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Abstract 
 

In situ diagnostic techniques provide a means of understanding the internal workings 

of fuel cells so that improved designs and operating regimes can be identified. Here, 

a novel metrology approach is reported that combines current and temperature 

mapping with water visualisation using neutron radiography. 

The approach enables a hydro-electro-thermal performance map to be generated 

that is applied to an air-cooled, open-cathode polymer electrolyte fuel cell. This type 

of fuel cell exhibits a particularly interesting coupled relationship between water, 

current and heat, as the air supply has the due role of cooling the stack as well as 

providing the cathode reactant feed via a single source. It is found that water 

predominantly accumulates under the cooling channels (thickness of 70-100 µm 

under the cooling channels and 5-25 µm in the active channels at 0.5 A cm-2), in a 

similar fashion to the lands in a closed-cathode design, but contrary to passive open-

cathode systems. The relationship between current, temperature and water 

accumulation is complex and highly dependent on location within the cell. However, 

there is a general trend that higher currents and cooling limitations, especially above 

0.7 A cm-2 and below 3.9 × 10-3 m3 s-1, leads to temperatures above 60 oC, which 

dehydrate the membrane (water thickness of 10-25 um) and the cell operates below 

0.5 V.  

 

Keywords 

Air-cooled open-cathode polymer electrolyte fuel cell; water mapping; neutron 

imaging; temperature mapping; current mapping. 
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1. Introduction 

 

Polymer electrolyte fuel cells (PEFC) fuelled with hydrogen are among the most 

promising energy conversion technologies for a broad range of applications, 

including portable, stationary and automotive power delivery.  A range of diagnosis 

techniques have been developed to understand and improve the heat and water 

management in these devices with a view to improving performance, extending 

durability and informing advanced design. 

 

1.1. Current and temperature mapping in fuel cells 

Current mapping studies have proven to be insightful and revealed large current 

density gradients attributed to factors such as: uneven fuel consumptions [1–4], 

operating conditions [5–7], stoichiometric ratios [8–11], the reactant flow orientation 

[3,7], and water management issues [12]. 

 

Temperature distribution has also been extensively studied, identifying areas of 

higher electrochemical activity, hot-spot formation and fuel depletion. Thermocouples 

can provide a crude measure of temperature inside fuel cells [13–16] but cannot 

provide high spatial resolution. Moreover, thermocouples need to be inserted inside 

the fuel cell, which often requires design modifications. In contrast, infrared thermal 

imaging can provide very high spatial and temperature resolution [17–22], yet 

typically requires use of modified fuel cells with an infrared transparent window, or is 

otherwise confined to open-cathode fuel cells [23–25] or the outer surface of a cell or 

stack [26,27].  
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Combined temperature and current mapping studies offer an extra dimension of 

information and allow the impact of each parameter on the other to be assessed 

[15,26,19,27]; however, the other important component in this equation, water, 

needs to be considered in unison to see the whole picture.   

 

1.2. Liquid water mapping in fuel cells 

Effective water management is of paramount importance for fuel cell operation 

(dehydration / flooding can lead to performance decay and stack failure). Water 

generation and removal, and transport processes in the gas diffusion layer, 

membrane and flow-field have been extensively modelled [30–36]. However, the 

reliability of these models depends on the level of validation, which requires 

appropriate experimental inputs. Therefore, a number of experimental methods have 

been investigated, in order to evaluate, quantify, measure and / or visualise the 

water dynamics and distribution under different modes of operation. Such techniques 

should ideally satisfy three requirements as defined by Stumper et al. [37]: (i) in situ 

applicability, (ii) minimal invasiveness and (iii) ability to provide information on the 

distribution of liquid water over the active area.  

 

High frequency impedance enables the ohmic resistance of a fuel cell to be 

measured, which can be used to monitor changes in the membrane conductivity, and 

therefore hydration content [1,7,16,29,38–44]. Localised electrochemical impedance 

spectroscopy (EIS) has been achieved as well, and provides more insight on the 

hydration / dehydration processes distributed across electrodes [1,5,29,45].  

 

To investigate water content, it is possible to weigh the fuel cell before and after 

operation [46], or to visualise liquid water via optical imaging open channels [24,47]. 

These methods are attractive because of their simplicity, but the most powerful 

method for water visualisation, (satisfying all three criteria from Stumper et al. [37]) is 
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neutron imaging. This technique is based on attenuation of a neutron by hydrogen-

containing compounds such as water, and transparency to neutrons of most fuel cell 

construction materials (aluminium, stainless steel). Neutron imaging can identify 

water in the in-plane orientation (with the membrane place parallel to the beam) and 

through-plane orientation (with the membrane plane perpendicular to the beam), 

enabling in the first case to differentiate the water content from the cathode and the 

anode [48–50] and in the second case the effect of different designs, components, 

and operating conditions [45,51–65]. Neutron imaging has been combined with other 

modelling and experimental techniques, such as current mapping [66], CFD models 

validation [32,51,65], optical imaging [47], neutron scattering [61] and localised EIS 

[45]. 

 

1.3. Air-cooled, Open-Cathode Fuel Cells 

Unlike conventional closed-cathode fuel cells, self-breathing fuel cells offer the 

advantages of simpler design and integration into systems, using diffusion from the 

atmosphere without compressors. Passive air-breathing systems are typically limited 

to a maximum current density of ~0.6 A cm-2 [67–71] due to heat and water 

management issues, since water cannot be removed from the membrane, except 

through evaporation [69,72]. In the so-called ‘air-cooled, open-cathode’ 

configuration, air is forced through the cathode channels using fans, which improves 

performance and enables higher current densities to be attained [73–77]. In air-

cooled, open-cathode systems the temperature depends on the voltage and current 

density [46,67], air cooling flow rate [73,76], and heat transfer characteristics of the 

stack. Temperature monitoring is therefore crucial to ensure effective and durable 

operation. In practice, this is normally performed using a single-point thermocouple 

inserted in the centre of the cell [16,26,75], or for development work using multiple 

micro thermocouple measurements at various locations in the fuel cell [13,78,79].  
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Here, we present the results obtained by applying a novel metrology approach to an 

air-cooled, open-cathode two-cell stack, operated without external humidification: the 

technique combines water visualisation using neutron imaging, with current and 

temperature mapping using a printed circuit board (PCB) sensor plate [80]. The 

effect and relationship between the key hydro-electro-thermal properties allows 

important new insight into this type of fuel cell to be achieved.  

  

2. Experimental 

 

Fuel cell testing - A 2-cell (60 cm2 active area) air-cooled / air-breathing fuel cell 

stack was used for testing (Intelligent Energy Ltd., UK). The membrane electrode 

assembly was composed of commercially available gas diffusion layers (GDLs) and 

commercially available membranes with Pt loading of 0.1 and 0.4 mg cm-2 on the 

anode and cathode, respectively. 

 

The test station [26] supplied dry hydrogen at ambient temperature (with a purity of 

99.995 %) to the anodes and air was forced through the stack by a single fan 

(SanAce 36, Sanyo Denki) to the open-cathode channels (Figure 1). The exhaust 

hydrogen flow rate in through-flow mode was measured using a thermal mass flow 

meter (MassVIEW, Bronkhorst) to be 4.7 SLPM, which ensures a stoichiometric ratio 

of 2 at 1 A cm-2. The fans, which provide cooling and air supply to the cathode, were 

controlled by a programmable power supply (3649A Agilent). The current drawn from 

the PEFC was controlled using an electronic load (PLZ664WA, Kikusui) in 

galvanostatic mode. An in-house computer controlled system controls the air, 

hydrogen, cooling and electrical valves (LabVIEW, National Instruments) as well as 

recording and presenting data using a data acquisition card (USB 6363, National 

Instruments). Ambient temperature, pressure (absolute) and relative humidity (RH) 

were measured at 25 °C ± 0.2 °C, 0.97 ± 0.02 bar and 40% RH respectively, during 
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all tests. The operation of this fuel cell in terms of cathode design, cooling and active 

channels and materials [26,27], temperature uncertainty [27] and water management 

in dead-ended anode mode [26], has been described in previous reports. In this work 

the anode and cathode are operated in through-flow mode. 

 

Current and temperature mapping 

Current and temperature mapping were performed using a 16-segment printed 

circuit board sensor plate (S++ Simulation Services, Germany). Each segment 

covers an area of 3.75 cm2. The temperature is measured using copper ‘meanders’ 

with a 2 mA current applied, as the resistance of copper is very sensitive to 

temperature changes; the local current at each contact was measured using shunt 

resistors made of a special alloy insensitive to temperature changes. Further details 

on the approach can be found in previously published work.[80] 

  

Neutron imaging facility 

Neutron radiography was performed at the neutron imaging facility NEUTRA of the 

SINQ spallation source (Paul Scherrer Institute, Switzerland) [81]. Thermal neutrons 

provided by the source are extracted from a moderator tank in the thermal energy 

range of 1 × 10-3 to 10 eV with a Maxwellian spectrum energy of 25 × 10-3 eV. The 

third position was used on the beamline since it offers a beam diameter of 40 cm 

[81], and a maximal detector field of view of 36 × 38 cm, hence suitable for larger 

scale samples. In order to image the water distribution over the entire surface of the 

electrodes area, the cell faced the neutron beam in through-plane orientation (Figure 

1 a-b). The detector consists of a neutron-sensitive LiF/ZnS scintillator and a charge-

coupled CCD device (Ikon-L, Andor) camera housed in a light-tight box (Figure 1 a). 

The neutron beam is converted into a photonic field by the scintillator, whereby the 

intensity of evoked light is proportional to the intensity of the incoming neutron beam 

[56]. 
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Measurements were performed with an exposure time of 10 s (time during which the 

camera opens a built-in shutter and integrates the light), and a sampling time of 2-3 s 

per image (time during which the image is processed), for sufficient resolution and 

noise reduction. This exposure time is well within the range typically used for neutron 

imaging on PEFCs (typically between 1 and 25 s [45,51–59,82]). Since the current 

study investigates steady-state operation, the 12 s temporal resolution is sufficient. 

The intensity images are generated in FITS format, and are processed using PSI in-

house software written in the IDL language. 

 

Quantification of the water thickness from neutron images 

All the materials of the cell contribute to the attenuation of the transmitted neutron 

beam, following the Beer-Lambert law (Equation 1).  

 
� ��� � exp�	µ
����
����			          (1)  

With I the intensity of the beam in operation, Io the intensity of the beam for the dry 

cell (without water), µwater the attenuation coefficient of water, twater the thickness of 

water. I and Io are determined after all necessary corrections (filtering, subtraction of 

background components, alignment of “working” and reference images) [83]. 

 

The water thickness is then extracted by taking the logarithm, divided by the 

attenuation coefficient	µ
���. 

  

�
��� � 	 ���� ��� �
µ�����

           (2) 

                   

In our case, µ
���, the attenuation coefficient of neutrons in liquid water, was 

measured in the NEUTRA beamline for the given setup at 3.5 cm-1 [84]. In the 
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following sections, the water content will be expressed as the effective water 

thickness twater in µm. 

 

3. Results 

 

3.1. Sensor plate neutron transparency 

 

The sensor plate was imaged at the Paul Scherrer Institute prior to its insertion in the 

stack and was found to be 80 % transparent, which is suitable for imaging. 

Therefore, the combined neutron imaging and current and temperature mapping is 

possible with this choice of hardware. The sensor plate is inserted between the first 

and the second cell (Figure 2c), to measure the average current and temperature 

distribution of both cells. 

  

 

3.2. Neutron imaging for water visualisation  

 

Although high frequency EIS provides a useful indication of the membrane 

conductivity, it is limited in spatial resolution to the size of the localised current 

collector. In EIS, it is common to assume that changes in the purely Ohmic 

resistance are due to the electrolyte membrane (and its water content); however, 

other factors such as changes in contact resistance associated with membrane 

swelling can complicate interpretation of this electrical measurement.  Neutron 

imaging allows a high resolution map of the water distribution to be generated that 

can unequivocally discern between the water in the channel and under the land 

positions. It is the combination of these techniques, with knowledge of the local 

temperature, that makes this correlative approach particularly powerful. 
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The stack technology investigated uses an electrically insulating layer between the 

endplates and the current collector / bipolar plates. This is relatively opaque to 

neutrons; therefore, a modification was made to the insulating layer so as to retain 

functionality but allow substantial open areas so that water imaging could take place. 

This resulted in the opaque pattern shown in Figure 2 (a-b).  Since the cell is 

operated using dry gases, at open circuit potential, it does not have any water 

(Figure 2a). 

 

Throughout this study, a two cell stack is imaged, for enhancement of water 

detection and behaviour closer to stack operation (Figure 2 c). A water ‘thickness’ of 

75 µm per cell is within the range of  water contents previously reported for single 

cells (30 - 2000 µm)  [47,54,55,85,86].  

 

Under practical operation of this commercial stack technology, a single thermocouple 

is inserted into the central cooling channel for monitoring and control purposes. 

Therefore, when considering overall performance compared to cell temperature and 

average current density, the water content of the central cooling channel (Figure 2 b) 

is used. 

   

A special variation in water thickness is consistently observed, as seen by the 

repeating sequence of blue and yellow regions in Figure 2 b. From the enhanced 

view, correlated with the cathode plate geometry (Figure 2 c-d), it is clear that the 

area under the cooling channels contains most of the water. This is an important 

finding and contrasts with self-breathing fuel cells where substantial build-up of water 

in open channels has been identified using neutron imaging and standard 

visualisation techniques [24,49]. Here, the very high flow rate of air through the 

active channels (5.6 × 10-3 m3 s-1) dehydrates the fuel cell in locations directly under 

the open channels by constantly removing most of the water vapour and liquid water 
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droplets, substantially hindering its accumulation. On the other hand, in the cooling 

channels, the cold air cools down the metal plate without removing any of the water, 

since the electrode is not in direct contact with the air stream.  

This result agrees with the model of Xing et al. [36], which describes 10 times more 

water under the rib than under the channel areas. This feature is also in agreement 

with the measurements performed under the ribs and channels in closed-cathode 

configuration, with a dry cathode. The water almost exclusively concentrated under 

the land, and not under the channels [82,87]. 

 

Since the cell is imaged in through-plane mode, it is not possible to assess the 

location of the water through the thickness of the cell, and differentiate between 

water in the channel, GDL or membrane. Rather, the through-plane technique 

provides a quantitative measure of total water content through the plane of the fuel 

cell at that point.  

 

  

3.3. Hydro-Electro-thermal performance analysis 

 

To understand how the fuel cell’s performance is affected by the distribution of water, 

it is necessary to characterise how the water content is affected by the air flow rate 

and current density. This is first investigated on a whole-cell scale, looking at the 

effect of the current and air flow rate on the voltage, temperature and average water 

content in a cooling channel in the centre of the cell. For further analysis, the 

localised distributions are investigated via current, temperature and water mapping 

as a single dataset in the hydro-electro-thermal analysis. 
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3.3.1. Hydro-electro-thermal profile as a function of the air flow rate and 

current density. 

 

Electro-thermal performance maps have been introduced in previous work as a 

novel way to display the influence of the air flow rate and current density on the 

voltage and temperature of fuel cell operation [88]. Including the water content 

provides another dimension in understanding the coupled nature of processes 

occurring in operational fuel cells.  

 

To acquire the ‘map’ data, a series of four air flow rates, 2.7, 3.9, 4.7 and 5.6 × 10-3 

m3 s-1 were investigated, holding the voltage constant for 10 minutes to obtain steady 

state performance, from open circuit, with an increment of 0.083 A cm-2, and the 

polarisation was interrupted once the voltage dropped below 0.5 V. The entire test, 

adding an extra 15 minutes to leave the cell to dry and reach ambient temperature 

between changes of flow rate, lasted 8 hours. Overall, 42 different conditions of 

current densities and air flow rates were measured. The hydro-thermal profile 

represents the influence of the air flow rate and current density on the mean cell 

voltage, and water thickness and temperature of the central cooling channel. It was 

generated by averaging the neutron images for the last 10 frames (2 minutes) prior 

to the change of current density, then extracting with ImageJ® the average water 

thickness in the central cooling channel (Figure 2).  

 

The ‘electro-thermal’ map is coupled with the ‘hydro-thermal’ map, to form a so-

called ‘hydro-electro-thermal’ profile; this allows analysis of the link between current 

density, temperature, water content and air flow rate (Figure 3).  

 

An initial hydration of the cell occurs between 0 and 0.4 A cm-2, in the activation and 

beginning of the ohmic predominance region. This is the cell self-hydration, as the 
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amount of water generated increases with increasing load, as described by 

Faraday’s Law; while the low temperature (<40 °C) is in favour of water 

condensation [89]. A maximum hydration is reached between 35 and 45 °C, for a 

current density between 0.35 and 0.67 A cm-2 for low and high air flow rate, 

respectively. This corresponds to the centre of the ohmic region on the electro-

thermal map. It overlaps with the optimum operating zone, determined using the 

current of lowest resistance, introduced in previous work [88]. Gradual dehydration 

starts above 45 °C, with a ‘dry’ state reached above 60°C.   

 

These results confirm the conclusions from previous work based on electro-thermal 

profiles alone [88], which showed that the purely ohmic resistance (proxy for 

membrane hydration) initially drops (during self-hydration), reaches a plateau, and 

then increases above 60°C during the dehydration. This hydration / dehydration 

process has been experimentally reported for self-breathing, open-cathode fuel cells 

[46], and modelled [89]; but only now can the role of water be confirmed.  

 

To fully understand the hydro-electro-thermal process and its direct influence on the 

voltage decay across a polarisation, it is necessary to investigate the localised maps 

and full scale neutron images. 

  

 

3.3.2. Locally resolved hydro-electro-thermal maps. 

 

In order to understand how the current density, temperature and the water content 

locally affect performance, spatial maps for each quantity were investigated in unison 

for a given current density and air flow rate. The water maps were generated using 

the averaging over 2 minutes prior to the change of current density.  
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At open circuit potential, the cell is entirely dry, as discussed earlier (Figure 2a) and 

has an even temperature of 25 ± 0.2°C across the cell (ambient).  

 

The operating points labelled (a) to (f) in Figure 3 were selected to represent the 

range of operation from ‘low’ (a-b, between 25-40°C), ‘intermediate’ (c-d, between 

40-50 °C) and ‘high’ current densities (e-f between 50-75°C). Initially, at (a), (Figure 

4), water is only observed towards the air exhaust, and in the cooling channels (10-

15 µm). This water gradient is caused by the higher current density (0.097-0.085 A 

cm-2), whereas it is lower near the air inlet (0.078-0.071 A cm-2). The temperature 

variation across the cell is only 1°C. For all of the points measured (a-f) there is a 

general decrease in current density from the hydrogen inlet to outlet (left to right in 

the figures), this is associated with consumption of the hydrogen as it flow through 

the cell. 

At (b), the hydro map reveals that the cell has fully self-hydrated, with water present 

in the entire cooling channel (40-100 µm), and to some extent in the active channels 

(5 µm). Higher water content is observed near the air exhaust with 75-90 µm, against 

40-45 µm near the air inlet, consistent with the current density gradient. The higher 

temperature near the air exhaust increases the reaction rate, hence causing a higher 

current density.  

  

Relatively uniform water profiles exist under the cooling channels across the extent 

of the cell at (c) and (d) (Figure 5). Although the current density is higher near the air 

exhaust, and will result in more water generation, more water evaporates due to the 

higher temperature (∼ 40 °C); hence water distribution is balanced along the air 

channel direction.  

 

Closer analysis of the water content along the central channel for point (c) and (d) is 

shown in Figure 6. The quantitative profiles show that despite generating more 
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current in (d), the higher temperature leads to greater evaporation and a decrease in 

the water thickness. Effectively, the entire cell is starting to dehydrate, with an 

increase in the evaporation rate. 

 

 

Figure 7 shows two points (e-f), into the dehydration zone, with distinctively different 

features from the ones observed in a-d.  As the total current  increases, the regime 

of operation changes such that a combination of factors result in a local minimum in 

the current distribution along the air channel flow direction, as seen in (e). The 

substantial increase in temperature towards the air exhaust acts to evaporate water 

from the MEA, compromising membrane hydration and limiting the ability to generate 

more current.  However, the cooling effect of the air intake means that the entrance 

region retains hydration, allowing the current to continue to increase.   

 

As the load is increased further into region (f), the cell temperature towards the air 

exit reaches 74 °C and the cell is substantially dehydrated. The water profile is now 

inverted from that at point (a), a slight amount of water only discernible near the air 

inlet (5-15 µm). This means that the current is now greatest at the air inlet and goes 

through a minimum further along the air channel. 

 

Overall, this cell dehydration is caused by the limitations in the cooling. The hydro-

electro-thermal mapping reveals that evenly distributed amounts of water across the 

cell ensure stable and optimum performance. Operations around 45 to 50 oC at high 

load hinders water evaporation. Therefore, this is a target for the operations of air-

cooled open cathode fuel cells. Up to a point, increasing the air flow rate would 

regulate the temperature and enable higher loads; however, the subsequent 

parasitic power losses would significantly increase, as highlighted in previous studies 

[90], and a suitable trade-off needs to be determined. 
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4. Conclusion  

   

A new approach for probing the operation of open-cathode, air-breathing fuel cells 

has been presented that uses a ‘hydro-electro-thermal’ mapping process through the 

combined use of water imaging, current and temperature mapping. This 

methodology allows the action of hydration and dehydration to be studied under 

different load and flow rate conditions and allows zones of optimal operation to be 

identified.  Water accumulates mainly under the cooling channels, which is 

analogous to the land in conventional closed-cathode systems. 

 

Water removal within the cell is determined by local temperature, flow of air in the 

active channels and the transport of water from under the cooling channels into the 

active channels. Other factors are likely to affect the transport of water, such as the 

gas diffusion layer thickness, porosity, hydrophobicity and degree of compression, as 

well as the electrolyte membrane properties.  

 

Finally, it should be noted that all three techniques are required to be used in unison 

in order to obtain a complete picture of water management. This approach allows the 

complex mechanisms that determine the generation, accumulation, transport and 

removal of water in operating fuel cells to be investigated.  
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Figure 1. (a) Simplified Schematic and picture (b) of the fuel cell set-up for through-plane 

measurement in NEUTRA [81], facing the LiF/ZnS scintillator. 

 

Figure 2. (a) Neutron imaging at open circuit potential, (b) neutron image at 0.5 A cm-2, 5.6 × 

10-3 m3 s-1; (c) cross-section of the two-cell stack; (d) corresponding through-plane image.  
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Figure 3. Hydro-electro-thermal profile of the cell, displaying the “electro-thermal” and 

“hydro-thermal” maps. (a-f) correspond to representative zones of operation discussed in the 

text. The saw-tooth shape at high current density is an artefact of the extrapolation. 

 

Figure 4. Localised hydro-electro-thermal maps at points (a) and (b) from Figure 3. The 

green arrow represents the air flow from inlet to exhaust, the red arrow the hydrogen flow 

from inlet to exhaust. (a, air flow rate of 5.6 × 10-3 m3 s-1; b, 4.7 × 10-3 m3 s-1 ). 

 

Figure 5. Localised hydro-electro-thermal maps at points (c) and (d) from Figure 4. The 

green arrow represents the air flow from inlet to exhaust, the red arrow the hydrogen flow 

from inlet to exhaust. The dashed boxes in the hydro map are further discussed in Figure 6. 

(c, air flow rate of 5.6 × 10-3 m3 s-1; d, 3.9 × 10-3 m3 s-1 ). 

 

Figure 6. Close up view of the areas of the hydro maps, in (c) and (d) highlighted in Figure 5, 

and average corresponding water thickness. 

 

Figure 7. Localised hydro-electro-thermal maps at points (e) and (f) from Figure 3. The green 

arrow represents the air flow, the red arrow the hydrogen flow directions. The dashed ellipse 

on the hydro map of (f) is used as a guide for the eye. (e, air flow rate of 4.7 × 10-3 m3 s-1; f, 

2.7 × 10-3 m3 s-1 ). 
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