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Abstract—Building practical models of millimeter-wave net-
works which encompass every possible usage scenario presents
a significant challenge. To address this issue, we propose an
analytical framework based on stochastic geometry to model
networks that are composed of millimeter-wave nodes. Our
framework utilizes κ–µ shadowed fading to bring together, in a
single model, various usage cases that span both indoor and out-
door environments. We analytically derive the distribution of the
signal-to-interference-and-noise-ratio for a general millimeter-
wave network distributed over a confined space. This allows us
to explore the relationship between basic network parameters,
such as node density, beamwidth, or transmit power, and the
parameter space of the fading channel. Finally, we show, that
when one assumes this network to be distributed over the whole
Euclidean plane, its coverage can be described via remarkably
simple closed-form expression.

I. INTRODUCTION

One of the key promises of 5G systems is that they will
deliver multigigabit per second speeds, using large swathes of
bandwidth currently available in millimeter-wave (mmWave)
spectrum bands around and above 30 GHz [1]. Thus, one
of the challenges ahead for 5G is incorporating mmWave
operating nodes in future network designs. This task will
present significant challenges as the simple reuse of existing
models developed for microwave frequencies is not sufficient
to capture the performance characteristics of a network oper-
ating in one of the mmWave bands.

In particular, a new set of assumptions have to be made
about the directionality of transmission/reception, the sus-
ceptibility of mmWave signals to blockages, increased path
attenuation and weaker multi-path propagation effects [2],
[3]. In the state of the art, the impact of these different
factors on the performance of mmWave networks have been
considered to a varying degree of accuracy in a combination
of scenarios. For example, [4] studied the impact of highly
directional antennas and beamforming, while [5] considered
beam misalignments. Another feature that has received much
research attention are blockages due to the fact that mmWave
signals are highly attenuated by materials obstructing the direct
path between the transmitter and receiver, causing significant
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disparity in power received via the line-of-sight (LOS) and
non-LOS (NLOS) paths. One way to model these is to use
multi-slope pathloss models with a number of degrees of
freedom [6]. Yet, even relatively simple random blockage
models can provide us with a reasonable level of accuracy [7].
Moreover one often considers additional randomly occurring
blockage which is due to the user’s body, which may decrease
the power of the propagating mmWave signal by as much as
30–40 dB, e.g., [8]–[10].

While the above mentioned phenomena are considered
essential for the performance analysis of mmWave networks,
both large- and small-scale fading effects receive much less
attention, and are either omitted (small-scale fading [2], large-
scale fading [3]) or are modeled using idealized and perhaps
not necessarily representative fading models, like the Rayleigh
or Nakagami-m (see [11] and [3], [12], respectively). Under
certain circumstances, small-scale fading may appear less
pronounced in mmWave systems than in conventional systems
[13] (due to directional transmissions and weak scattering).
Yet, measurements across various propagation scenarios show
that the strength of these effects varies with the type of
environment and frequency (indoor environments and higher
frequencies suffer more from shadow fading [14]), deployment
(e.g., small-cell and device-to-device [15], [16]) or blockage
condition considered (an LOS channel experiences different
multi-path fading than NLOS channel [16]). Hence, these
effects should be appropriately encapsulated in the overall
channel model.

In this paper, we propose an analytical framework to
evaluate the distribution function of the signal-to-noise and
interference ratio (SINR) for general use case mmWave cel-
lular networks. In order to generalize mmWave networks over
a variety of usage cases we assume they operate over κ-µ
shadowed fading channels. The strengths of κ-µ shadowed
fading model lie in the physical interpretation of its parameters
[17], good alignment with the measurements conducted for
a number of communications scenarios (e.g., [18], [19]), as
well as the fact that it generalizes popular fading distributions
utilized in the literature, and captures large- and small-scale
effects, such as human body shadowing.

In [20] a method was proposed to evaluate the average of
an arbitrary function of the SINR under the κ–µ shadowed



fading. Herein we extend that method to find the distribution
of the SINR of a mmWave network with a κ–µ shadowed
fading channel in a closed-form. Furthermore, this distribution
function renders itself in a succinct closed-form expression
without any integral, for the case of a noise free environment
with infinite plane interference. It is worth remarking that
[21] relies on a similar strategy to find the distribution of
the SINR, yet our results generalize this work by considering
limitations to the considered area, as well as directionality of
transmissions.

We observe that a mmWave network will have a finite
density of mmWave nodes that can operate simultaneously
and without coordination, while keeping interference at a level
that does not severely degrade the network’s performance. Fur-
thermore, we verify that directional transmission is key to the
operation of mmWave networks (achieving larger coverage),
alongside the necessity of operation at high signal-to-noise
ratios (SNRs) to enable NLOS transmission.

The remainder of this paper is organized as follows. In
Section II we describe our mmWave network model. In Section
III we provide our main analytical results, with sketches of the
corresponding proofs to be found in the appendices. Finally, in
Section IV we perform a numerical exploration of our model’s
parameter space, and in Section V we conclude and discuss
follow up work.

II. SYSTEM MODEL

We consider a network in which wireless access points (in
the following referred to as nodes) placement is modeled as a
homogeneous Poisson point process (PPP) Φ with density λ >
0. We analyze the performance as seen from the perspective
of the reference user, which represents an arbitrarily selected
point on the Euclidean plane. Since Φ is stationary, without
loss of generality we select a reference user at the origin. The
reference user connects to the nearest transmitter node located
within the network, thereby forming a reference link.

We assume all the signals that can reach the reference user
come from nodes located within a fixed ball of radius ρ around
the reference user, i.e., the considered network spans only a
finite area. This allows us to represent both indoor and outdoor
(small-cell) areas within a single model. This ball-area model
is equivalent to the LOS blockage ball model, as presented
in [4], [7], where the probability of having a direct link to a
transmitter within radius ρ is 1, i.e., p(d) = 1 for 0 < d ≤ ρ,
p(d) = 0 for d > ρ. As observed in [3], the impact of the
transmitters for a large enough value of the radius may be
ignored, leading to negligible errors in the analysis. We can
always generalize our result to the entire Euclidean plane by
setting ρ → ∞, and as we shall see this case provides for a
particularly attractive closed-form expression.

All the transmitters and receivers utilize directional trans-
mission and reception, respectively. The directionality gain
Gx between the transmitter in x and the reference user is
determined via a sectored antenna pattern model, as described
in [3]. This means that the total antenna gain is the product
of the transmitter and receiver antenna gains, which in turn

depend on the antenna alignment between the two. This makes
the total gain a four-dimensional categorical random variable,
with νj denoting the j-th possible alignment setting and
ηj its probability. Following the cone-bulb model [10] and
assuming normalized gains, we get that the main-lobe gain
of the transmitter antenna is (2π − gb(2π − ωb))/ωb, where
ωb is the width of the main-lobe and gb is the side-lobe gain
(the receiver antenna gain follows an analogous definition).
Finally, we assume that each serving transmitter-receiver pair
can adjust its antenna alignment, so that the reference link
always operates at the maximum antenna array gain1.
For the proposed model, the received SINR is given by

SINR =
ν1Hx0

||x0||−α∑
x∈Φ\{x0}GxHx||x||−α+τ−1

, (1)

where τ denotes the ratio of the transmit power2 to the noise
power, ν1 corresponds to the directionality gain between the
serving transmitter and the receiver, α is the pathloss exponent
of the power-law pathloss function (for simplicity we assume
the intercept at the reference distance of 1 m to be unitary),
and Hx denotes the power fading between the transmitter in
x and the reference user.

We assume that the channel gain H is a random variable
which follows the κ–µ shadowed distribution, whose proba-
bility density function (pdf) is given by

fH(h) =
θm−µ1 hµ−1

θm2 Γ(µ)
1F1

(
m;µ;

θ2 − θ1

θ2θ1
h

)
exp

(
− h

θ1

)
=

∞∑
l=0

wl fZ(h; (l + µ), θ1), (2)

where we use the series representation of the Hypergeometric
function with the following notation

θ1 =
γ̄

µ(1 + κ)
, θ2 =

(µκ+m)

m
θ1,

wl =
(m)l
l!

(
1− θ1

θ2

)l(
θ1

θ2

)m
, (m)l =

Γ(m+ l)

Γ(m)
,

and fZ(h; (l+µ), θ1) denotes the pdf of a Gamma-distributed
random variable with parameters l + µ and θ1 as follows

fZ(z; (l + µ), θ1) =
1

θl+µ1 Γ(l + µ)
zl+µ−1 exp

(
− z

θ1

)
. (3)

One of the strengths of the κ-µ shadowed model lies in the
physical interpretation of the four parameters (see, e.g., [18]).
Namely: (i) κ describes the ratio of powers of the dominant
component and scattered components (with κ → ∞ corre-
sponding to stronger dominant component), (ii) µ describes the
number of scattering clusters in the environment (with large
µ-value corresponding to a complex scattering environment),
(iii) m describes the strength of the LOS shadowing (with
m → 0 corresponding to complete shadowing of the LOS
component), and (iv) γ̄ describes the average fading power.

1For analytical tractability, we ignored the effect of beam-misalignment and
NLOS interference, which will be addressed in a future publication.

2For simplicity, we assume it is identical across all transmitters.



III. ANALYTICAL RESULTS

In the following we provide our main analytical results,
which we deliver in two parts. First, we derive a closed-
form expression for the complementary cumulative distribution
function (ccdf) of SINR conditioned on the distance of the
reference link. Then we provide the formula for the uncondi-
tional ccdf, presented in an integral form. Once we extend our
area of interest to the entire Euclidean plane, this ccdf of the
SINR can be provided in a remarkably attractive closed-form
expression, given in the corollary.

Theorem 1: The conditional ccdf of the SINR for a link at
distance r is given by

P (SINR > ζ|R = r) =

LI+τ−1

(
ζrα

ν1θ1

) ∞∑
l=0

l+µ−1∑
n=0

wl(−1)nCn(r)

n!
,

Cn(r) ,
n∑
k=1

Bn,k(g(1)(1), g(2)(1), ..., g(n−k+1)(1)),

(4)

where LI+τ−1(s) = exp (−s/τ)LI (s) and g(k)(1) are de-
rived in Eq. (8) and Eq. (11), respectively, and Bn,k denotes
an ordinary Bell polynomial.

Proof: The sketch of a proof is given in Appendix A.
The (unconditional) ccdf of the SINR can be easily obtained

by taking the expectation of Eq. (4) with respect to the
reference link distance as follows

P (SINR > ζ) = ER [P (SINR > ζ|R)]

=

∞∑
l=0

wl

(
ER
[
LI
(
ζRα

ν1θ1

)]
+

l+µ−1∑
n=1

(−1)n

n!
ER
[
LI
(
ζRα

ν1θ1

)
Cn(R)

])
.

(5)

Corollary 1: The ccdf of the SINR for the infinite plane,
i.e., as ρ→∞, is given by

P (SINR > ζ) = a−1
0 +

∞∑
l=0

l+µ−1∑
n=1

wl(−1)n

n!
Cn, (6)

where Cn is given in Eq. (13), and a0 in Eq. (14).
Proof: The sketch of a proof is given in Appendix B.

IV. NUMERICAL RESULTS

In this section, we use the derived analytical formulas to nu-
merically evaluate and compare the performance of mmWave
systems for various propagation scenarios, i.e., different set-
tings of the κ–µ shadowed fading model. In particular, we
test for the impact of the direct path shadowing, small-scale
fading, and the average SNR on the coverage performance. We
consider the pathloss exponent of αLOS = 2.1 and αNLOS = 4
for the LOS and NLOS transmission, respectively.

Unless otherwise stated, we assume transmitter intensity
of 0.01 nodes/m2, and the area around the reference user of
radius 10 m. We assume this area to always contain at least
one transmitter, implying that the distribution of the reference

link distance is conditioned on the event that the ball of
radius ρ contains at least one point, which means it takes the
form as derived in [22, Corollary 2.3]. Finally, we assume
the transmitter antenna main-lobe beamwidth ωb = 30 °, side-
lobe gain gb = -10 dBm, and the average SNR of 10 dB. For
ease of presentation, we assume the receiver antennas to be
omnidirectional with unitary gains. Moreover, The LOS and
NLOS transmissions are plotted using solid and dashed lines,
respectively.

In Figs 1-4, we plot the coverage with respect to the node
density where the coverage performance is divided by the
vertical solid line into two regimes noise- and interference-
limited. The noise-limited regime on the left-hand side corre-
sponds to the case of a sparse network where the likelihood of
the reference link being interfered by other nodes is relatively
low. The interference-limited regime on the right-hand side
corresponds to the case of a dense network where the interfer-
ence from other nodes becomes the dominant factor affecting
the performance. In the noise-limited regime, we observe that
the coverage of the LOS link is significantly better than the
NLOS case, whereas in the interference-limited regime, the
opposite is true, i.e., the coverage of NLOS is better than the
LOS case. This is due to the fact that the NLOS condition
reduces the aggregated interference, achieving a higher SINR
level for the interference-limited environment.

In Fig. 1, we notice that strong LOS shadowing has a
profound effect on the coverage performance, degrading the
coverage probability to values below 60% especially for the
case of m = 0.5. In Fig. 2, we observe similar pattern as
Fig. 1 where the cross-over point between the LOS and NLOS
link shifts left towards lower node densities. If the network is
operating at a higher SNR level, the aggregate interference can
easily surpass the noise power, reaching interference-limited
condition even at a low mmWave node density.

In Fig. 3 and Fig. 4, we observe that strong LOS component
(large κ) and rich scattering environment with large number
of multipath clusters (large µ) achieve better coverage perfor-
mance. However, these improvements are relatively marginal,
mostly due to the high directionality gains.

In Fig. 5 and Fig. 6, we notice that the coverage enhances by
using beams with higher directional power concentration. The
enhancement becomes nearly linear for the LOS link operating
over high SNR. However, for propagation environments suffer-
ing strong LOS shadowing (low m), or operating in low SNR
regime, or NLOS link, it is only beams with extremely narrow
beamwidth (< 50◦) that can provide reasonable coverage. Of
course, the increasing gains of narrow-beam operation require
perfect alignment between the beams of the receiver and
mmWave node, as the errors in alignment may significantly
diminish the performance gains [5].

Finally, in Fig. 7 and Fig. 8, we observe the behaviour
of the ccdf of SINR for a mmWave network. This coverage
performance is severely degraded by LOS shadowing (small
m) or operation at an NLOS condition, but it can also be
immediately improved by increasing the SNR level, which
complies with our intuition.
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Fig. 1. Coverage probability versus mmWave node density for different m
parameter with ζ = 0 dB, τ = 10 dB, κ = 5, µ = 1, and γ̄ = 1.
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Fig. 2. Coverage probability versus mmWave node density for different τ
parameter with ζ = 0 dB, κ = 5, µ = 1, m = 16, and γ̄ = 1.
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Fig. 3. Coverage probability versus mmWave node density for different µ
parameter with ζ = 0 dB, τ = 10 dB, κ = 5, m = 16, and γ̄ = 1.

V. CONCLUSION

We have proposed an analytical framework using stochastic
geometry to model and study networks complemented with
mmWave operating nodes. Our model allows us to (1) derive
the coverage probability of the general fading channel, e.g.,
κ-µ shadowed fading, in closed-form that does not require
integral, (2) find the density of mmWave nodes that can operate
simultaneously and without coordination, and (3) show the
importance of directional transmission for the operation of
a mmWave network (allowing for much increased coverage),
and the necessity of operation at high SNRs to enable NLOS
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Fig. 6. Coverage probability versus beamwidth for different SNR values with
ζ = 0 dB, κ = 5, µ = 1, m = 16, and γ̄ = 1.

transmission.
The model and study presented here are really just an

opening into the performance analysis of mmWave networks
in the context of generalized fading. Using the obtained model
will allow us to consider design aspects for a variety of
5G use cases, such as device-to-device, or indoor hotspot,
which we can populate with real-life measurements, while
accounting for mixed LOS/NLOS environments. Furthermore,
the analytical extensions could possibly involve more general
node placement models, such as in [23], and addressing the
computational complexity of Bell polynomials.
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APPENDIX A
SKETCH OF A PROOF OF THEOREM 1

The coverage probability of a cellular network can be
defined for a given threshold ζ as

P (SINR > ζ) = P

(
H >

ζRα
(
I + τ−1

)
ν1θ1

)
(a)
= E

[
F̄H

(
ζRα

(
I + τ−1

)
ν1θ1

)]
(b)
=

∞∑
l=0

l+µ−1∑
n=0

wl
n!

E [tn exp (−t)]

(c)
=

∞∑
l=0

l+µ−1∑
n=0

wl(−1)n

n!

dnLt(s)
dsn

∣∣∣∣
s=1

, (7)

where ζ is the SINR threshold and I is the interference;
(a) F̄H(·) is the ccdf of the fading random variable; (b)
comes from representing the ccdf of the power fading using
Eq. (2), with µ for the serving mmWave node assumed
to be integer (for non-integer values of µ we can use the
approximation provided in [21]) and t = ζrα

ν1θ1

(
I + τ−1

)
;

(c) Lt(s) = exp
(
−s ζrα

ν1τθ1

)
LI
(
s ζr

α

ν1θ1

)
, where LI(·) is the

Laplace transform of the aggregate interference.

The Laplace transform of the interference can be derived as

LI (s) = exp

(
−2πλ

∫ ρ

r

(
1− EH,G

[
e−sGHu

−α
])
udu

)
= exp

(
−πλ

(
ρ2 − r2

))
exp

(
− πλ

∞∑
l=0

wl

4∑
j=1

ηj

(
r2

2F1(l + µ,−δ; 1− δ;−sr−ανjθ1)+

− ρ2
2F1(l + µ,−δ; 1− δ;−sρ−ανjθ1)

))
. (8)

Then, let us express exp
(
−s ζrα

ν1τθ1

)
LI
(
s ζr

α

ν1θ1

)
as a compos-

ite function exp (g(s)), where g(s) denotes the following

g(s) = − ζrαs

θ1τν1
− πλ

(
ρ2 − r2

)
− πλ

∞∑
l=0

wl

4∑
j=1

ηj

×

(
r2

2F1(l + µ,−δ; 1− δ;−sν̄jζ)−

ρ2
2F1(l + µ,−δ; 1− δ;−sν̄jζ(r/ρ)α)

)
, (9)

where ν̄j = νj/ν1. Now, we use the following version of the
Faa di Bruno formula to evaluate the derivative term in Eq. (7)

dnf(g(s))

dxn
=

n∑
k=1

f (k)(g(s))Bn,k(g′(s), . . . , g(n−k+1)(s)).

(10)
It is obvious that f (k) (g(s)) = f (g(s)) = exp (g(s)),

while the k-th order derivative of g(s) can be found using
the properties of the Gauss Hypergeometric function [24]

g(k)(1) = 1[k=1]

(
− ζrα

θ1τν1

)
+ r2πλak,

ak =
(−ζ)

k
δ

k − δ

∞∑
l=0

wl(l + µ)k×

4∑
j=1

ηj(ν̄j)
k

(
2F1(l + µ+ k, k − δ; k + 1− δ;−ζν̄j)−

(ρ
r

)2−αk
2F1(l + µ+ k, k − δ; k + 1− δ;−ζν̄j(r/ρ)α)

)
.

(11)

Now, putting all the pieces together we get the conditional
coverage probability expression in Eq. (4).

APPENDIX B
PROOF OF COROLLARY 1

We can derive the expectations in Eq. (5) as follows

ER
[
LI
(
ζRα

θ1ν1

)]
=

∫ ∞
0

2πλre−r
2πλa0 dr =

1

a0
, (12)



ER
[
LI
(
ζRα

θ1ν1

)
Cn(R)

]
(a)
=

n∑
k=1

Bn,k(a1, . . . , an−k+1)

∫ ∞
0

2πλre−r
2πλa0

(
r2πλ

)k
dr

=

n∑
k=1

Bn,k(a1, . . . , an−k+1)Γ (k + 1)

ak+1
0

, Cn,

(13)

where we utilize the fact that for an infinite plane PPP the
reference link distance distribution follows [22, Corollary 2.4],
and (a) can be obtained by taking out (r2πλ)k from the
Bell polynomial terms and noticing that the Laplace transform
simplifies to exp

(
πλr2(1− a0)

)
with

ak =
(−ζ)

k
δ

k − δ

∞∑
l=0

wl · (l + µ)k×

4∑
j=1

ηj(ν̄j)
k

2F1(l + µ+ k, k − δ; k + 1− δ;−ν̄jζ).

(14)

This concludes the proof.
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