposition of numerous fading models that provide ade­
quate modeling accuracy to specific types of fading conditions 
[1]–[5] and the references therein. In this context, it has been 
extensively shown that generalized fading models are capable 
of providing accurate characterization of multipath fading [6]– 
[10]. Nevertheless, it is also known that multipath fading and 
shadowing phenomena practically occur simultaneously and 
can be modeled with the aid of composite fading distributions 
[11]–[19]. However, the existing composite fading models 
typically provide partially accurate modeling of fading phe­
nomena, while they often have a complicated mathematical 
form, which renders them analytically intractable. Motivated 
by this the authors in [1]–[3] proposed two novel distributions, 
namely the r-µ / inverse gamma and the 1-µ / inverse gamma 
that constitute effective composite fading models. The high 

modeling capability of these models has been validated by ac­
curate fitting to results from extensive measurement campaigns 
in the context of wearable, cellular and vehicular communica­
tions, which constitute important and timely topics of interest. 
In addition, a distinct characteristic of the proposed models 
is their relatively convenient algebraic representation, which 
renders them tractable both analytically and numerically. 

Fading distributions have been extensively used in the 
analysis and evaluation of wireless communications since they 
typically allow the derivation of explicit expressions for critical 
performance measures of interest. However, this task becomes 
considerably more challenging, if not impossible, in the case 
of generalized and/or composite fading conditions [6], [20]. 
Based on this, the authors in [21]–[23] analyzed the capacity 
over generalized fading channels under different adaptation 
policies. This topic was also addressed in [24] for the case 
of KG fading channels, in [13] and [25] for the case of G 
fading channels and in [26] and [27] for the case of 1-µ / 
gamma and r-µ shadowed fading channels, respectively. In 
the same context, the outage probability (OP) over different 
generalized interference-limited scenarios was investigated in 
[28], whereas an analytical framework for device-to-device 
communications in cellular networks was proposed in [29]. 
Finally, the outage capacity (OC) of orthogonal space-time 
block codes over multi-cluster scattering multi-antenna sys­
tems along with the coverage capacity 5G millimeter wave 
cellular systems were addressed in [30] and [31], respectively. 

Motivated by the above, the present work analyzes the error 
performance of digital communications over r − µ / inverse 
gamma and 1−µ / inverse gamma fading channels. To this end, 
we derive explicit expressions for the average symbol error 
probability (SEP) of multiple amplitude (M−AM) modulation 
under these composite fading conditions. These expressions 
are given in exact closed-form representation for the case of 
r − µ / inverse gamma fading and in exact infinite series 
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representation for the case of 1 −µ / inverse gamma. Based on 
this, a simple closed-form upper bound is also provided for 
the truncation error of the derived infinite series which can 
readily determine the number of terms required for achieving 
specific levels of accuracy. These expressions are subsequently 
employed in the analysis of the considered scenarios, which 
quantifies the effects of different fading conditions on the cor­
responding system performance. This leads to the development 
of useful insights that are expected to be useful in the design 
of emerging wireless technologies such as wearable, cellular 
and vehicular communications. For example, it is shown 
that the resulting performance of the considered scenarios 
varies significantly from the performance achieved by the 
conventional Rayleigh distributed multipath fading and that 
accurate modeling of the incurred fading conditions can enable 
effective wireless transmission using binary modulations even 
at moderate signal-to-noise ratio (SNR) values. 

II. INVERSE GAMMA BASED COMPOSITE DISTRIBUTIONS 

A. The r-µ / Inverse Gamma Fading Model 

The r-µ / inverse gamma model assumes that the mean 
power of both the dominant and scattered signal components is 
subject to shadowing, which is weighted by an inverse gamma 
random variable (RV). This model was shown to provide 
remarkable accuracy in line of sight (LOS) communication 
scenarios and its envelope probability density function (PDF) 
is expressed as [1], [3] 

ms Ωms e−µ 2µ−12µµ(1 + r)µm rsfR(r) = 
B(ms, µ)[µ(1 + r)r2 + msΩ]ms+µ ( ) (1)2 2µ r(1 + r)r× 1F1 ms + µ; µ; 

µ(1 + r)r2 + msΩ 

where r denotes the envelope of the signal, r is the ratio of 
the total power of the dominant components to the total power 
of the scattered waves, µ is related to the number of multipath 
clusters, ms is the shadowing parameter and Ω is the the 
mean signal power. Furthermore, B(·, ·) and 1F1(·; ·; ·) denote 
the Beta function and the Kummer hypergeometric function, 
respectively [32]. 

Based on (1), the SNR PDF of the r-µ / inverse gamma 
fading model is given by 

ms −µ  µ−1µµ(1 + r)µm  ms esf, ( ) = 
B(ms, µ)[µ(1 + r) + ms ]ms+µ ( ) (2)2µ r(1 + r) × 1F1 ms + µ; µ; 

µ(1 + r) + ms 

where  and  = E[ ] represent the instantaneous SNR 
and the corresponding average SNR, respectively, with E[·] 
denoting statistical expectation. 

It is evident that the algebraic representation of the PDF of 
the r−µ / inverse gamma fading model is relatively convenient 
both analytically and numerically. 

B. The 1-µ / Inverse Gamma Fading Model 

The 1-µ / inverse gamma model is based on the 1-µ 
distribution and assumes that the mean power of the scattered 
component is subject to shadowing, which is weighted by an 
inverse gamma RV. This model was shown to provide remark­
able accuracy in non-line of sight (NLOS) communications 
and its envelope and SNR PDFs are given by [2], [3] 

22µ+1 2µhµ(ms
4µ−1µ Ω)ms r

fR(r) = 
B(ms, 2µ)(2µhr2 + msΩ)ms+2µ ( )
ms ms + 1 1 (2µHr2)2 

× 2F1 + µ, + µ; µ + ;
2 2 2 (2µhr2 + msΩ)2 

(3) 

and 
22µ 2µhµ ms  ms 2µ−1µ msf, ( ) = 

B(ms, 2µ)(2µh + ms )ms+µ ( )
ms ms + 1 1 (2µH )2 

× 2F1 + µ, + µ; µ + ;
2 2 2 (2µh + ms )2 

(4) 

respectively, where 2F1(·, ·; ·; ·) is the Gaussian hypergeomet­
ric function [32]. Also, 1 is defined according to the two for­
mats of the 1−µ distribution. In Format 1, h = (2+1+1−1)/4 
and H = 1−1 − 1/4, with 1 denoting the scattered wave 
power ratio between the in-phase and quadrature components 
of each cluster of multipath. In Format 2, h = 1/(1 − 12) and 
H = 1/(1 − 12) with 1 denoting the correlation coefficient 
between the in-phase and quadrature components. 

In what follows, we capitalize on the above statistical results 
to derive useful analytic expressions for the average SEP of 
M−AM modulation under these composite fading conditions. 

III. SEP FOR MULTIPLE AMPLITUDE MODULATION 

A. Average SEP over r-µ / Inverse Gamma Fading Channels 

This subsection is devoted to the derivation of an exact 
closed-form representation for the average SEP of M−AM 
constellations under r-µ / inverse gamma fading conditions. 

Theorem 1. For r, µ, ms,  E R+ and M = 2n with n E N, 
the analytic expression in (5), top of the next page, is valid 
for the symbol error rate in multilevel amplitude modulation 
over r-µ / inverse gamma fading channels, with M denoting 
the corresponding modulation order. 

Proof. It is recalled that the SEP of M −AM under additive 
white Gaussian noise (AWGN) channels is given by [6, Eq. 
(8.3)]. To this effect, the average SEP in the case of r-µ / 
inverse gamma fading channels is obtained by averaging [6, 
Eq. (8.3)] over the corresponding SNR PDF in (2), namely 

ms2(M − 1)µµ(1 + r)µ 
Ps(E) =
 

Meµ m −s
ms B(ms, µ)
(√ )

6, log2(M)∫ 0  µ−1Q (M−1)(M+1) 
× (6) 

[µ(1 + r) + ms ]ms+µ
0 ( )

2µ r(1 + r) × 1F1 ms + µ; µ; d 
µ(1 + r) + ms 



 

 

  

  

  

 
 

 

 

 

 

  

  

{ ( )
ms−1 1M − 1 m ms f − ms 3ms logms (M)s 2 2Ps(E) = 1 − c 

M µms (M2 − 1)ms γ(1 + r)ms B(ms, µ)eµ ( )}
1 3 log2(M)ms × 2F2 ms + µ : −,ms; − : µ, ms + ; −, 1 + ms; µr,
2 µ(1 + r)(M2 − 1)( ) ( )√ ( )1f ms − 1 f µ + 3ms(M − 1) log2(M) 1 1 3 3 3 log2(M)ms2 2− √ 2F2 µ + : −, ; − : µ, ; −, − ms; µr, 

2−1Meµ f(µ)f(ms) γµ(1 + r)(M + 1) 2 2 2 2 µ(1 + r)(M2 − 1) 
(5) 

(√ )0ms 
∫ 0 µ+l−12(M − 1)(1 + r)µ ∑ (ms + µ)l (1 + r)l 6 log2(M)

Ps(E) = Q d−ms eµ −2lr−l +µ+lMµ−µm B(ms, µ) (µ)l l!µ [µ(1 + r) + ms ]ms (M − 1)(M + 1) s 0l=0 
(7) 

{ ( ) c √ 
M − 1 2f ms − 2

1 M − 1 3ms log2(M)
Ps(E) = − c c c c 

M M γeµ f(ms) µ 1 + r M + 1 
0 ( ) ( )}∑ l lr µ 1 1 1 3 3 3ms log2(M)× f µ + l + 2F2 , µ + l + ; , − ms;

l!f(µ + l) 2 2 2 2 2 µ(1 + r)(M2 − 1)
l=0 (8)( )

ms−1 1m ms (M − 1)3ms logms (M)f − mss 2 2− c 
Mµms (M2 − 1)ms γ(1 + r)ms B(ms, µ)eµ 

0 ( )∑ l l(ms + µ)lµ r 1 3 ms log2(M)× 2F2 ms, µ + ms + l; ms + , 1 + ms; . 
l!(µ)l 2 µ(1 + r)(M2 − 1)

l=0 

( ) ( )√ c ( ) ( ) ( 
2, log2(M)ms 

)i 
0 0 1 11 l lM − 1 2f ms − 2

1 f µ + 2 3ms log2(M) M − 1 ∑∑ µ + 2 l+i 2 i µ r µ(1+ )(M2−1)
Ps(E) = − c c c c ( ) ( )

3 3M M γeµ f(µ)f(ms) µ 1 + r M + 1 (µ)l − ms l! i! 
l=0 i=0 2 i 2 i ( ) ( 

2, log2(M )ms 

)i 
0 0ms ms 3ms 1 −µ ∑∑ l lm logms (M)(M − 1)f − ms e (µ + ms)l+i(ms)i µ r µ(1+ )(M2−1)s 2 2− c c ( ) .1Mµms (M2 − 1)ms γ(1 + r)ms γ(1 + r)ms B(ms, µ) (µ)l ms + (1 + ms)i l! i! 
l=0 i=0 2 i 

(9) 

where Q(·) denotes the one dimensional Gaussian Q−function 
[32], [33]. Based on this and by expanding the involved hyper­
geometric function in terms of its single series representation, 
one obtains (7), where n! £ f(n + 1) and (x)n £ f(x + 
n)/f(x) are the factorial and Pochhammer symbols, respec­
tively, with f(·) denoting the Euler gamma function [32]–[34]. 
Importantly, the integral representation in (7) can be expressed 
explicitly in terms of [34, Eq. (2.8.1.3)]. To this effect, by 
performing the necessary variable transformation, recalling 
that the Gaussian Q−function is related to the complementary c 
error function by the identity Q(x) £ erfc(x/ 2)/2 and after 
some algebraic manipulations, equation (8) is deduced, at the 
top of the page. To this effect, it is noted that the above infinite 
series representation converges quickly and only few terms 
are required to achieve sufficient accuracy. Furthermore, it 
can be used to derive a closed-form representation in terms 

of the extended hypergeometric function of two variables, 
which constitutes a special case of the generic Kampe de 
Feriet function. To this end, by expanding the hypergeometric 
functions in (8) and using the Pochhammer symbol identities 
f(x + n) = (x)nf(x) yields (9), at the top of the page. 
Notably, the above representation can be expressed in closed-
form with the aid of the extended hypergeometric function 
of two variables. Based on this and after some algebraic 
manipulations (5) is deduced, which completes the proof. 

Remark 1. For the special case of M = 2, equation (5) 
reduces to (10), at the top of the next page, which also holds 
for the case of binary phase shift keying (BPSK). 

B. Average SEP over 1-µ / Inverse Gamma Fading Channels 

In this subsection, we derive a simple exact infinite series 
representation for the average SEP of M−AM modulated 
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c 

1 
2 

( ) ( ) c ( )− 1 11 f ms f µ + ms 1 1 3 3 ms2 2Pb(E) = − √ 2F2 µ + : −, ; − : µ, ; −, − ms; µr,
2 eµ f(µ)f(ms) γµ(1 + r) 2 2 2 2 µ(1 + r)( ) ( ) (10)
ms−1 ms f 1 −µms 2 − ms e 1 − c 2F2 µ + ms : −,ms; − : µ, ms + ; −, 1 + ms; µr,

2µms γ(1 + r)ms B(ms, µ) 2 µ(1 + r) 

2 

( 
1 1 3 3 2ms log2(M) 2 2µh(M2 − 1)) 

systems over 1-µ / inverse gamma fading channels. 

Theorem 2. For µ, ms, E R+ , n E N, M = 2n , 1 E R+ 

in Format 1 and −1 < 1 < 1 in Format 2, the following 
analytic expression is valid for the symbol error rate in the 
case of multilevel amplitude modulation over 1-µ / inverse 
gamma fading channels 

c 
γ21−2µ(M − 1)f(2µ)

Ps(E) = ( )
1Mf(µ)f µ + hµ 
2( )

ms ms + 1 ms ms + 1 H2 

× 3F2 + µ, + µ, µ; µ + , µ + ;
2 2 2 2 h2 ( )

ms −1 1 m ms f(ms + 2µ)(M − 1)f − mss 2− ( )
1 22µ+msMf(ms)f(µ)f µ + −1µms hµ+ms 
2 ( ) ( )0 ms ms+1

3ms logms (M) ∑ + µ + µ
2 2 l 2 l× ( )

1 h2lH−2l(M2 − 1)ms l! µ + 2l=0 l( )
1 2 ms log2(M)× 2F2 ms,ms + 2µ + 2l; ms + ,ms + 1; 
2 2µh(M2 − 1) 

c ( )√ 
− 1 

3 
2 

ms 2(
M + 122µ−( ) )

1 H2lf 2µ + 2l + 
l 2 

f(ms + 2µ) M − 1f 3 log2(M)ms− ) c 

+ µ

c 11 µhµ+Mf(ms)f(µ)f 
ms + µ

µ + 2 
2 (
h2lf(2µ + 2l + ms

0∑ 
) ( 

ms+1 
l 2( )

1µ + 2 

, 2µ + 2l + 

× 
l! )

ll=0 

22µ+1 2µhµ msµ m ms (M − 1)sPs(E) = 
MB(ms, 2µ) (√ )∫ 0 2µ−1 6 log2(M)× Q

)ms+2µ(2µh + ms (M − 1)(M + 1) 0 ( )
ms ms + 1 1 (2µH )2 

× 2F1 + µ, + µ; µ + ; d 
2 2 2 (2µh + ms )2 

(12) 

which upon expansion of the involved hypergeometric function 
in (12) yields 

22µ+1 2µhµ msµ m ms (M − 1)sPs(E) = 
MB(ms, 2µ)( ) ( )0 ms ms+1∑ + µ + µ (2µH)2 

2 l 2 l× ( )
1l! µ + 2l=0 l (√ )∫ 0 2µ+1 6 log2(M)× Q d .

+2µ+2(2µh + ms )ms M2 − 10 

(13) 

Notably, the above integral can be expressed in closed-form in 
terms of the generalized hypergeometric function with the aid 
of [34, Eq. (2.8.2.4)]. To this end, by performing the necessary 
variable transformation and after some algebraic manipulations 
yields (11), which completes the proof. 

The derived infinite series representation in (11) has a rather 
simple algebraic representation. In addition, it is convergent 
and only few terms are required to achieve sufficient accuracy 
in the context of error rate analysis. However, the determina­
tion of the exact number of terms required for strict accuracy 
requirements is practically essential. Based on this, we derive 
a simple closed-form upper bound for the truncation error of 
(11), which can be computed straightforwardly with the aid 
of popular software packages such as MATLAB, MAPLE and 
MATHEMATICA. 

Proposition 1. For µ, ms, E R+ , n E N, M = 2n , 1 E R+ 

in Format 1 and −1 < 1 < 1 in Format 2, the following 
closed-form upper bound is valid for the truncation error of 
the infinite series representation in (11) ( )

1 − ms2 

22µ+ms µms hµ+ms (M + 1)ms 

(1 − M)1−ms f 
T < ( )

1Mf(ms)f(µ)f µ + 2(
ms, 2p + 2µ + ms; ms 

1 3 log2(M)ms × 2F2 , 1 + ms+ ; 

))
(11) 

(− ms× 2F2 ; ;, . 
H22µh(M2 − 1) + 1 12 2 2 2 ms ms × 2F1 + µ, + µ; µ + ; 
h22 2 2 

(14)Proof. By substituting (4) into [6, Eq. (8.3)], it follows that 

3 
2 

where p denotes the corresponding number of terms that 
truncate the series. 

Proof. The truncation error of (11) when truncating the two 
infinite series after p terms is given by 

c 
γ21−2µ(M − 1)f(2µ)T = ( )

1Mf(µ)f µ + hµ 
2( )

ms ms + 1 ms ms + 1 H2 

× 3F2 + µ, + µ, µ; µ + , µ + ;
2 2 2 2 h2 ( )

ms−1 1m ms f(ms + 2µ)(M − 1)f − ms 3ms logms (M)s 2 2− ( )
1 22µ+msMf(ms)f(µ)f µ + −1µms hµ+ms (M2 − 1)ms 
2( ) ( )0 ms +1∑ + µ ms + µ2 l 2 l× ( )

1 h2lH−2ll! µ + 
l=p 2 l ( )

1 2 ms log2(M)× 2F2 ms,ms + 2µ + 2l; ms + ,ms + 1; 
2 2µh(M2 − 1) 

c )√ 
msf(ms + 2µ) ms − 1 3 log2(M)2− ( ) c 

M + 122µ−

c (
M − 1f 

c1 µhµ+Mf(ms)f(µ)f µ + 2 



 

 

 

 

 

 

( ) ( ) ( )0 ms ms+1 1 H2l∑ + µ + µ f 2µ + 2l +2 l 2 l 2× ( )
1l! µ + h2lf(2µ + 2l + ms)l=p 2 l ( )

1 1 3 3 2ms log2(M)× 2F2 , 2µ + 2l + ; , − ms; . 
2 2 2 2 2µh(M2 − 1) 

(15) 

Importantly, the above representation can be upper bounded 
by the following inequality 

c 
γ21−2µ(M − 1)f(2µ)T < ( )

1Mf(µ)f µ + hµ 
2( )

ms ms + 1 ms ms + 1 H2 

× 3F2 + µ, + µ, µ; µ + , µ + ;
2 2 2 2 h2 ( )

ms−1 1 3msm ms f(ms + 2µ)(M − 1)f − ms logms (M)s 2 2− ( )
1 22µ+msMf(ms)f(µ)f µ + −1µms hµ+ms (M2 − 1)ms 
2( )

1 2 ms log2(M )× 2F2 ms,ms + 2µ + 2p; ms + ,ms + 1; 
2 2µh(M2 − 1)( ) ( )0 ms ms+1∑ + µ + µ2 l 2 l× ( )

1 h2lH−2ll! µ + 
l=0 2 l c c ( )√ 
msf(ms + 2µ) M − 1f ms − 1 3 log2(M)2− ( ) c c ( )

ms ms+1 1∑ + µ + µ 2µ + 2l +2 2 

3 
2 

11 M + 122µ− µhµ+Mf(ms)f(µ)f µ + 2 
2 ) (

f
l 

h2lf(2µ + 2l + ms

0 ( )
2 l× ( )

1l! µ + 2l=0 

. 
)H−2l 

l 

(16) 

It is evident that (16) can be expressed in closed-form in 
terms of the Gaussian hypergeometric function. Based on this 
and after some algebraic manipulations and simplifications, 
equation (14) is deduced, which completes the proof. 

IV. NUMERICAL RESULTS 

This section utilizes the derived results in the previous 
sections in the quantification of the effects of composite 
multipath/shadowing conditions on M−AM modulated sys­
tems. It is noted that all scenarios account for realistic fading 
conditions and, without loss of generality, we consider only 
Format 1 in the cases of 1 − µ fading channels. However, 
since the derived analytic expressions are generic, numerical 
results for the corresponding Format 2 scenario can be deduced 
straightforwardly. 

Fig. 1 demonstrates the average SEP versus the average 
SNR for the case of M−AM under r − µ / inverse gamma 
fading conditions, for different values of fading parameters and 
modulation order. It is evident that the modulation order is, as 
expected, the primary factor that determines the corresponding 
error performance. Nevertheless, it is also observed that the 
value of both µ and ms have detrimental effects on the 
system performance as the corresponding differences exceed 
an order of magnitude, particularly in the high SNR regime. 
For example, a variation of about 5dB is noticed in both 
M = 2 and M = 16 even at slight variations of the severity of 
multipath fading and shadowing conditions, which turns out 
to be critical in demanding emerging applications of increased 
quality of service requirements. 

Fig. 1: Average SEP vs for M−AM modulation under r-µ / 
inverse gamma fading channels with different M , µ, r, 1 and 
ms values. 

Fig. 2: Average SEP vs for M−AM modulation under 1-µ / 
inverse gamma fading channels with different M , µ, r, 1 and 
ms values. 

A similar trend is also observed in the case of 1 − µ / 
inverse gamma fading as illustrated in Fig. 2. Is is observed 
that the corresponding pre-Rayleigh and post-Rayleigh ef­
fects are considerable compared to the conventional case of 
Rayleigh fading conditions. For example, it is evident that 
the differences between the effect of the fading conditions 
characterized by the proposed composite models and Rayleigh 
fading is even three orders of magnitude is certain cases. This 
verifies the need for highly accurate composite fading models 
in order to avoid unrealistic evaluation of conventional and 
emerging communication scenarios. Regarding the considered 
scenario, it is finally noted that the value of the modulation 
order is, as expected, the most critical parameter in the 
achieved performance as it is evident that the 16−AM option is 
practically problematic in the case of severe fading conditions. 



Yet, it is also shown that accurate channel modeling can allow 
adequate transmission at moderate and small SNR values, 
when using binary modulation at non-severe fading conditions. 

V. CONCLUSION 

This work was devoted to the average symbol error probabil­
ity analysis of multiple amplitude modulation systems under r­
µ / inverse gamma and 1-µ / inverse gamma fading conditions. 
Novel exact analytic expressions were derived which were 
subsequently employed in quantifying the effects of severity 
of multipath fading and shadowing fading conditions on the 
overall system performance. It was shown that the effect of 
different types of composite fading have a considerable effect 
across all SNR regimes and that acceptable performance can 
be achieved at moderate and low SNR values in non-severe 
fading conditions using binary modulation. This verifies that 
accurate channel characterization is highly essential in the 
realistic design and deployment of emerging wireless systems 
such as wearable, cellular and vehicular communications. 
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