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Abstract— Smoke detection in foggy surveillance environments is 

a challenging task and plays a key role in disaster management for 

industrial systems. The current smoke detection methods are 

applicable to only normal surveillance videos, providing 

unsatisfactory results for video streams captured from foggy 

environments, due to challenges related to clutter and unclear 

contents. In this paper, an energy-friendly edge intelligence-

assisted smoke detection method is proposed using deep 

convolutional neural networks (CNN) for foggy surveillance 

environments. Our method uses a light-weight architecture, 

considering all necessary requirements regarding accuracy, 

running time, and deployment feasibility for smoke detection in 

industrial setting, compared to other complex and 

computationally expensive architectures including AlexNet, 

GoogleNet, and VGG. Experiments are conducted on available 

benchmark smoke detection datasets, and the obtained results 

show good performance of the proposed method over state-of-the-

art for early smoke detection in foggy surveillance.  

Index Terms—Artificial Intelligence, CNN, Edge Intelligence, 

Smoke Detection, Foggy Surveillance Environment 

I. INTRODUCTION 

HE recently deployed surveillance networks have rich 

processing capabilities, where video streams can be 

processed in nearly real-time to monitor ongoing 

activities through object tracking and detection [1], action and 

activity recognition, event detection, and scene understanding 

[2-4]. Among the events occurring in surveillance, fire disasters 

are comparatively dangerous, leading to both economic and 

social damage. Due to this reason, several fire detection systems 

are recently developed and significant research efforts are spent 

for further improvement [5, 6]. Both the literature and human 

observations show that smoke can be seen from far away 

distance, due to its faster movement in the upward direction 

compared to fire, and thus its early detection may help detect 

fire, which is helpful to disaster management systems. Despite 

these clues, AI-assisted detection of smoke is a difficult task, 

due to numerous challenges that restrict the performance of 

smoke detection methods [7].  

Smoke detection methods are broadly classified into color-

based, motion-based, and hybrid methods. For example, the 

methods in [8-10] use color features for smoke detection. In [8], 

color information is combined with motion using optical flow 

and back propagation neural networks for smoke detection and 

classification. In another work [9], color features are combined 

with the image’s energy in order to perform smoke detection. 

The work in [10] uses color information for smoke detection by 

employing fuzzy C-mean and back propegation neural 

networks. In addition to color and motion, other properties of 

smoke, such as its shape and other spectral, spatial, and 

temporal characteristics are investigated for its detection and 

classification, as given in [11-13]. Other methods exploring 

different aspects of motion for smoke detection are presented in 

[14-16]. In addition to these approaches, several other methods 

explored texture features for smoke detection, as investigated 

in [17-19]. The previously mentioned smoke detection methods 

have several issues, such as limited accuracy, higher false 

alarms, and a lack of ability to detect smoke at a greater 

distance. 

Recently, several intelligent methods were presented for 

improving the previous smoke detection methods. For instance, 

[20] represented video subsequences as histograms of high 

order dynamical system descriptors, and the classification 

accuracy was improved by combining spatio-temporal 

modeling with a multidimensional dynamic texture analysis of 

smoke via particle swarm optimization. However, the approach 

is computationally expensive, achieving limited detection rate. 

Furthermore, several deep CNN based smoke detection 

methods have been reported in the recent literature. For 

instance, Frizzi et al. [21] presented a nine-layer CNN 

architecture for fire and smoke detection in videos. Yin et al. 

[22] proposed deep normalization with CNN for smoke 

detection using 14 different layers for features extraction and 

classification. Another smoke detection method for 

surveillance networks is presented in [23], which uses color 

features with shape, and its performance is tested on both CPU 

and GPU on a CUDA platform. The most recent method is 

presented in [24] based on VGG-16, with a focus on uncertain 

surveillance videos. 

Summarizing the aforementioned literature on smoke 

detection methods, it can be seen that these methods were 

mainly presented for regular surveillance scenes, and obtained 

unsatisfactory performance in foggy surveillance 

environments. Furthermore, certain methods were good, but at 

the cost of a huge running time, limiting its applicability for 

real-time video stream processing. In addition, considering the 

nature of disaster management, the accuracy of smoke detection 

needs further improvement, while a significant reduction is 

required in false alarms. These problems are addressed in this 

work by making the following major original contributions: 

1. CNNs are extensively investigated for smoke detection, 

and an energy friendly CNN-based method is proposed for 

smoke detection. The light-weight architecture, excellent 

accuracy, and a minimum model size of our method 

increase its feasibility of deployment in smart cities, and 

especially in foggy surveillance networks in industrial 

setting, compared to state-of-the-art. 

2. Compared to existing smoke detection methods that work 

well for only regular surveillance environments, we 

propose a framework for smoke detection in foggy 

surveillance scenes, which is inherently more challenging. 

The proposed method achieves better results for regular 

surveillance in general, and in foggy industrial surveillance 

video, in particular, as evident from experimental results. 

3. Detailed experiments are conducted on existing benchmark 

datasets and another recently created smoke dataset by our 

team, in order to filter out the performance of all methods 
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under consideration from different perspectives. Results on 

accuracy, false alarms, and other metrics suggest that the 

proposed method is an excellent candidate for smoke 

detection in foggy surveillance environments compared to 

state-of-the-art. 

The rest of this work is structured as follows. The proposed 

system is discussed in detail with its main components in 

Section 2. The details about experimental setup, datasets, and 

evaluations are given in Section 3. This work is concluded in 

Section 4, with a list of future directions for further research. 

II. THE PROPOSED SYSTEM  

Recently, significant improvements have been reported in 

advancing visual sensors in terms of memory storage, 

processing, and intelligence. Through edge intelligence, several 

activities can be monitored by processing the video stream 

captured by cameras such as action and activity recognition, 

fire/smoke detection, and prioritization [25]. Currently, the 

majority of the hand-crafted and learned representations-based 

smoke detection approaches target surveillance videos of 

certain environment, which is relatively easy. Also, certain 

methods encounter a large number of false alarms with 

unsatisfactory accuracy. To cope up with these limitations, in 

this work, we investigate CNNs for smoke detection problem in 

uncertain surveillance videos, having fog, snow, and/or their 

combination. Next, considering the challenges of such videos 

and the requirements of disaster management, we propose an 

efficient edge intelligence-assisted CNN based system for 

detecting smoke, fog, and their variants. Unlike existing 

systems that either perform binary classification into smoke and 

non-smoke, our system classifies each video frame into one of 

the four classes: smoke, non-smoke, smoke with fog, and non-

smoke with fog. The overall architecture of our system along 

with a sample image having four predictions is shown in Fig. 1. 

The maximum probability represents the final label of the input 

image, as given in Fig. 2 for a set of sample images. 

A. Architectural Details 

This section describes the technical details of the architecture 

employed in the proposed system for smoke detection. We first 

studied and experimentally tested the famous CNN models, 

including AlexNet [26], GoogleNet [27], VGG-16 [28], and 

MobileNet (MNet) [29], for detecting smoke in video streams. 

The given models were tested with different sets of parameters, 

focusing on accuracy, false alarm rate, and other metrics. After 

extensive experiments, we found the MobileNet V2 as a 

suitable choice compared to other CNN popular models. The 

basic building block of the standard MobileNet V2 architecture 

is a bottleneck with residuals. In residuals bottleneck, the start 

and the end of a convolutional block is connected to each other 

with a skip connection. Using these states, the model has the 

opportunity of retrieving previous activations that are not 

updated in the convolutional block. The architecture of the 

MobileNet V2 initiates a convolutional layer followed by 19 

residuals bottlenecks. After bottlenecks, there is a convolutional 

and pooling layer, followed further by another convolutional 

layer. The complete architectural details are given in Table 1. 

MobileNet V2 was primarily trained on the ImageNet dataset, 

for classification into 1000 classes. We changed its last fully 

connected layer from 1000 classes to four classes: “smoke”, 

“non-smoke”, “smoke with fog”, and “non-smoke with fog”. 

We also applied the fine-tuning strategy to increase the smoke 

detection accuracy and minimize false alarm rate. After all 

necessary changes, our system was able to efficiently 

differentiate among the given four classes with significant 

accuracy, compared to state-of-the-art. The basic block of the 

employed architecture is given in Fig. 3. 

 
Fig. 1. Edge intelligence-assisted smoke detection system for foggy surveillance environments. The maximum prediction score, which is marked as bold, shows 

the final label of the input image. 
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Fig. 2: Prediction probabilities of our proposed system for video frames captured in certain and uncertain environment. Predictions marked as bold refer to the 

final label of each image. 

 

Table I 

Architectural details of MobileNet V2. 

Layer type Layer 
Number of 

repetition 
Stride size 

Convolution conv2d 3×3 1 2 

Bottleneck bottleneck1 1 1 

Bottleneck bottleneck2 2 2 

Bottleneck bottleneck3 3 2 

Bottleneck bottleneck4 4 2 

Bottleneck bottleneck5 3 1 

Bottleneck bottleneck6 3 2 

Bottleneck bottleneck7 1 1 

Convolution conv2d 1×1 1 1 

Pooling avgpool1 7×7 1 - 

Convolution conv2d 1×1 1 - 

 

 
Fig. 3. Details of a single block of the employed architecture in the proposed 

system. 

 

B. Model Selection (MobileNet V1 vs MobileNet V2) 

This section describes the reasons for selecting the employed 

architecture compared to other CNNs, in general, and 

MobileNet V1, in particular. Several points are considered 

when dealing with video streams in uncertain surveillance 

environments, especially for disaster management and 

resource-constrained devices, such as delay, response time, 

accuracy, and false alarm rate. After an in-depth analysis of the 

investigated CNN models in the light of the aforementioned 

criteria, we chose MobileNet V2. The selected model is also 

highly feasible for devices with restricted memory and 

resources, such as Pi and FFGA. Other comparative statistics of 

the selected and related models are given in Table II. The given 

metrics clearly show the excellence of the employed 

architecture compared to other CNNs for our proposed system 

on large scale ImageNet dataset [30]. 

 
Table II 

Statistics of MobileNet V2 against other models 

Metrics 
GNet ANet 

VGG-

19 

VGG-

16 

MNet 

V1 

MNet 

V2 

Parameters 

(millions) 
7 60 144 138 4.24 3.47 

Top-1 

Accuracy 
(%) 

69.8 57.1 70.5 70.5 70.9 71.8 

Top-5 

Accuracy 
(%) 

89.3 80.2 91.2 91.0 89.9 91.0 

Top-5 test 

error (%) 
7.9 16.4 6.8 7.0 10.4 9.8 
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III. EXPERIMENTS, RESULTS, AND DISCUSSION 

The detailed experiments are conducted in this section to 

evaluate and compare the performance of our method with other 

state-of-the-art methods. Firstly, we describe the details about 

the datasets used for the evaluation. Next, we compare our 

employed architecture with existing architectures using 

different evaluation strategies. Following this, the results of our 

method are compared with recent smoke detection methods. 

Finally, the running time and feasibility of our method are 

discussed in detail. 

A. Datasets Description 

 The experiments mainly focus on a recently created dataset 

[24] and a set of seven videos. The new dataset is made of three 

existing datasets [31-33] and consists of four classes, i.e., 

“smoke”, “non-smoke”, “smoke with fog”, and “non-smoke 

with fog”. We divided the total number of 72,012 images into 

20%, 30%, and 50% for training, validation, and testing, 

respectively. The overall statistics of these three sets are 

visualized in Fig. 4, while the representative images of each 

class are presented in Fig. 5. To extend the comparison analysis, 

we considered the seven publicly available videos [34, 35] as a 

second dataset for testing. It is worth notable that none of the 

image from these videos was used in the training process. The 

overall description of these videos with name, duration, and 

frame rate is given in Table III. The representative frames of 

these videos are visualized in Fig. 6 with labels from V1 to V7. 

 
TABLE III 

Description of the seven test videos from state-of-the-art 

Video 
Number 

Name 
Duration 

(secs) 
Frame 

rate 
Description 

V1 
Cotton_rope_smoke

_04.avi 
115 25 

Smoke originating from 

a cotton rope with a 

person standing nearby. 

V2 
Dry_leaf_smoke_02.

avi 
48 25 

Smoke originating from 
dry leaves 

V3 sBtFence2.avi 140 10 

Persons moving in the 

scene with background 

similar to smoke. 
Smoke is at larger 

distance 

V4 sMoky.avi 60 15 
A video having contents 
with smoke color 

background 

V5 sParkingLot.avi 69 25 

Smoke produced in a 

parking lot. Objects’ 
movement and tree 

shaking is covered in 

the scene. 

V6 sWasteBasket.avi 90 10 
Smoke with a nearby 

red-color waste basket 

V7 sWindow.avi 16 15 

Smoke produced in a 

bucket and recorded 
from a window at larger 

distance 

Fig. 4. Class-wise details of the employed dataset for our system. 

 
Fig. 5. Sample frames from the dataset belonging to our target four classes: “smoke”, “non-smoke”, “smoke with fog”, and “non-smoke with fog”. 
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Fig. 6. Sample images from the seven testing smoke videos. 

 

B. Comparison with CNN-based Smoke Detection Methods 

We compare our proposed method with other state-of-the-art 

CNN models using the overall integrated dataset based on two 

evaluation strategies. In the first evaluation strategy, we use 

three metrics including false positive (FP), false negative (FN), 

and accuracy (A), as used by Foggia et al. [31]. FP is defined as 

a false alarm rate of the system, FN is the wrong prediction of 

positive class, and accuracy is described as the ratio of correctly 

predicted samples in the dataset, as given in Eq. 1. The second 

evaluation strategy uses precision (P), recall (R), and F-measure 

(F). P is described as the ratio of correctly classified positive 

samples to the total predicted positive samples for a system, as 

shown in Eq. 2. True positive (TP) rate is the correctly predicted 

positive samples, while TP + FP is the total positive samples. R 

is considered as the ratio of correctly classified positive samples 

to the total samples present in the class, as given in Eq. 3. R 

refers to the sensitivity, or true positive rate of a system. In 

addition to P and R, F is calculated using the weighted average 

of P and R, as shown in Eq. 4. 

𝐴 =
TP+TN

TP + FP+FN+TN
          (1) 

𝑃 =
TP

TP + FP
           (2) 

𝑅 =
TP

TP+FN
            (3) 

 

𝐹 = 2 × (
P ×R

P+R
)           (4) 

 

Using the metrics of the first evaluation strategy, our model 

is compared with AlexNet (ANet), GoogleNet (GNet), and 

VGG-19 (VGGNet), and results are shown in Table IV. 
 

Table IV 

Comparison of our system with other CNN models on the test data with 

evaluation strategy 1 

Model FP (%) FN (%) A (%) 

ANet [26] 3.39 4.16 95.87 

GNet [27] 3.17 2.01 96.11 

VGGNet [28] 2.30 2.01 97.72 

Our method 2.06 1.18 98.17 

 

It is evident from Table IV that ANet attained the worst 

accuracy, false-positive, and false-negative values, as compared 

to other models. GNet and VGGNet achieved a similar false-

negative value, but in terms of accuracy and false-positive score 

VGGNet performed better than GNet. Our proposed system 

performed best compared to previous state-of-the-art methods 

by achieving the highest accuracy of 98.17%, minimum false-

negative value of 2.06%, and minimum false alarm rate of 

1.18%. 

Table V 

Comparison of our system with other CNN models on the test data with 

evaluation strategy 2 

Model P R F 

ANet [26] 0.96 0.95 0.96 

GNet [27] 0.96 0.96 0.96 

VGGNet [28] 0.98 0.97 0.97 

Our method 0.98 0.97 0.98 
 

Furthermore, the second evaluation strategy is also employed 

to evaluate our proposed method in contrast to other state-of-

the-art methods. To this end, results on the test set of the overall 

dataset are given in Table V. From these results, it can be 

observed that ANet and GNet have similar P and F values, while 

in terms of R, GNet performed better than ANet. VGGNet 

resulted in an R value similar to GNet but greater P and F values 

than ANet and GNet. Our proposed method outperformed all 

the three architectures using R and F values, and attained a 

similar P value to VGGNet. To sum up, our proposed method 

successfully dominated the state-of-the-art CNN architectures 

using both evaluation strategies, showing its superiority on 

smoke detection in foggy environments. 

C. Comparison with other Smoke Detection Methods 

This section describes the performance of our proposed 

system and other state-of-the-art smoke detection methods. The 

results are evaluated using seven test videos, as described in 

Section III (A). The proposed method is compared with several 

image processing and learning based smoke detection methods, 

with comparative results given in Table VI. The evaluation 

metrics include accuracy, false alarm rate, and the processing 

time in frames per second (fps). Results show that the method 

described in [36] performed worst among all the methods under 

observation, due to its very low accuracy of 47% and high false 
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alarm rate, but its fps is still better than ANet and GNet. The 

method [23] achieved best fps as compared to all other methods, 

but its accuracy and false alarm rate are still worse than the 

proposed and other models. The next three models, ANet, 

GNet, and VGGNet attained comparatively better accuracy and 

false alarm rate than the previous two methods, but their fps is 

still low. Our proposed system outperformed all the existing 

methods and models in terms of accuracy and false alarm rate 

and achieved the best combination of these evaluation metrics. 
 

TABLE VI 

Comparison with different smoke detection methods 

Method 
False 

alarm rate 
fps 

Accuracy 
(%) 

Tian et al. [37] 4.1 2 - 

Yuan et al. [36] 5.0 25 47.71 

Yuan et al. [38] 4.57 2 81.3 

Dimitropoulos et al. [20] - 5.2 91.94 

Yuan et al. [39] 3.92 - - 

Yin et al. [22] 2.44 30.73 - 

Filonenko et al. [23] 4.29 61 84.85 

Tian et al. [40] - 3.25 84.47 

ANet [26] 4.21 17 89.32 

GNet [27] 3.57 23 92.24 

VGGNet [28] 3.11 31.33 92.31 

Our 2.06 39.78 94.76 

 

Fig. 7. Comparison of our proposed method with existing smoke detection 

methods including Yuan et al. [36], Filonenko et al. [23], and Khan et al. [24] 

using precision, recall, and F-measure. A single score represents the average for 
the seven test videos for each concerned metric. 

 

Besides the above comparisons, we compared our method 

with the latest smoke detection methods in [36], [23], and [24] 

to show its effectiveness in normal environments. Seven test 

videos were used in this experiment and their average precision, 

recall, and F-measure are shown in Fig. 7. Results show that 

[36] achieved worst performance in terms of all three evaluation 

metrics. The average precision, recall, and F-measure values 

were 0.57, 0.51, and 0.48, respectively. The method [23] 

relatively performed better than [36], with an average precision 

0.95, recall 0.88, and F-measure 0.91. Finally, our proposed 

method attained 0.98, 0.95, and 0.96 scores for precision, recall, 

and F-measure, respectively. Based on these results, our method 

outperformed the given benchmark recent methods, showing its 

superiority. 

D. Computational Complexity and Feasibility based Analysis  

This section provides the running time performance of our 

system and its feasibility for deployment in real-world 

scenarios. For this purpose, we performed experiments using a 

computer equipped with a GPU of NVidia GetForce TITAN X 

(Pascal). Further, our system have 12 GB onboard memory with 

a deep learning framework Caffe [41], running over a hardware 

of Intel Core i5 CPU with Ubuntu OS and 64 GB RAM. Using 

this setup, our system can process up to 40 frames per seconds, 

which is faster enough for real-time processing, because a 

normal camera can capture 25 to 30 frames per second. A 

detailed running-time based comparison of our proposed 

system with other state-of-the-art methods using seven test 

videos is given in Fig. 8. 

From these results, we can see that Filonenko et al. [23] 

achieved the best processing time, with an average of 20 ms per 

frame. In this case, the processing time for each video varies 

from minimum 16.30 ms to maximum 22.02 ms per frame. The 

limitation of this approach is its lower accuracy of 85% and 

higher false alarm rate of 4.29%, restricting its applicability for 

disaster management systems. The other competing method 

Yuan et al. [36] attained the worst processing time of 67.16 ms 

per frame on average. Khan et al. [24] performs better than 

Yuan et al. [36], but their running time is higher than our 

method’s and of Filonenko et al. [23]. Our proposed method 

achieved an average processing time of 37.25 ms per frame, 

showing better performance than [36] and [24]. 
 

 
Fig. 8. Mean execution time (in milliseconds) for processing a frame by our system and existing methods (Yuan et al. [36], Filonenko et al. [23], and Khan et al. 
[24]) for the seven test videos. 
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Finally, we further compared our system with other state-of-

the-art architectures, as given in Table VII. The goal of this 

comparison is to highlight the feasibility and deployment of our 

architecture over smart cameras and embedded devices in 

industrial surveillance. The parameters used for comparison are 

the MFLOPS/image and the size of the architecture in MB. 

From Table VII, it can be observed that ANet has better 

MFLOPS/image than GNet and VGGNet, however, its size is 

greater than that of GNet and our employed architecture. GNet 

is smaller in size than ANet and VGGNet, but its 

MFLOPS/image is higher than that of the ANet and the 

proposed architecture. VGGNet has a large number of 

parameters, yielding to highest MFLOPS/image and size 

compared to all other architectures. In contrast, our employed 

architecture consists of minimum MFLOPS/image and size, 

making it a more suitable choice for deployment over 

embedded devices, and allowing it to process industrial 

surveillance streams over edge in real-time. 
 

TABLE VII 
Models comparison in terms of mega floating point operations 

(MFLOPS)/image and size 

Method Name MFLOPS/image Size (MB) 

ANet [26] 720 219 

GNet [27] 1500 39.66 

VGGNet [28] 20000 930 

Our method 300 13.23 

IV. CONCLUSIONS AND FUTURE WORK 

With the available smart cameras, different abnormal events 

such as fire, flood, violence, etc., can be detected at early stages, 

and appropriate actions can be performed accordingly. 

Detecting these activities in regular surveillance videos is 

comparatively easy, however, it becomes significantly 

challenging when the environment is uncertain and the captured 

video stream is contaminated by fog, snow, or rain. For such 

scenarios, the current smoke detection systems result in limited 

performance, needing urgent attention. With this motivation in 

mind, we proposed an energy-friendly edge intelligence-

assisted smoke detection method in this work, based on deep 

CNNs, in order to be used in foggy surveillance environments. 

Our method uses a light-weight architecture, considering all 

necessary requirements on accuracy, execution time, and 

deployment feasibility. Detailed experiments are conducted on 

benchmark smoke detection datasets, and the obtained results 

show encouraging performance of the proposed method for 

early smoke detection in foggy surveillance over state-of-the-

art. In the light of the aforementioned characteristics of our 

system, we believe that it can efficiently monitor both certain 

and uncertain environments for smoke detection, which can be 

helpful in industrial scenarios, saving valuable resources from 

destruction. 

In future, this work will be extended to monitor both fire [42] 

and smoke in video streams in both certain and uncertain 

environments [43], by further investigating edge as well as fog 

computing technologies [44]. The current smoke detection 

work will be further extended to include smoke 

segmentation/localization and contextual information 

extraction, in order to develop a collaborative intelligent scene 

analysis system. Furthermore, the current work can be merged 

with other abnormal event detection systems in smart cities, for 

smarter industrial surveillance [45]. 
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