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Abstract 

The modeling of human body response to whole body vibration has been a challenging task 

owing to the complex dependence on various factors related to anthropometry, and sitting and 

vibration conditions. This paper addresses the functionality of Artificial Neural Network (ANN) 

for prediction of seated body apparent mass under different levels of vibration excitations in the 

0.5-20 Hz frequency range, while assuming two different sitting postures (with and without a 

back support). A multilayer feed-forward neural network with back propagation (BP) algorithm 

was developed with various structures to identify an optimal configuration. From preliminary 

simulations, a neural network structure with 20 neurons in the first and 20 neurons in the second 

hidden layers was selected, which resulted in least mean square error, MSE, and highest 

coefficient of determination R
2
, when compared to those of the other model structures 

considered. Portions of the measured data acquired with 51 adult male and female subjects were 

used in the training and testing phases, which revealed MSE magnitudes of 4.83 and 5.97 kg
2
, 

respectively, with R
2
 values in excess of 0.96. Subsequently, the predicting ability of the model 

was assessed using the datasets for 14 unforeseen subjects. It was inferred that a well-trained 

ANN has the capacity to predict biodynamic responses of seated subjects as functions of the 

body mass, vibration magnitude and support condition. The model could predict the primary 

resonance frequency and the corresponding magnitude while the validity in predicting the 

responses were obtained at MSE of 2.13 and 1.83 kg and with R
2
 values in excess of 0.98 for the 

male and female subjects, respectively.  

Keywords: artificial intelligence; seated body biodynamic response; apparent mass; vibration 

biodynamics 

1. Introduction 

Occupational exposure to low frequency and high magnitude whole body vibration (WBV) of 

vehicles, especially off-road-vehicles, has been associated with discomfort, reduced performance 

rate and various spinal disorders among the exposed drivers [1]. The biodynamic response of the 
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seated body exposed to WBV, widely expressed in terms of apparent mass (AM), has been 

considered to serve as an essential basis for an understanding of mechanical properties and 

thereby the vibration responses of the human body [2]. The AM is defined as the transfer 

function between the dynamic force developed at the body-seat interface and the acceleration 

beneath the ischial tuberosities in the frequency domain [3]. The AM of the seated body has been 

widely characterized experimentally, which invariably show highly complex dependency of the 

responses to many factors, especially the nature of vibration (magnitude and frequency). A 

deterministic characteristic, however, is that the apparent mass magnitude increases to a peak 

value at a frequency near the resonance frequency (≈5 Hz), while it decreases with further 

increase in the frequency [4-7]. The measured response data have been used to build biodynamic 

models for deriving vibration power absorption by the body [8], frequency-weightings for 

assessments of exposure risk, and for applications in seating [9-12] and vehicle suspension 

designs [13]. In order to distinguish the uncoupled biodynamic responses of the body at the seat-

human interface, such analyses have been performed with individuals sitting on rigid seats.  

Although considerable efforts have been made in deriving biodynamic models of the seated 

body, their applications have met only limited success thus far. This is due to highly nonlinear 

effects of a broad range of factors that can affect the human body response such as 

anthropometric factors, gender, vibration characteristics (magnitude and frequency) and sitting 

posture [2]. Moreover, the vast majority of response analyses have been limited only to vertical 

vibration, which is likely due to relative higher magnitudes of vertical vibration induced by 

either road or off-road surfaces than those in the other directions. The response analyses under 

vertical vibration are thus of greater concern for occupant health issues.  

The biodynamic responses to vibration have been analyzed using different approaches such as 

experimental, and modeling and simulations using multi-body dynamic and finite element 

methods [3,14]. The models developed for characterizing apparent mass have also been used for 

predicting seat-to-head vibration transmissibility (STHT) [10,15]. The biodynamic models, 

however, are invariably identified from the measured data and the ranges of biodynamic 

responses that have been standardized (ISO-5982) [16]. An expedient FEM approach can not 

only be used to model the complex human body responses, but also the coupled body-seat 

responses and the local effects such as stress distribution and forces between spinal vertebrae foe 

understanding the injury mechanisms [14]. The ability to achieve body responses to multi-axis 

vibration is an added value of FEM models. Such models, however, impose complex challenges 

in characterization of soft tissues and their properties, apart from excessive computational 

demands to achieve a robust model. 

The vast majority of the reported models have employed multi-body and lumped-parameters 

modeling approaches, wherein the biodynamic response such as AM and/or (STHT) responses 

are evaluated through attribution of mass-damping-stiffness parameters of the body segments 

[17]. Unlike the lumped-parameter models, the multi-body dynamics approach incorporates the 
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body anatomy including the geometric and inertial properties of body segments and various 

joints by equivalent visco-elastic properties [18-19]. In both the approaches, the model 

parameters are obtained on the basis of mean measured data or the data for a specific individuals, 

and particular vibration magnitude and sitting condition. Such models are thus considered 

applicable in the vicinity of the conditions considered for parameter identification, namely, the 

body mass, gender, sitting posture and magnitude of vibration. The measured data, however, 

exhibit large inter-subject variabilities, which have been attributed differences in gender, 

anthropometric dimensions, and vibration and sitting conditions [6,12]. The reported models thus 

cannot be applied for the general population of drivers, and different vibration and sitting 

postures that are encountered during vehicle driving. Alternate modeling approaches that can 

incorporate nonlinear dependence of the biodynamics to various factors are thus desirable to 

enhance general applicability of the models for seating and suspensions designs, and more robust 

assessments of exposure risks.  

Artificial intelligence has demonstrated its promising potentials for modeling of broad spectrum 

of phenomena in science and engineering. When compared to the analytical, phenomenological 

and statistical approaches, these methods can deal with problems that have a considerable degree 

of nonlinearity in the system or where a process is stochastic [20]. The artificial neural network 

(ANN) is an artificial intelligence (AI) technique, which has been widely used for output 

prediction, classifications, data fitting, and pattern recognitions of complex systems [21]. The 

core ideology is to construct optimal structures for analysis of the data. ANNs consist of 

numerous analyzing components, known as neurons, which are tightly interconnected or 

structured in multiple layers through appropriate weights in order to identify robust input-output 

patterns. ANN has the advantage of independence to damaged neurons and a segmentation of 

missing data, and can work even in the presence of some outliers through adoption of outlier 

detection and removal [21]. Moreover, in ANN, the neural representation established from the 

training phase can effectively predict outputs under a modified or new input values and re-

establish the condition identified as a testing procedure. 

The ANN approach is perhaps well-suited for predicting highly nonlinear vibration biodynamic 

responses of the seated human body. Only a few attempts, however, have been reported during 

the past few years on the applications of ANN for characterizing human body response to 

vibration [22-27]. Gohari et al. [23], proposed an ANN model for predicting the seat-to-spine 

acceleration transmissibility on the basis of data obtained with five adult male subjects seated in 

erect posture and exposed to harmonic vertical vibration at the pelvis. The study employed a 

feed-forward back propagation training algorithm using the input and response acceleration 

measured at the body surface near the spinous process of the L3 vertebra. The authors used the 

same approach to construct the ANN model using head acceleration data acquired in the same 

experiment together with different training algorithms and two different sizes of hidden layer 

[24]. This approach, however, can increase the computational complexity of the model 

considerably. The ANN has also been employed in a recent study [25] to facilitate seat-
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suspension for a class of off-road vehicles. The five different ANN models were formulated 

using the vibration attenuation properties of five different suspension seats subject to field-

measured excitations due to different vehicles. Good performance of the resulting five different 

models for the five seats, obtained with total training data size of 170, was demonstrated. This 

approach may have some practical implications since a model is developed for each seat as 

opposed to a general model applicable to all seats.  

It has been widely suggested that biodynamic models of the human body need to be developed 

for representative body mass, and postural and vibration conditions for effectively predicting the 

behaviour of the biological system and thus the potential injury mechanisms leading to a viable 

dose-response relationship [28-30]. Such models could further provide improved assessment 

methods and designs of effective interventions. As stated above, the ANN approach offers good 

potential for predicting highly nonlinear vibration biodynamic responses of the seated human 

body. The potential of this approach to deal with a holistic problem involving significant 

variabilities, however, needs to be assessed. To the best of authors’ knowledge, the application of 

the ANN method for biodynamic modeling of the seated body under varying experimental 

condition has not yet been attempted. Owing to the limited applicability of the reported 

biodynamic models due to complex and nonlinear dependence of the vibration biodynamic 

responses on many factors, this study proposes the ANN modeling approach for predicting the 

AM responses over broader ranges of body mass, and vibration and posture-related factors. In 

Section 2, the AM response characteristics and the procedure to acquire measured data under 

different body mass, vibration excitation and sitting posture are described. In this regard, 

dividing the AM responses of 51 adult subjects into three sets for training, testing and validation 

after a preprocessing task for the removal of outliers are described in Section 3. Some portions of 

data should remain intact and unforeseen to the developed ANN model for the final verifications. 

Different training algorithms, transfer functions, and hidden layer configurations will be 

employed to identify the optimal representation. The outperforming model in terms of the least 

MSE and higher R
2
 will be used for the prediction of AM responses, while the capacity of the 

developed model for tracking the inter-subject variability effect on AM responses will be of 

interest. Section 3 and Section 4 are dedicated to the results and discussions and concluding 

remarks, respectively.     

2. Apparent Mass Response Characteristics 

The biodynamic responses of the human body exposed to WBV have been widely characterized 

experimentally under broad ranges of vibration and postural conditions, which are expressed by 

the force-motion relation at the driving-point, namely, mechanical impedance or apparent mass, 

and by functions describing the flow of vibration through the body, such as seat-to-head and 

body segments vibration transmissibility. These have been mostly expressed in terms of AM due 

to relative ease of its measurement, which invariably show large inter-subject variability, and 

strong effects of body mass, vibration excitation and sitting posture [1]. For realizing a reliable 
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model, it would be desirable to acquire measured data under different vibration and sitting 

conditions, apart from subjects of different body mass. In this study, the AM data acquired for 51 

adult subjects, including 27 males and 24 females, acquired in an earlier study [7], are used. 

Briefly, selected subjects were free from musculoskeletal disorders such as back injuries and low 

back pain. The anthropometric characteristics of the subjects in terms of age, stature, body mass 

and body mass index (BMI) are summarized in Table 1 in terms of minimum, maximum, mean 

and standard deviation of the mean. Prior to the measurements, the experimental procedures and 

safety guidelines were described to each subject and each subject was asked for consent of the 

protocol that had been approved by the Human Research Ethics Committee of Concordia 

University.  

In order to obtain the dynamic force data at the seat, a rigid seat with a 449×456 mm horizontal 

seat pan and a vertical backrest was installed on a whole body vertical vibration simulator 

(WBVVS) platform by means of a force plate. A uniaxial accelerometer (B&K 4370) was 

mounted on the force plate to measure the vertical acceleration of the platform. Additionally, a 

steering column with a steering wheel was provided as hands support for the subject. Each 

subject was asked to sit on the seat with and without the back support. The measurements of the 

driving-point force were performed under three different levels of white noise random vibration 

with flat acceleration PSD. The vibration excitation was synthesized using a vibration controller 

(VR 9500, Vibration Research Corp., Jenison, MI, USA) so as to attain overall rms accelerations 

of 0.25, 0.50 and 0.75 m/s
2
. The force and acceleration signals were acquired in a multi-channel 

spectral analysis system (B&K PULSE 11.0, Atlanta, GA, USA) using a bandwidth of 50 Hz. 

The data during each measurement was acquired for 60s, and each measurement was repeated 

twice. The acquired data were analyzed with 75% data overlap and frequency resolution of 

0.0625 Hz which resulted in 12 spectral averages [13]. The complex AM response was computed 

from: 

 (  )  
   (  )

  (  )
                                                                                                                  (1) 

where SaF(jω) is cross-spectral density of the measured force and acceleration and Sa(jω) is auto-

spectral density of acceleration, and M(jω) is the complex AM corresponding to excitation 

frequency ω. The computed AM was inertia corrected to account for contributions of the mass 

due to seat and the force plate, as reported in [12]. The resulting transfer function was 

subsequently expressed in terms of AM magnitude and phase responses of each individual. The 

means of two trials of each measurement were obtained to examine intra-subject variability. A 

trial was rejected when peak deviation in the frequency corresponding to the peak magnitude 

exceeded 10%.   

3. Artificial Neural Network Modeling  
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The ANN architecture is formulated considering the data acquired for 51 adult subjects including 

27 males and 24 females with different body masses, three levels of rms acceleration excitation, 

and two levels of sitting postures. Considering the mean measured magnitude corresponding to 

each subject, excitation and posture combination, a total of 306 datasets were available. Each 

dataset was acquired in the 0.5 to 20 Hz frequency range using a frequency resolution of 0.0625 

Hz, which resulted in 313 data for each set. Some of these datasets revealed dominant 

frequencies either well below or above the expected fundamental resonance frequency in the 4 to 

6 Hz range. A total of 34 datasets showing dominant frequency outside this range were thus not 

included. It is desirable to use relative greater number of datasets for training the ANN model, 

while fewer datasets may be retrained for the testing and validation phases. In this study, a total 

of 14 datasets were not included in the ANN modeling but retained for final testing of the model. 

The 14 datasets were selected from the different mass groups, genders excitation levels, and back 

support condition in order to reveal the effects of all inputs on the ANN predicted AM responses. 

The remaining 258 datasets were used for training (154), testing (52), and validation (52). These 

also provided a total of 80754 AM magnitude data points (258×313). The model input was 

constructed to incorporate the essential factors influencing the AM response, namely, frequency 

and magnitude of excitation, body mass, gender, and back support condition. Consequently, an 

input matrix of 80754×5 was generated to serve as the model input.  

Multilayer perceptron (MLP) among the class of feed-forward networks has the capability of 

universal approximation of nonlinear phenomena and complex systems. Hence, a multilayer 

feed-forward neural network with back propagation (BP) algorithm was employed. The MLP 

neural network architecture consists of one input layer comprising 5 main factors (frequency of 

vibration, body mass, gender, back support condition, magnitude of vibration), one output layer, 

and two hidden layers, as shown in Fig. 1. Two hidden layers are chosen due to large size of the 

data and complex dependence of the response on selected factors (body mass, gender, and sitting 

and vibration conditions). 

The challenging tasks for developing ANN models are to identify optimal number of neurons in 

each hidden layer, number of hidden layers, training algorithms, transfer functions, and tuning of 

learning rate and momentum. Determination of an optimal number of hidden layers generally 

involves difficult tradeoff between the prediction ability and computational demand of the 

model. The preliminary simulations performed with the ANN model with a single hidden layer 

revealed poor predictions of the AM over the entire range of body mass and excitation levels. 

The MLP neural network with two hidden layers with neurons ranging from 1 to 20 was 

subsequently employed, which showed improved convergence in terms of mean squared error 

(MSE). It is noteworthy that employing greater number of neurons in each hidden layer entails 

the over-fitting drawback, which reduces the forecasting ability of the model [21]. The neurons 

within the selected range did not exhibit over-fitting, ensured smooth learning of the ANN model 

and provided good correlations between the predicted and measured responses during the cross-

validation phase. 
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The network selects the weights and biases in a random manner at the start of training phase, 

which not only entails greater computational demands but also may not yield satisfactory model 

performance. In order to overcome this drawback, each structure was trained three times so as to 

minimize the effect of random adoptions of weights and biases. Although increasing the number 

of repetitions may result in convergence toward zero MSE, it will impose excessive 

computational demands. The preliminary simulations revealed that the convergence towards 

minimal MSE could be realized within 700 iterations. Subsequently, the network structure with 

least MSE over 700 iterations was explored. To ensure that each input variable provides an equal 

contribution in the ANN simulation and to reduce the challenge of numerical instability in the 

process of adjusting the weights, the inputs to the model, excluding the gender and back support 

condition, were normalized and scaled into the numeric range [0, 1], such that:  

min

max min

r
n

X X
X

X X





                                                                                                                        (2) 

where Xn denotes normalized input variable, Xr is raw input variable, and Xmin and Xmax denote 

the minimum and maximum values of the raw input variables, respectively. 

Although it is not common to include qualitative inputs in the ANN models, however, gender 

and sitting posture had to be introduced to the model. The gender was described as an input with 

the numeric value of 0 and 1 for the male and female subjects, respectively.  Similarly, the sitting 

condition input was also described either 0 or 1 representing sitting without and with a back 

support, respectively. Both the gender and sitting posture inputs thus conformed to the 

normalized range of other inputs and were processed through the weights, biases and the transfer 

functions.   

The logsig transfer function was selected that is compatible with the normalization range of input 

variables since it is known to show least sensitivity to the numerical method for computing the 

differentials. Moreover, the adaptive characteristic of logsig facilitates the operations over the 

entire range of inputs, which yields significantly higher slope of the transfer function curve under 

small input magnitudes and substantially lower slope under higher input magnitudes. This 

enhances the rate of the learning performance of the network.  

Back propagation (BP) training algorithm employs the iterative-based gradient descent 

optimization technique to minimize the mean square error between the actual and predicted 

output. In this manner, the synaptic weights are updated in an iterative manner until the 

predefined goal of realizing either 0 or a minima of MSE within the preset 700 iterations is 

attained. Levenberg Marquardt training algorithm (trainlm) has been employed, which is known 

to yield rapid convergence during the training phase by updating the weights and biases 

according to the Levenberg Marquardt (LM) optimization approach [31]. The reliability of any 

neural representation is generally verified using different statistical indices for quantifying the 

closeness of the actual and predicted outputs [32]. In this study, the mean square error (MSE) 
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between the predicted and actual AM magnitude and the coefficient of determination (R
2
) are 

adopted to evaluate performance of the ANN. 

4. Results and discussion 

4.1. Neural Network performance 

The gradual and continuous increment of neurons in the hidden layer is a crucial step in ANN 

model development to reach a comprehensive representation including the effect of number of 

neurons in the hidden layer(s), which may vary widely. Figure 2(a) illustrates the effects of 

number of neurons, ranging from 1 to 20, in the two hidden layers on the resulting MSE. The 

figure shows the mean error obtained for three repetitions of each configuration. Determination 

of optimal number of neurons leading to minimal MSE is generally the most challenging during 

the network training. Increasing the neurons in both layers gradually reduces the error, although 

in a non-smooth manner. The non-smooth trend in MSE suggests instability in the learning 

process, which is due to random selection of weights for the neurons corresponding to each 

updated configuration. The training with repetitions of each configuration helped realize 

relatively smaller variation in MSE with varying number of neurons. Higher neurons lead to 

higher synaptic weights, which are adjusted by the BP optimization algorithm during epochs, and 

thereby the minimal error. Increasing the number of neurons, however, may lead to saturation of 

weights and over-training. The results in Fig. 2(a) suggest a tendency towards saturation of MSE. 

The least MSE of 4.83 kg
2 

is obtained in the search space at the topological configuration of 20 

neurons in the first and 20 neurons in the second hidden layers‎, while the inter-layer variability 

effect on the training MSE is illustrated in Fig. 2(b). Figure 2(c) illustrates the error histogram, 

which signifies that the model training follows a nearly normal error distribution (shifted 

Gaussian function). The results also show that a total of 155 ANN models could yield MSE in 

the 6 to 6.5 kg
2 

range, while only three structures provide lower MSE ranging from 4 to 4.5.  

Figure 3(a) illustrates the effects of number of neurons in the hidden layers on the resulting MSE 

during the testing phase, while Fig. 3(b) shows the surface contour plot of inter-layer variability. 

The results show convergence towards relatively higher MSE compared to that observed in the 

training phase. Moreover, the variations in MSE are also higher. This is mostly attributed to the 

use of unforeseen data (52 datasets) in the testing phase. The histogram of the MSE, shown in 

Fig. 3(c), suggest highest density of models in the 7 to 8 range, while only three topologies yield 

lower MSE ranging from 5 to 6 kg
2
. The histogram also appears to follow nearly Gaussian 

distribution, although slightly shifted as observed in the training phase.   

Figures 4(a) to 4(c) illustrate scatter plots of AM magnitudes predicted from the optimal network 

configuration during the training, validation and testing phases, respectively, and the target AM 

data. These figures show coefficients of determination in excess of 0.96, suggesting very good 

correlations between the target and predicted AM magnitudes during all three phases. This is 
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also evident from nearly unity slope and negligible intercept of the best fit lines in all three 

phases.  

4.2. Apparent mass response predictions of the model 

The effectiveness of the optimal network configuration is evaluated using the 14 datasets of 

subjects representing different body mass, excitation level, gender and back support condition. 

The datasets were obtained for 8 male and 6 female subjects with body mass ranging from 49.7 

to 104 kg and subject to whole body vibration excitation ranging from 0.25 to 0.75 m/s
2
 rms 

acceleration in the 0.5 to 20 Hz frequency range, while sitting with or without a back support. 

These datasets were not included in the training, testing and validation phases, and are used only 

to assess validity of the final model. These datasets were thus unforeseen for the network during 

all earlier trials. The inputs to the model included particular body mass, gender, excitation level 

and back support condition. The AM magnitude responses predicted for each subject and test 

conditions combination are compared in Figs 5 and 6 for the male and female subjects, 

respectively, to demonstrate validity of the model. The comparisons show that the ANN model 

can predict the AM response for the entire ranges of body mass, excitation level and back 

support condition considered in the 14 target datasets. The results show that the peak AM 

response of all the 14 subjects occurs in the 4.13 and 6.87 Hz frequency range, which is widely 

denoted as the fundamental resonance frequency. The ANN model predicted the primary 

resonance frequency and the corresponding magnitudes satisfactorily wherein the obtained 

results are suggestive of MSE of 2.13 and 1.83 kg and R
2
 values in excess of 0.98 for the male 

and female subjects, respectively. This range corresponds well with the frequencies identified 

from the target datasets, and the ranges reported in the literature [6,7]. Moreover, the peak AM 

magnitudes predicted by the ANN model converged to those of the target datasets for all the 

subjects considered. The ANN model, however, only predicted the secondary peak in the 7.5 - 

12.5 Hz range for 10 of the 14 subjects. This is likely due to relatively small magnitude 

secondary peak in the AM response, as seen in the figures. The model predicted the secondary 

resonance peak better for the female subjects (Fig. 6) than the male subjects. This is due to fact 

that the secondary peak is more pronounced in the female subjects’ responses [33]. The ANN 

model architecture proposed in the study could effectively capture the secondary peak for the 

female subjects, since it was trained for two discreet inputs (0 and 1) representing the male and 

female subjects.   

The predicted results, however, also show some deviations from the target values in both the 

resonance frequency and magnitudes. These differences may be considered within the intra-

subject variability observed in the data acquired during repeated trials over most of the frequency 

range, which has been reported in a number of studies [34,35]. The results in Figs. 5 and 6 show 

the substantial effects of gender, body mass and excitation magnitude on the resulting AM 

magnitude. For instance, the fundamental mode resonance frequencies of female subjects are 

lower than those of the male subjects. Moreover, the peak magnitude is strongly influenced by 
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the body mass and back support apart from the gender. The nonlinear effects of these factors on 

the AM responses have also been reported in [7,35].  

Figures 7 and 8 illustrate the effects of body mass, excitation magnitude and back support 

condition on the predicted AM responses of the male and female subjects, respectively. 

Increasing the body mass from 60 to 100 kg of male subjects and from 50 to 70 kg for female 

subjects leads to decrease in the primary resonance frequency and notably higher peak response. 

The AM transfer function tends to shift upward with increasing body mass, as seen in Figs. 7(a) 

and 8(a). A number of reported studies have shown this tendency in the measured AM responses 

[6,7,12,36]. It is also explicit from the developed ANN models that the subject mass is the 

greatest contributor to apparent mass magnitude response near the primary resonance frequency.  

Increasing the vibration magnitude yields only slight reduction in the primary resonance 

frequency and minimal increase in the peak magnitude, as seen in Figs. 7(b) and 8(b) for the 

male and female subjects, respectively. This tendency, referred to as body softening effect, has 

also been reported in other studies [12,34]. The primary resonance frequency and the 

corresponding AM magnitude varied in the order of 117.85±3.94 kg and 4.68±0.468 Hz, 

respectively, with the adoption of the back support for male subjects. With no back support, the 

primary resonance frequency and the corresponding AM magnitude were 4.72±0.07 Hz and 

125.64±4.62 kg. These suggest only minimal variation (< 1%) in the primary resonance 

frequency due to the effect of back support condition (Figs. 7(b) and 7(c)). For female subjects, 

the primary resonance frequency and the corresponding AM magnitude varied in the order of 

90.98±2.22 kg and 5.01±0.188 Hz, respectively, with a back support. The primary resonance 

frequency and the corresponding AM magnitude were obtained at 81.58±0.96 kg and 4.93±0.167 

Hz with no back support (Figs. 7(b) and 7(c)). The conclusion that vertical back support slightly 

affects the primary resonance frequency and the corresponding AM magnitude for the rigid seat 

is confirmed by others [6,7,37]. Irrespective of back support effect, the softening trend of human 

body response is also simulated by the developed ANN model. Figure 7(d) and 8(d) invariably 

show the decrease of AM magnitude of male and female subjects due to the back support effect 

according to the results reported by Dewangane et al., [7].  

The lumped-parameters models are developed through mass-damping-stiffness parameters for 

each individual subject in order to analyze the AM responses. Unlike the lumped-parameters and 

multi-body models where the model validity is limited to a certain subject, the developed ANN 

model herein has the capacity of estimating AM responses free of damping-stiffness parameters 

irrespective of each subject visco-elastic properties. The ANN model revealed a satisfactory 

performance within the evaluated range of inputs while the extrapolations may result in 

undesirable prediction errors of AM responses due to the inherent limitation of the neural 

network models. The future studies can investigate the methods of minimizing the extrapolation 

errors via updated pattern recognition techniques of AI.  
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5. Conclusions 

The predicting ability of artificial neural networks was investigated for modeling the seated body 

apparent mass under vertical whole body vibration. Different preprocessing and post-processing 

procedures such as outlier removal, normalization of inputs, and tuning of training parameters 

were carried out to achieve a model with minimum MSE for prediction of the seated body 

apparent mass under different levels of vibration excitations and frequency range. It was 

confirmed through the performance criteria that the outperforming architecture has the ability to 

predict the seated body response within the range of trained data, while an excessive 

extrapolation results in decreased prediction accuracy because the weight and bias are updated 

by BP training algorithm within the range of training dataset. ANN can be investigated as a 

promising tool to model biodynamic problems and can be employed to recognize the soft seat 

and human body interactions particularly if the model is trained well. It is recommended to 

hybridize meta-heuristic optimizations such as particle swarm optimization (PSO), ant-bee 

colony (ABC), and imperialist competitive algorithm (ICA) with ANN models to find the best 

weight matrix at a quick pace of convergence to the actual data. The upgraded ANN model by 

meta-heuristics can be then applied to the prediction of the human body response to vibration on 

the soft seats.  
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Fig. 1. The general multi-layered perceptron feed-forward ANN architecture with two hidden 

layers 

 
(a)  

(b) 

 
(c) 

 

Fig. 2. a) Effect of number of neurons on the MSE during training phase, b) Contour plot of 

MSE as function of neurons in two layers, and c) Histogram of the MSE in the training phase 
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Fig. 3. a) Effect of number of neurons on the MSE during testing phase, b) Contour plot of MSE 

as function of neurons in two layers, and c) Histogram of the MSE in the testing phase 
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(a) 

 

(b) 

 
(c) 

 

Fig. 4. Scatter plots of ANN model predicted and target AM response for (a) training, (b) 

validation and (c) testing phases  
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

(g)  
(f) 

Fig. 5. Comparison of AM response predicted by the ANN model with the target values for male 

subjects: a) mass=103 kg, excitation magnitude= 0.25 m/s
2
, NB, b) mass=81.9 kg, excitation 

magnitude= 0.25 m/s
2
, NB, c) mass=57 kg, excitation magnitude= 0.25 m/s

2
, NB, d) mass=72.5 
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kg, excitation magnitude= 0.5 m/s
2
, NB, e) mass=85 kg, excitation magnitude= 0. 5 m/s

2
, NB, f) 

mass=104 kg, excitation magnitude= 0. 5 m/s
2
, NB, g) mass=91 kg, excitation magnitude= 0.75 

m/s
2
, B, h) mass=82.7 kg, excitation magnitude= 0.75 m/s

2
, B 

(NB-No back support; B-Back support) 

 
(a)  (b) 

 
(c)  (d) 

(e)  (f) 

 

Fig.6. Comparison of AM response predicted by the ANN model with the target values for 

female subjects: a) mass=69 kg, excitation magnitude= 0.25 m/s
2
, NB, b) mass=61 kg, excitation 

magnitude= 0. 5 m/s
2
, NB, c) mass=69 kg, excitation magnitude= 0. 5 m/s

2
, B, d) mass=56.4 kg, 

excitation magnitude= 0.25 m/s
2
, B, e) mass=49.7 kg, excitation magnitude= 0. 75 m/s

2
, B, f) 

mass=72.5 kg, excitation magnitude= 0. 75 m/s
2
, B (NB-No back support; B-Back support)  
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(a)  (b) 

 (c) (d) 

Fig. 7. The AM response of male subjects predicted by the ANN model with respect to the 

frequency under the effect of a) subject mass; excitation magnitude=0.5m/s
2
 and NB, b) 

excitation magnitude; m=90kg and NB, c) excitation magnitude; m=90kg and B, and d) NB and 

B; m=90 kg and excitation magnitude=0.5m/s
2
. (NB-No back support; B-Back support)  
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(a)  (b) 

(c) 
 

(d) 

Fig. 8. The AM response of female subjects predicted by the ANN model with respect to the 

frequency under the effect of a) subject mass; excitation magnitude=0.5m/s
2
 and NB, b) 

excitation magnitude; m=65 kg and NB, c) excitation magnitude; m=65 kg and B, and d) NB and 

B; m=60 kg and excitation magnitude=0.75m/s
2
. (NB-No back support; B-Back support) 

 

 

 

Table 1. The anthropometric parameters and their corresponding values for the test subjects 

Maximum, Minimum, Mean, Standard Deviation 

Parameter Male (27) Female (24) All Subjects 

Age (years) 58,23,31.22,7.22 49,19,28.86,7.20 58,19,30.14,7.23 

Stature (m) 1.92,1.59,1.75,0.07 1.72,1.48,1.62,0.06 1.92,1.48,1.69,0.09 

Mass (kg) 106,55,80.55,15.39 72.5, 45.5, 59.09,8.01 106,45.5,70.03,16.29 

BMI (kg/m
2
) 34.98,19.95,26.06,4.29 26.3,15.8,22.3,2.71 35,15.8,24.3,4.02 
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