
 

 

Path-tracking of autonomous 
vehicles using a novel adaptive 
robust exponential-like-sliding-
mode fuzzy type-2 neural network 
controller 
 
Taghavifar, H. & Rakheja, S. 
 
Author post-print (accepted) deposited by Coventry University’s Repository 
 
Original citation & hyperlink:  

Taghavifar, H & Rakheja, S 2019, 'Path-tracking of autonomous vehicles using a novel 
adaptive robust exponential-like-sliding-mode fuzzy type-2 neural network 
controller' Mechanical Systems and Signal Processing, vol. 130, pp. 41-55. 
https://dx.doi.org/10.1016/j.ymssp.2019.04.060  
 

DOI 10.1016/j.ymssp.2019.04.060 
ISSN 0888-3270 
ESSN 1096-1216 
 
Publisher: Elsevier 
 
NOTICE: this is the author’s version of a work that was accepted for publication in 
Mechanical Systems and Signal Processing. Changes resulting from the publishing 
process, such as peer review, editing, corrections, structural formatting, and other 
quality control mechanisms may not be reflected in this document. Changes may 
have been made to this work since it was submitted for publication. A definitive 
version was subsequently published in Mechanical Systems and Signal Processing, 
130, (2019) DOI: 10.1016/j.ymssp.2019.04.060 
 
© 2019, Elsevier. Licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders.  
 
This document is the author’s post-print version, incorporating any revisions agreed during 
the peer-review process. Some differences between the published version and this version 

http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

may remain and you are advised to consult the published version if you wish to cite from 
it.  



This is a pre-print version accepted for publication by Mechanical Systems and Signal Processing  

1 
 

Path-tracking of autonomous vehicles using a novel adaptive robust exponential-like-

sliding-mode fuzzy type-2 neural network controller 

Hamid Taghavifar*, Subhash Rakheja 

CONCAVE Research Center, Department of Mechanical, Industrial and Aerospace Engineering, Concordia 

University, Montreal, QC, H3G 1M8, Canada 

*Corresponding author:  

Email: h_taghav@encs.corcordia.ca & hamid.taghavifar@gmail.com 

Phone: +1(514)998-1987 

Abstract 

Modeling and unstructured uncertainties together with external disturbances may pose considerable 

challenges in realizing desired path-tacking and lane keeping of autonomous vehicles. This paper presents 

a novel robust adaptive indirect control method based on an exponential-like-sliding-mode fuzzy type-2 

neural network approach for enhanced path-tracking performance of road autonomous vehicles subjected 

to parametric uncertainties related to vehicle nominal cornering stiffness, road-tire adhesion coefficient, 

inertial parameters and forward speed. A hierarchical controller is designed and the stability of the closed-

loop system is ensured along with deriving the adaptation laws by employing the Lyapunov stability 

theorem. The conventional reaching law related to the sliding mode degrades from the system stability 

and introduces an inherent chattering of the controller input. The convergence law for the sliding surface 

is adjusted based on a variable exponential sliding manifold to eliminate possible chattering in the 

buffeting switch zone near the origin. The proposed exponential-like sliding surface guarantees the swift 

and smooth global asymptotic convergence of the tracking error toward zero. Furthermore, an adaptive 

look-ahead path-tracking error term is introduced as an auxiliary error criterion to improve the vehicle 

path-tracking performance. The effectiveness of the proposed controller is verified through 

Matlab/Simulink–CarSim co-simulations and comparisons with selected reported control methods for two 

different road maneuvers. The results suggested substantially improved tracking performance by the 

proposed controller with robustness to withstand against the perturbed parameters and external 

disturbances.  

Index Terms—fuzzy system, lane keeping control, robustness, autonomous vehicles 

1. Introduction 

Past few decades have witnessed substantial progress in the field of autonomous vehicles due to the 

technological growth in cyber-physical systems, advanced control paradigms, and artificial intelligence 

techniques [1-3]. Human safety, ease of ride, security, and driving accuracy in conjunction with energy 

and time efficiency in transportation systems have served as primary incentives for additional research 

efforts leading to design and commercialization of fully automated and connected vehicles, advanced 

driving-assist systems (ADAS) and parallel steering control [4,5]. However, the complexities related to 

the road condition and modern urban infrastructure components in addition to the exacerbated trafficking 

status, have imposed the practice of the state-of-the-art frameworks for autonomous road vehicles [6, 
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7]. Autonomous vehicles are expected to effectively uphold the principal functionalities such as obstacle 

 avoidance, decision making, lane keeping, and motion planning, etc.,  among which, lateral path-following 

is the most essential performance measure of autonomous vehicles to ensure vehicle and passenger safety, 

and lateral motion stability [8,9,10].  

The constraints on the vehicle states and the geometrical/dynamic status of the adjacent vehicles, 

pedestrians and their unpredictable responses together with the structured or unmodeled uncertainties and 

external disturbances contribute to extreme complexities for the controller design. A desired lane-keeping 

performance is achieved by minimizing the errors in terms of the lateral offset and the heading error of 

the vehicle under varying driving conditions [11-13].Hence, the principal purpose in the design of control 

laws is to ensure the lateral offset and the heading error toward zero, while preserving vehicle stability 

under different maneuver and road conditions. For relatively smooth paths and the explicit system 

dynamics, the class of classical feedback control laws can typically deliver desirable responses reasonably 

well [14]. However, an incorrect feedback law can be generated leading to a critical instability when the 

system dynamics is not fully known, the road path is highly curved or there are maneuvers 

demanding swift yaw stabilization the road [14]. Robust control methods considering the unknown 

dynamics of the system are thus vital for ensuring lane-keeping of the autonomous vehicles.  

Reported studies have employed wide ranges of control schemes for enhancement of lateral path-tracking 

or lane-keeping performance of autonomous vehicles such as composite nonlinear feedback [15], adaptive 

neural network [16], robust H∞ output-feedback control [17], terminal sliding mode [18], and model 

predictive control (MPC/NMPC) [19, 20], as well as robust controllers for fault detection [21] and 

nonlinear controls for trajectory-following of electric ground vehicles [21,22]. The effectiveness of a class 

of controllers such as optimal control and invariants of predictive control strongly relies on the 

availability of an accurate explicit model describing the system. The models of the autonomous vehicle, 

however, are generally subject to parametric uncertainties and unmodeled disturbances, which may 

adversely influence the effectiveness of the optimal and model predictive controllers. A number of studies 

have thus proposed robust controller designs for the path-tracking of autonomous vehicles. Du and Tan 

[23] developed a vision-based path-planning module for the autonomous vehicle using a sliding mode 

controller coupled with the Kalman Filter for state estimation. The steering wheel angle was considered as 

the controller input for the sliding mode controller and the vehicle position was predicted in real-time 

using the Kalman filter and image processing techniques. The stability and robustness of the proposed 

controller was verified for the sliding mode controller. Similarly, an integral sliding mode controller was 

proposed for the parking task of an autonomous four-wheel drive vehicle via real-time model 

identification considering the input constraints [24]. A compact-form dynamic linearization observer was 

considered in the model identification stage and for the integral sliding-mode controller purpose a 

dynamic integration wind-up resistive compensator was introduced to tackle the integral saturation 

drawback for the parking system of the autonomous vehicle. Hu et al. [25] developed a robust composite 

nonlinear feedback control to enhance the system transient response and also to minimize the steady-state 

errors related to the path-following performance of the autonomous vehicle due to the controller input 

saturation. The reported robust sliding mode control methods, however, may exhibit limited effectiveness 

due to the chattering-like control inputs and strong dependence on the explicit model of the system. 

Adaptive controllers are typically employed in studies where a higher robustness is required to withstand 

the effects of disturbance and uncertainty [26]. Adaptive intelligent control methods can potentially 
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address the challenge of desired control performance against the system uncertainty by learning to 

approximate any arbitrary nonlinear and uncertain but bounded model dynamics [27-29].  

Fuzzy systems, as a principal class of intelligent controllers, have also been employed in path-following 

of autonomous road vehicles [30-33]. A T-S fuzzy model with the additional norm-bounded uncertainties 

based controller was developed for following a relatively smooth path- in the presence of system 

nonlinearities and parametric uncertainties related to variations in vehicle mass and vehicle speed [31]. 

An adaptive fuzzy observer-based output feedback (AFS) control was designed using the Lyapunov 

stability theorem for the path-following of autonomous vehicle. Another study employed a similar control 

strategy using AFS as the control input together with a cascade structure for lateral path-following control 

and parametric trajectory along a roundabout. Hwang et al. [33] employed a two-stage fuzzy dynamic 

sliding-mode path-following control comprising a virtual desired input stage and the path tracking control 

stage. The proposed dynamic fuzzy sliding mode controller employed a tuning mechanism to address 

system uncertainties, particularly the varying payloads, using the Lyapunov theory. Adaptive fuzzy type-1 

controllers have been typically employed in these studies, whereas fuzzy type-2 systems exhibit an 

enhanced level of efficiency for systems subject to parametric uncertainties or external disturbances since 

the membership functions are also described in a fuzzy manner [34, 35].   

This study presents a novel robust adaptive indirect control method based on an exponential-like-sliding-

mode fuzzy type-2 neural network approach for enhanced path-tracking of autonomous vehicles subjected 

in the presence of various parametric uncertainties associated with tire cornering stiffness, road-tire 

adhesion coefficient, and inertial parameters and forward speed of the vehicle.  The controller synthesis is 

realized considering three specific goals: (i) adaptive control of look-ahead lateral offset errors; (ii) 

smooth global asymptotic convergence of system dynamics to the desired trajectories via a novel 

switching exponential-like sliding mode surface together with the fuzzy type-2 neural network controller; 

and (iii) robustness of the controller in view of structured uncertainty and unmodeled disturbances. The 

globally uniform stability of the autonomous vehicle under elective but bounded neighborhoods of the 

origin is verified by employing the Lyapunov stability theorem. The effects of variations in the forward 

speed on the tracking performance are included in the developed framework considering that an adaptive 

look-ahead error term can minimize the error at various speeds. The remainder of the paper is structured 

as follows. In section 2, the formulations describing the kinematics and dynamics of the autonomous 

vehicle and the adaptive look-ahead offset error are presented. In section 3, fuzzy type-2 neural network 

structure is briefly presented. Section 4 is dedicated to the structure of the proposed adaptive robust 

exponential-sliding-mode fuzzy-type-2 controller and stability analysis. The simulation results for the 

proposed controller using the Matlab/Simulink–CarSim co-simulation are presented and discussed in 

Section 5. The conclusions of the study are briefly summarized in Section 6. 

2. Problem formulation and controller design  

The path tracking task of autonomous vehicles generally concerns with minimization of the lateral offset 

error at vehicle center of gravity (CG), while preserving the yaw mode stability. For this purpose, it is 

important to maintain the yaw velocity as close as possible to a value perceived adequate by a skilled 

driver or desired to closely follow a given trajectory in a stable manner. In this study, an auxiliary term 

called adaptive look-ahead error    is defined to describe expected lateral offset of the vehicle at a future 

target point as a function of its forward velocity with respect to a desired trajectory in the shape of an 
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orthogonal projection (Fig. 1). A novel hierarchical control algorithm is designed to minimize the look-

ahead offset error by employing the robustness feature of fuzzy type-2 sets considering the effects of the 

matched and mismatched uncertainties of the autonomous vehicle system. 

2.1. Vehicle Model 

A vehicle model with active front steering (AFS) is considered for formulating the proposed path 

following control laws. The vehicle model is formulated assuming negligible contribution of the 

longitudinal traction/braking forces to the vehicle’s lateral dynamics at a constant forward speed, where 

the traction force is balanced by the motion resistances. Furthermore, the model is limited only to lateral 

and yaw dynamics of the vehicle assuming negligible roll, pitch and vertical motions. Owing to 

symmetric dynamics of the right- and left-tracks of the vehicle under nearly parallel steering of the front 

wheels, the widely reported two degrees-of-freedom (DOF) bicycle model is considered (Fig. 1): 

 ( ̇     )         

   ̇             

                                                                                                   (1) 

where m is the vehicle total mass,    is the vehicle forward speed,   is yaw-rate of the vehicle body,    is 

the vehicle lateral speed,   is yaw moment of inertia,    and    are distances from (CG) to front- and rear-

axle, respectively, and     and     are the lateral forces developed at the front- and rear-axle tires, 

respectively, given by [36]: 

          

          
                                                                                                                         (2) 

where    is tire–road adhesion coefficient,    and    are cornering stiffness of front-and rear axle tires, 

and    and    are side-slip angles of the front-axle and rear-axle tires, respectively, obtained from:  

         [
      

  
   ]    

   

  
   

         [
      

  
]    

   

  

                                                                             (3) 

where    is front wheel steer angle and          is the vehicle side-slip angle. The cornering stiffness 

of a tire is known to vary with many operating factors in a highly nonlinear manner such as tire load, road 

surface adhesion, slip angle, speed and state of tire [13]. The cornering stiffness of the tire is thus defined 

considering the uncertainties (       ) due to operating conditions and tire nonlinearity, as: 

    ̂     

    ̂     

                                                                                                                     (4) 

where  ̂  and  ̂  are nominal cornering stiffness of the front and rear axle tires, respectively. Equations 

(1) to (3) yield the governing relations for lateral speed and yaw-rate in the state-space form, as:     

 ̇  
 

 
[    (  

   

  
   )      (  

   

  
)]     

 ̇  
 

  
[      (  

   

  
   )        (  
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                                                      (5) 
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Figure 1. Yaw-plane vehicle model 

The time derivatives of lateral and longitudinal offsets in the global (X-Y) coordinate system,   ̇ and   ̇, 

are obtained as: 

  ̇                            

  ̇                         
                                                               (6) 

Similarly the time derivative of the heading error   , defined as difference between the vehicle heading 

angle   and that of the target trajectory             , can be expressed as a function of the vehicle 

yaw-rate  : 

  ̇   ̇    ̇          ̇                                                                                              (7) 

where   stands for the curvilinear coordinate or arc length of the desired path from an initial 

predetermined position such that   ≥0, and  ̇  
  

  
  . Furthermore,      indicates the curvature of the 

desired trajectory for     , which varies with the change in distance  . According to Figure 1, a lateral 

offset error term is introduced as a function of vehicle CG lateral offset and the adaptive look-ahead offset 

error        , as:. 

   
 

 
[    

            ]  
 

 
[    

          ]                                                    (8) 

where         and   is the look-ahead time to reach the desired target point    in an adaptive manner. 

By adjusting the vehicle speed, the look-ahead distance can be updated accordingly. The time derivative 

of (8) can be expressed as: 

  ̇       ̇       ̇  (                   [       ])                               (9) 

Furthermore, the second time derivative of    can be described as follows.  

  ̈  (    ̈       ̈    ̇
 )                                                                                              (10) 
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Using (6) and (7), the above can be re-written, as:   

  ̈  (      ̇     ̇         [
 ̇

    
  ̇        ̇])    ̇

                                        (11) 

2.2. Controller Design 

In this section, a controller is designed for the smooth and global asymptotic convergence of the tracking 

error related to the autonomous vehicle toward zero by considering the vehicle adaptive look-ahead 

tracking error. For the robustness analysis of the system, the vehicle model is subjected to parametric 

uncertainty in addition to unknown but bounded external disturbances. The governing equations for 

lateral dynamics of the vehicle (5) can be expressed in the generalized form, as: 

  
 ̇    ( )         

    
                                                                                                        (12) 

where    [     ]
 ,    [     ]

 ,    
 

 
[    (  

   

  
)      (  

   

  
)]     ,    
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[      (  

   

  
)        (  

   

  
)] and,    

  

  
[      (  )]. Furthermore,   [    ]

 
 and 

     is the control input,   is an identity matrix and   represents the vector of disturbances incurred by 

the system. A two-step process for stabilization of the servo controller is formulated.  

Step 1. Considering Eq. (8), the tracking error    converging to zero indicates that the vehicle lateral 

offsets at CG and vehicle head point are zero. For this purpose, the design Lyapunov function candidate is 

selected as:  

   
 

 
  

                                                                                                                                (13) 

The differentiation of Eq. (13) yields: 

 ̇      ̇                                                                                                                                (14) 

Step 2. Let us introduce a switching Lyapunov candidate function   , which includes the heading angle 

error and (14) such that the control law for the stability in the sense of Lyapunov is derived, as: 

    ̇ 

   
 

 
  

  
 

 
                                                                                                                    (15) 

Differentiation of Eq. (15) yields: 

 ̇     ̇      ̇    
   ̇  ̈      ̇

      ̇                                                                 (16) 

By imposing  ̇    for the stability of the system, the above leads to: 

 ̇      ̈   (
    ̇

   ̇ 
   ̇

 )   
                                                                                        (17) 

By combining (11) and (17), the following negative semi-definite control function is derived. 
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(   
  

    ⁄ )  ̇          ̇   (
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                                                   (18) 

where 
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Upon substituting for  ̇  and  ̇ from (5) into (18), the active steering control law is derived as: 

   [ (
    ̇

   ̇ 
   ̇

 )   
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                                                                               (19) 

where 
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)      (  

   

  
)]             

   

  
[      (  

   

  
)        (  
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   (
     

 
 

   

  
)     

     

Choosing the control law in (19) will thus ensure stability of the function    in (15), implying that: 

                 ̇                                                                                                      (20) 

Consequently, the convergence of the heading angle toward the desired trajectory is ensured, while the 

subsequent term in (20) implies:   

    ̇           ̇                                                                                                                 (21) 

Above equation can lead to two possible scenarios: i)     
   

      or ii)     
   

  ̇    . The second 

scenario does not ensure convergence to a zero tracking-error performance of the autonomous vehicle. A 

switched multi sliding manifold is thus proposed to achieve global asymptotic convergence of the 

tracking error toward zero. Furthermore, the unknown dynamics of the vehicle are estimated employing 

the adaptive type-2 fuzzy neural network (T2FNN) controller design, as described below.  

3. Description of Proposed Type-2 Fuzzy Neural Network (T2FNN) 

In this section a brief description of fuzzy type-2 sets is presented. Fuzzy type-2 systems are more generic 

invariants of their fuzzy type-1 counterparts, which have been proposed to withstand against strong 

fuzziness in determination of the fuzzy membership functions themselves [37]. Fuzzy type-2 systems can 

be employed in scenarios where it is arduous to determine an exact membership function such as when 

the training data are corrupted by noise or in the presence of parametric uncertainties in the model. Fig. 2 

illustrates the typical Takagi-Sugeno interval type-2 fuzzy Gaussian membership functions, where mean 

is represented by μ and the standard deviations for the upper and lower MFs are denoted by σ1 and σ2, 

respectively. Considering normal distribution of the state variables about the mean value μ, the Gaussian 

membership function is employed, while the parameters μ, σ1 and σ2 are updated during the adaptation 

law procedure. 
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Figure 2. A typical interval type-2 fuzzy Gaussian membership function with uncertain standard deviations 

Hereafter, the interval type-2 fuzzy set is presented together with the inference logic system 

associated with the type-2 fuzzy set. Typically, a fuzzy logic system comprising a minimum of one type-2 

fuzzy set is considered as a type-2 fuzzy logic system. The interval type-2 fuzzy set  ̃ in domain   can be 

described as follows [37]: 

 
 

1

0 1xu J
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x X
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A J
x







 
 
   




                                                                                                        (22) 

where    is the footprint of uncertainty of the fuzzy set  ̃, and x and  ̃ are the primary and secondary 

variables defined in the domain X. The framework of a typical fuzzy type-2 system for given M rules and 

q inputs can be presented as: 

 

Rule
i
: IF   is  ̃ 

 and   is  ̃ 
 …  is  ̃ 

  THEN   is        i=1,2,…,M                                             (23) 

where   (          ) denotes the input vector to the type-2 fuzzy system, { ̃ 
   ̃ 

     ̃ 
 } is an 

interval type-2 fuzzy set,   represents the descendant linguistic variables, and    [  
    

 ] is regarded as 

model output comprising the upper and lower membership functions   
  and   

 , respectively. The 

multilayered output of the employed T2FNN system can be expressed as follows: 

Layer 1: In this layer, the crisp values are imported to the network as the inputs. 

Layer 2: In the second layer, the upper and lower MFs are defined and the outputs of type-2 

membership functions are derived. Each of the upper and lower MFs are assigned a degree of 

membership using the nodes, which carry a certain mean value μ but uncertain standard deviations σ1 and 

σ2 for the upper and lower MFs, respectively, defined as: 

  

 
(  )     ( 

 

 
(
     

 

  
 )

 

)                                                                                                             (24) 

  
 
(  )     ( 

 

 
(
     

 

 
 
 )

 

)                 

where  
 

 
(  ) and   

 
(  ) are the upper and lower types of the firing degrees associated with the outputs of 

 
th
 upper and lower membership functions, respectively and the q

th
 input.  Additionally,   

 
 is the mean and 

  [  
 
   

 
] are of the uncertain widths of the  

th
 upper and lower membership functions for the q

th
 input, 

respectively.  

Layer 3: In this layer, where each node is so-called rule node, the product operation is implemented on 

the inputs from the output of Layer 2 in order to derive the upper and lower firing strengths. The nodes 

are associated with the rules, where a total of M rules are available for each of the upper and lower

functionsthatdefinethefiringdegrees,suchthat: 
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 ̅      
 ̃ 
       

 ̃ 
         

 ̃ 
 (  )                                    

         ̃ 
        ̃ 

          ̃ 
 (  )                                                                                   (25) 

where  
 ̃ 
  and  

 ̃ 
 are the i

th
 upper and lower degrees of membership, respectively.  

Layer 4: In this layer, the type-reduction procedure is performed and the outputs    and    are 

described according to [38,39]. For the center-of-sets defuzzification method, each rule consequent is 

determined by a singleton position at its center and the output expression is defined by the Karnek-

Mendel-Liang iterative method [39], expressed as: 

   
∑     

  
    ∑  ̅   

  
     

∑    
    ∑  ̅  

   

                                                                                                             (26) 

   
∑     
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∑    
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where   
  and   

  are the consequent parameters in the i
th
 rule for the upper and lower firing rules. The 

parameters R and L are used in the type reduction procedure based on Karnik–Mendel (KM) [39]. As 

mentioned in the third layer, there are a total of MrulesfortheupperandlowerMFs.Therefore,  
  and 

  
  are the weighting factors related to the outputs    and   , which can be expressed as: 

  
      

    
        

        

  
    ̃  

    ̃
      ̃  

   ̃                                                                               (27) 

 

where    denotes the inputs to the T2FNN, q is the number of inputs and   ̃
  and   ̃

  represent the adaptive 

parameters corresponding to the i
th
 MF and  
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 input that are updated. By assuming    ∑    
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⁄ , (26) can be expressed as: 
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where   
  [  

    

 
],   
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],   

  [  
    

 
], and   

  [  
    

 
]. 

Layer 5: Finally, the outputs are obtained by averaging of the two terms in (28). 

  
       

 
                                                                                                                             (29) 

where    represents a general weight vector and   denotes multilayer perceptron vector for estimation of 

output   according to the upper and lower outputs of T2FNN  in (28). 

4. Switched multi-sliding manifold T2FNN Controller 

The unknown and bound-limited functions      and      in (12) together with the control effort,        

describe lateral dynamics of the vehicle, while ensuring minimal lateral offset and stability of the closed-

loop system. The aforementioned unknown functions can be estimated from a T2FNN system through the 

respective terms  ̂( ̂   
 ) and  ̂( ̂   

 ). These functions are optimal estimated functions related to      

and      realized by the optimal parameter vectors   
  and   

  such that:  
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where the vector of parameters    and   are comprised of T2FNN parameters μ, σ1, σ2,   
  and   

  as 

defined in Section 3. Using Taylor’s linearization, the difference between T2FNN estimated and 
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optimal estimated functions related to      and      can be expressed as: 

 ̂ (    
 )   ̂(    )  (  
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]       (|  
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where      (|  
    |

 
) and      (|  

    |
 
) represent higher order terms for each of the functions, 

respectively. Furthermore, the functions      and     , being estimated by the T2FNN system, can be 

defined in terms of   
       and   

       with errors       and      , respectively:  

 ̂(    )    
                       

 ̂(    )    
                                                                                                              (32) 

where 

   
  ̂(    )

   
    

   
  ̂(    )

   
                                                                                                                           (33)                                                          

where    [             ] and    [             ] are the vectors of the tuning parameters and 

      [                      ] and       [                      ] are the T2FNN variable vectors.  

The difference between the optimal function and T2FNN estimated function can be expressed as follows. 

{
 ̂ (    

 )   ̂(    )  (  
    )

 
          ̃        

 ̂ (    
 )   ̂(    )  (  

    )
 
          ̃        

                                                 (34) 

 

From (21), it was concluded that the control law can both reach a global asymptotic stability or a non-

convergent stability with a steady-state tracking error since    
   

  ̇    . Therefore, a hierarchical switched 

controller is designed based on an exponential-like-sliding-mode T2FNN system. 

 

Theorem 1. The system presented in (12), is asymptotically stable by adaptation laws and control input 

chosen as follows: 

 ̇         (    )

 ̇         (    )

 ̇       ‖  ‖ ‖ ‖    ( ̃ )

   [     ]  
      ̇    ‖  ‖                  

  ‖  ‖   

   
       

                                                 (35) 

where   ,   , and    are the adaptation rates,    is a positive constant,    and    are multiple sliding 

surfaces and   denotes the upper bound of the unknown but bounded disturbances.  

 

Proof. Let us also denote the difference of optimal and estimated functions of T2FNN based on  ̃    

 ̂    , where   is the external disturbance,  ̂     is the estimated disturbance as a function of the 

adaptive parameter   . Also consider multiple sliding surfaces:   

     ̇     

   ∫  ̃              
 

 

   ∫  ̃              
 

 

                                                                                                     (36) 

where   is a positive constant. The conventional reaching law for the sliding surface, 

 ̇                   with   and    being positive constants, degrades the system stability and 

introduces an inherent chattering of the controller input. Additionally, there is a buffeting switch zone 

close to the origin [40], an updated globally asymptotic reaching law is thus employed here such that: 
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 ̇     ‖  ‖                  
  ‖  ‖   

   
                                                                               (37) 

where   ,   ,   and    are arbitrary positive constants and ‖  ‖  is the infinity norm of the system where 

    
   

‖  ‖   . Consider a Lyapunov candidate function such as: 
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By taking the time derivative of      : 
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Considering that the function approximation errors       and       are small bounded magnitudes, it can 

be shown that ‖               ‖    where   is the appropriate and strictly positive gain factor. By 

adding a positive term     ‖  ‖ ‖ ̃  ‖, (39) can be rewritten as: 
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Equation (40) can be rewritten according to the time derivative of the vectors of the training parameters 

T2FNN system   ,    and    related to the functions of     ,      and disturbance   such that: 
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By considering the adaptation laws according to (35), (41) is reduced to: 

 ̇        ‖  ‖                
   ‖  ‖ 

   
                                                                     (42) 

In which case, the closed-loop system is globally asymptotically stable and the convergence of the 

tracking error    to zero in finite time is ensured in a robust manner. This completes the proof.■ 

5. Simulation results 

The effectiveness of the proposed adaptive robust control method is evaluated considering simulation 

scenarios involving two different maneuvers: a double lane change (DLC) and an S-curve (Fig. 3). The 

simulation scheme involving CarSim and MATLAB/Simulink co-simulations is also shown in Fig. 3. The 

simulation parameters are summarized in Table 1. The simulations are performed considering the road 

adhesion coefficient        and different constant forward velocities (vx =10, 20 and 30 m/s). The 

robustness of the proposed controller is also examined considering parametric uncertainties related to the 

tire cornering stiffness, road-tire adhesion coefficient and inertial parameters. These are represented by 

±10% perturbation about the respective nominal values, using a 2 Hz sinusoidal function together with a 
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raised-cosine pulse at t= 2s to account for the effect of sudden external disturbances. The purpose of the 

proposed controller is to achieve asymptotic convergence of the vehicle path-tracking error comprising an 

adaptive look-ahead term toward zero, while preserving the stability of the closed-loop system. The RMS 

and maximum    together with the heading error () are taken as the performance metrics for evaluating 

the proposed controller. In order to compare the effectiveness of the proposed controller, a type-1 fuzzy 

neural network (T1FNN) controller is also formulated and results are compared with those obtained with 

the proposed controller to further examine relative effectiveness of the proposed method. The simulation 

results are further compared with those of a linear quadratic regulator (LQT) and an active disturbance 

rejection control (ADRC) method, reported in [41]. The look-ahead time can be defined based on a 

variable speed look-ahead distance model [42]: 

  
      

 ̂        
 

  
  

                                                                                                                    (43) 

In which case, the look-ahead time for the vehicle at the nominal operating speed, vx =10, is about 0.2 s. A 

safety factor of 2 is used in order to regulate further distant look-ahead error.  

 

Figure 3. CarSim-Matlab co-simulation platform for autonomous path-tracking control 

 

Table 1. Simulation Parameters [41] 

Parameter (Unit) Value 

m, kg 1480 

  , kgm
2
 2350 

  , m 1.05 

  , m 1.63 

 ̂ , N/rad 67500 

 ̂   N/rad 74500 

 

A. DLC Simulation 

The autonomous vehicle and controller responses to the DLC maneuver are evaluated under nominal 

forward speed (         ) on a road with relatively lower adhesion coefficient (       . The lateral 

offset for the proposed controller is compared with that obtained using the T1FNN controller (Fig. 4). The 

results show that the T1FNN controller yields lateral offset magnitude within the range,           , 

which is considerably larger than that obtained by the proposed controller (            . The proposed 

controller holds the capacity to stabilize the path following error swiftly without any steady-state error, 



This is a pre-print version accepted for publication by Mechanical Systems and Signal Processing  

13 
 

which is primarily due to exponential-like sliding surface level of the hierarchical controller. A similar 

trend is also observed in the heading error response of autonomous vehicle with the proposed and T1FNN 

controllers, as seen in Fig. 4(b).  It is evident that the T1FNN controller yields substantial errors during 

each path-change of the DLC maneuver, while the variations the heading angle responses of both the 

controllers are consistent with the path curvature. Superior performance benefit of the proposed method is 

especially notable in the transient lateral-offset response, which is of greater significance during critical 

maneuvers such as lane changing or collision avoidance. The path-tracking performance of the 

autonomous vehicle in the global coordinate system is also illustrated in Fig. 4(c). The proposed 

controller tracks the desired trajectory during the entire simulation period with the absence of overshoot 

and steady-state error. However, the T1FNN controller returns to the desired trajectory after the two 

overshoots between 55-65 m and 75-95 m of the longitudinal travel, which may be indicative of lower 

damping characteristics of the trained T1FNN system.  

 

a)                                                                      b) 

 

(c) 

Figure 4. Comparisons of a) lateral offset; b) heading angle trajectory-tracking; and c) global lateral position 

tracking performance of the proposed controller and T1FNN approach without a disturbance 
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a)                                                                                     b) 

 
c)  

Figure 5. Comparisons of: a) control effort; b) yaw-rate; and c) lateral acceleration responses of the proposed 

controller and T1FNN approach without a disturbance   

Figure 5 illustrates the control effort and the vehicle yaw-rate together with the lateral acceleration 

responses of the vehicle with the T1FNN and the proposed controllers. The control demand, presented in 

terms of steer angle, is considerable smaller for proposed controller compared to the T1FNN method, 

especially in the peak demand regions. This can be attributed to the switched hierarchical control strategy 

which contributes to decrease in control effort according to the dynamics of tracking error. A similar 

trend is observed for the vehicle yaw-rate variations obtained from the two control strategies. The 

proposed method also maintains vehicle yaw-rate within a relatively smaller bound, which contributes to 

lower tire side-slip and thereby lower lateral force demand in undertaking the desired maneuver. The 

smooth variations in lateral acceleration response in the transient mode and during the entire simulation 

range is the result of a smooth asymptotically convergent steering input of the exponential-like-sliding-

mode T2FNN  controller, when compared to the T1FNN controller (Fig. 5(c)).  

 

a)                                                                                                         b) 
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c)  

Figure 6. Comparisons of: a) control effort; b) lateral acceleration; and c) global lateral position responses of the 

vehicle with the proposed controller and the T1FNN approach in the presence of a disturbance 

Table 2. Comparisons of rms and maximum values of tracking errors obtained from the proposed controller and the 

ADRC and LQT [41] methods.  

Performance Metric ADRC LQT  Proposed method 

rms    (m) 0.2207 1.1049 0.0188 

maximum    (m) 0.5592 1.7757 0.0292 

rms    (rad) 0.0178 0.0592 0.0016 

maximum    (rad) 0.0363 0.1456 0.0019 

 

Table 3. Comparison of RMS and maximum values for tracking errors at different longitudinal speeds 

Performance Metric 10 m/s 20 m/s  30 m/s 

rms    (m) 0.0188 0.0852 0.1012 

maximum    (m) 0.0292 0.1196 0.1385 

rms    (rad) 0.0016 0.0021 0.0026 

maximum    (rad) 0.0019 0.0029 0.0033 

 

The results obtained from the proposed controller are also compared with those obtained from the ADRC 

and LQT algorithms [41] in Table 2 for the DLC maneuver in terms of rms and maximum values of path-

tracking performance. It is evident that the proposed controller yields substantially lower lateral offset and 

the heading angle errors compared to the ADRC and LQT (Linear Quadratic Tracking) methods. The 

LQT method reported in [41] yields highest tracking errors compared to the other methods considered. 

Moreover, the LQT method is known to exhibit certain limitations for typical disturbed linear systems 

and external disturbances.  

The lateral stability of the vehicle is strongly affected by the forward speed, which imposes considerable 

variations in the lateral force and centrifugal acceleration in addition to the look-ahead time as it is 

evident from (43). The tracking performance of the autonomous vehicle is thus further evaluated 

considering the DLC maneuver at relatively higher speeds of 20 m/s and 30 m/s, and the influences on the 

performance metrics of the vehicle with the proposed controller are summarized in Table 3. The DLC 

maneuver at a higher speed requires its completion within a shorter time span, and thereby more abrupt 



This is a pre-print version accepted for publication by Mechanical Systems and Signal Processing  

16 
 

path changes. Such maneuvers impose more complex path tracking performance demand for the 

controller achieve low as well as high damping ratios for tracking the trajectory swiftly, and for 

minimizing the overshoot and steady-state error, respectively. The rms and peak tracking errors observed 

for different forward speeds, considered as the performance metrics, are summarized in Table 3. The 

results suggest only slightly higher tracking errors with increasing speed, although more abrupt path 

changes are performed at higher speeds. Despite the slight increase in the tracking error, the proposed 

controller revealed superior path tracking during the entire simulation span in a robust manner. 

The robustness of the proposed controller is also investigated considering parametric uncertainties related 

to the tire cornering stiffness, road-tire adhesion coefficient and inertial parameters. There parameters are 

perturbed ±10% about the respective nominal values using a 2 Hz sinusoidal function. Furthermore, a 

raised-cosine pulse signal starting at t=2s is introduced to examine robustness against sudden variations in 

the external disturbance applied to the system. The performance of the proposed and T1FNN controllers 

are compared to evaluate relative effects of integrated uncertainty and external disturbance. Figure 6 

illustrates the controllers’ responses in terms of control input, lateral acceleration and lateral offset error. 

It can be seen that the perturbed parameters significantly affect the transient performance of the T1FNN 

in terms of the controller demand. The lateral acceleration of the vehicle in the transient state is thus 

considerably higher. While the control effort for the proposed controller exhibits smooth variations in the 

transient state at the onset of the motion, it is slightly higher in the vicinity of the steering reversals when 

compared to that of the T1FNN control. Moreover, the proposed controller yields only slightly higher 

lateral path-tracking error in the presence of the uncertainties and external disturbance, while the T1FNN 

approach exhibits substantially higher path error, as evident in Fig. 6(c). This is partly due to the switched 

hierarchical control strategy and the smooth global asymptotic stability of the proposed adaptive control 

law together with the robustness of the fuzzy type-2 sets.   

B. S-Curve Simulation  

The performance of the proposed controller is further evaluated under a S-Curve maneuver at the nominal 

forward speed (         ) on a relatively low adhesion road surface (       . The control demand 

and vehicle yaw-rate responses obtained for the two control strategies are compared in Fig. 7. The results 

further confirm smooth variations in the control signal of the proposed controller at the onset of the lateral 

motion of the vehicle. Substantially higher control effort, however, is evident for the T1FNN controller in 

the transient state, as seen in Fig. 7(a). The exponential-like-sliding-mode T2FNN controller resulted in 

rapid path following response with lower overshoots and steady-state errors, when compared to the 

T1FNN counterpart. This is also evident from substantially higher peak yaw-rate response of the vehicle 

employing the T1FNN controller, which is nearly 5 times greater than that obtained with the proposed 

controller. This contributes to considerably higher heading angle error of the T1FNN control method, 

when compared to the proposed control, as seen in Fig. 8(a). It should be noted that, the heading error 

does not converge to zero for both the control frameworks, which is attributed to requirement of a 

nonzero side-slip angle for smooth tracking of the curved path. Large heading angle error also contributes 

to substantially higher lateral offset of the T1FNN controller, as seen in Fig. 8(b). The peak lateral offset 

approaches as high as 0.21 m, which is significantly higher than 0.02 m obtained for the proposed 

controller. The path-following performance of the two control methods in the global coordinates is also 

compared in Fig. 8(c). The results suggest only marginal tracking error of the proposed method with 

negligible overshoot and steady-state error.  
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a)                                                                                                         b) 

Figure 7. Comparisons of: a) control demand; and b) vehicle yaw-rate response obtained with the proposed and 

T1FNN control strategies during an S-curve maneuver 

 

a)                                                                                                         b) 

 

c)  

Figure 8: Comparisons of: a) vehicle heading angle error; b) lateral offset; and c) global lateral position of the 

autonomous vehicle employing the proposed and T1FNN controllers (S-curve maneuver) 

6. Conclusion 

The path-following of autonomous vehicles continues of considerable interest due to hard system 

nonlinearities, disturbances, modeled and unstructured uncertainties, and input saturation, which directly 

affect the tracking error and stability of the vehicle. This study proposed two approaches to address path-
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following via kinematic model adjustments, and via a control algorithm development. Firstly, a quadratic 

error term based on the heading angle error is introduced for predicting future lateral offset errors using 

the kinematics response of the model. This model correction is subsequently employed to enhance the 

path following process based on a look-ahead strategy, which can considerably decrease the overall 

steady-state errors related to the vehicle lateral offset. Secondly, a hierarchical control scheme is proposed 

for the robust disturbance rejection performance of the vehicle arising from the environment and the 

uncertainties related to the parameter perturbations. The reaching law related to the sliding mode degrades 

the system stability and introduces an inherent chattering of the controller input. Additionally, there is a 

buffeting switch zone close to the origin, and thereby the convergence law for the sliding surface is 

adjusted in this paper based on a variable exponential sliding law. Simulation results obtained under 

different directional maneuvers at different speeds demonstrated superior path-following performance of 

the proposed control method when compared to other reported methods.  
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