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Abstract 

Determination of the required energy for drawbar pull of agricultural tractors plays a 

significant role in the characterization of the quality of tractors during different 

operations. Assessment of the effect of some tire parameters on drawbar pull energy was 

performed utilizing a single-wheel tester in a soil bin facility. To this aim, the potential of 

a global searching soft computing approach (i.e. adaptive neuro-fuzzy inference system) 

with various membership functions was evaluated. The tire parameters of velocity at 

three levels of 0.8, 1 and 1.2 m/s, wheel load at three levels of 2, 3 and 4 kN and slippage 

at three levels of 8, 12 and 15% were applied to single-wheel tester while four installed 

load cells were responsible for the measurement of drawbar pull. It was concluded that 

drawbar pull energy is a direct function of wheel load, velocity and slippage. Hence, the 

greatest value of 1.056 kJ corresponded to the wheel load of kN, slippage of 15% and 
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velocity of 1.2 m/s. The outperforming model yielded mean square error and coefficient 

of determination values of 0.00236 and 0.995, respectively. 

Keywords: Artificial intelligence; ANFIS; Energy; Drawbar pull; Soil bin 

1. Introduction 

Much advancement in farming techniques and tools has been manifested since the 

increased demand for food owing to the increased global population. Employment of 

agricultural tractors for pulling various farming tools is therefore unavoidable in 

mechanized agriculture. Hence, investigations must be carried out to reach the optimal 

maxima of drawbar pull to perform different farming operations. Drawbar pull of a 

tractor is directly a function of the interaction between tire and soil at the soil-tire 

interface. During soil-wheel interaction, the soil beneath the tire is partially compacted 

leading to improved soil resistance and simultaneous tire is a substantial source of power 

loss. Studies indicate that about 20–55% of the power delivered to the tractor drive 

wheels is wasted in the tire–soil interaction. This energy is not only wasted but the 

resulting soil compaction created by a portion of this energy may be detrimental to crop 

production [1]. The detrimental effect of the soil physical characteristics as well as tire 

parameters on tractive parameters  such as rolling resistance (and therefore energy 

dissipation) has also been investigated on a sandy clay loam soil in an indoor tire traction 

testing facility [2]. Accordingly, this loss of energy by pneumatic tires has encouraged 

investigators to search for operational parameters that could improve the net traction ratio 

and tractive efficiency. 

There are studies documented in literature concerned with the evaluation of net traction 

of driving wheels [3]. It is known that the drawbar pull, travel reduction (slip), and rolling 



This is the pre-print version of the paper published by Journal of Energy 

3 

 

resistance are the main criteria to describe the traction behaviour of off road vehicles 

wherein the drawbar pull is influenced by the traction conditions such as soil and the tire 

parameters [4]. In order to assess the relationship between travel reduction and tractive 

performance, the experimental tests were conducted in a soil bin wherein an artificial 

neural network (ANN) model with a back propagation learning algorithm was developed 

to predict the tractive performance of a driven tire in a clay loam soil under varying 

operating and soil conditions [5]. In Ref. [6] the tire driving torque, drawbar pull, tire 

sinkage, position of tire lug, travel distance of the single wheel-tester and tire revolution 

angle were measured and it was observed that relationships of slip vs. sinkage and 

drawbar pull vs. slip showed high correlation. A comprehensive study was also 

undertaken to define the traction and tractor performance as affected by different tire 

parameters such as slip and forward speed [7]. The study led to the understanding on 

maximizing the fuel efficiency of the engine and drivetrain, maximizing the tractive 

advantage of the traction devices, and selecting an optimum travel speed for a given 

tractor-implement system. Different single wheel testing equipment was used to 

investigate tire performance and different mathematical methods were used to process the 

measured data [8]. In a study, field experiments on off-road vehicle traction and wheel–

soil interactions were performed on sandy and loess soil surfaces and the tests were 

carried out at nominal and reduced inflation pressures and at three vehicle loading levels: 

empty weight, loaded with 3.6 and 6.0 t mass (8000, 11,600 and 14,000 kg, respectively). 

Drawbar pull was quantified with a load cell, attached to the rear of the test vehicle and 

the front of the towed vehicle which provided drawbar pull to the test vehicle [9]. 

Tractive performance data were collected in the soil bins at the USDA-ARS National Soil 
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Dynamics Laboratory (Auburn, Ala.) for two tire types at two levels of travel reduction 

and three tire inflation pressure levels [10]. 

The complex nature of soil-tire interaction and the lack of any closed form mathematical 

description of the phenomena have driven researchers to employ stochastic soft 

computing techniques to successfully perform nonlinear modeling [11]. For the 

estimation of the rolling resistance of wheel as affected by velocity, tire inflation 

pressure, and normal load acting on wheel inside the soil bin facility, a 3-10-1 feed-

forward Artificial Neural Network (ANN) with back propagation (BP) learning algorithm 

was used with a great report on the ability of ANN to deal with the prediction of rolling 

resistance as an important index of energy dissipation [12]. Similar studies for the 

prediction of tractive parameters using ANN [13] and fuzzy logic system in a soil bin 

testing facility were performed [14]. Fuzzy logic system has also been developed to deal 

with the effects of tire parameters on contact area and contact pressure as influential 

parameters on the soil deformation an therefore energy loss [15]. In Ref. [16] a method 

for extracting data on regolith online with a planetary exploration micro-rover was 

introduced given that the method used a trained neural network successfully to map 

engineering data from an instrumented chassis to estimates of regolith 

parameters. Energy dissipation through the rolling resistance of off-road vehicles has 

been modeled using soft computing approaches by support vector regression [17] and 

prediction of energy efficiency by the use of artificial neural network [18] with the 

reports on the robustness of these methods. A multi-criteria based optimization method 

was also adopted to assess the minimization of energy loss of off-road vehicles [19]. 
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 Although the shared purpose of researchers is to predict the soil-wheel interactions, the 

stochastic nature of soil-wheel interactions and their dependence on several parameters 

interrupt the development of a general mathematical and classical-based model. 

However, this difficulty can be solved by use of nonlinear and complex calculation 

methods such as adaptive network-based fuzzy inference system (ANFIS). The main 

benefit of these models is that they do not need identifying functional relationships a 

priori; they self-organize their structure and adapt it in an interactive manner learning the 

underlying relationship(s) [20]. An adaptive network is a multilayer feed forward 

network in which each node performs a particular function on giving the input to the 

network [21].  

To the best knowledge of the authors, there is no study dedicated to the investigation of 

drawbar pull energy of driving wheels utilizing a single-wheel tester in soil bin facility 

and also applying ANFIS modeling tool. The main objective of this investigation is (i) to 

assess the influence of velocity, wheel load and slippage on drawbar pull energy and (ii) 

to prognosticate the objective parameter by the global search exploration approach of 

ANFIS. This paper is thus organized as following. In section 2, experimental data 

acquisitioning phase is described. In section 3, ANFIS approach is briefly discussed and 

the employed structures are introduced. In section 4, the results and discussions are 

presented. Section 5 is dedicated to the concluding remarks. 

2. Experimental data acquisitioning 

Aiming to obtain the required data, it is helpful to perform the experiments in 

controlled conditions which are provided in soil bin testing facility equipped with a 

single-wheel tester. The soil bin facility consisted of a bin chassis, carriage, controlling 



This is the pre-print version of the paper published by Journal of Energy 

6 

 

consoles and powering unit. A single-wheel tester is typically mounted on the carriage 

compartment to perform various experiments. The capacious soil bin of Department of 

Agricultural Machinery of Urmia University (Urmia, Iran) is 24 m in length, 2 m wide 

and 1 m deep and this relatively substantial size reduces boundary effects. Comprised of 

a single wheel-tester, a general-purpose carriage, a control panel, and soil preparation 

equipment, the system is appropriate for conducting soil-wheel experiments. The carriage 

measures 1.90 m ×2m× 0.95 m and weighs 485 kg. At two sides of the soil bin, steel rails 

facilitated the motion of the carriage and attached single wheel-tester along the soil bin. 

An electric motor with the power of 22 kW at a nominal rotational speed of 1457 rpm 

with a roller chain system pulled the carriage along the soil bin. For rotational speed of 

the motor, a SV220IS5-2NO, 380VAC model of LG inverter (LG, South Korea) was 

used with an information display panel that provided speed control for the carriage and 

with application of chain system enabled the forward and reverse movement of the 

carriage. 

The single wheel tester consisted of a main hub to accommodate the various sizes of 

tires, lifting arms, a loading platform and a power transmission system. The U-shaped 

frame of the wheel tester had the ability to rotateabout its vertical axis for varying the 

steer angle of the test tire. An L-shaped frame connected the wheel-tester and carriage. A 

three-phase, 5 kW, 1430 rpm induction motor was used to make driving power for the 

wheel. The speed of the motor was reduced by gear box (7.5:1) then reduced by a gear 

reduction unit (4.5:1) and the final reduction ratio was 33.75:1. The soil bin facility and 

single-wheel tester are shown in Fig. 1. The tire was directly driven by the electric motor. 

An electric motor and an inverter were used to impose desired rotational speed for the 
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test tire. The difference between the peripheral speed for the tire on the wheel-tester and 

the carriage travel speed provided desired slippage levels. The tire used for the 

experiments was a 220/65R21 driving tire. The tire tester hub and the L-shaped frame of 

the carriage are connected by a four-bar mechanism each of which is horizontally 

parallel. The four-bar mechanism maintains the horizontal position of the load cells for 

determining net traction. This mechanism provides sufficient strength of connections in 

pivots and following ground unevenness for the tester during traversing. Four load cells 

were located on four parallel arms to measure the longitudinal forces to determine 

traction force and another load cell was located on a bolt power of wheel to measure the 

vertical load on the wheel. The vertical load cell transmitted data to a separate digital 

indicator. The load cells sent data to a Bongshin model BS722 digital indicator and from 

an output digital indicator by RS-232 port to a data logger. In addition to synchronization, 

data were sent by USB port to a computer and then were stored. The general flow of the 

experiments and soil properties and are given in Table 1 and Table 2, respectively. 

The longitudinally oriented load cells yield the net traction. Assessment of drawbar pull 

energy was based on direct measurement of net traction and quantifying the waste power 

as follows: 

DP dx
P DP V

dt


                                                                                        (1) 

where P is output power, DP is drawbar pull (N) and V is velocity (m/s). The loss of 

power is then used to calculate the loss of energy by knowing the time of wheel 

traversing as: 

W Pdt                                                                                                              (2)                                           
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Hence,  

W DPVdt                                                                                                                  (3) 

Therefore the measurement of drawbar pull and forward velocity are required to quantify 

the energy. 

3. Adaptive neuro-fuzzy inference system (ANFIS) 

ANFIS is a global search soft computing technique that has been successfully used for 

mapping an input-output relationship based on available data sets. It is based on the first 

order Takagi-Sugeno fuzzy inference system proposed by Jang [22] and it uses neural 

network learning algorithms and fuzzy reasoning to map an input space to an output 

space. With the capability to combine the numeric power of a neural system with the 

verbal power of a fuzzy system, ANFIS has been found to be promising in modeling 

problems. The model works on a set of linguistic rules developed using expert 

knowledge. The fuzzy rule base of the ANFIS model is set up by combining all 

categories of variables. A typical ANFIS structure, which can be seen in Fig. 2, includes 

6 layers. The first layer contains membership functions (MFs). The most common MF 

involves triangular and bell-shaped functions. 

A typical rule set with two fuzzy IF–THEN rules for the first-order Sugeno fuzzy model 

is the following:  

 Rule 1: IF x=A1 and y=B1 THEN f= p1 x + q1 y + r1 

 Rule 2: IF x=A2 and y=B2 THEN f= p2 x + q2 y + r2 

Including input layer into considerations, ANFIS structure includes six layers. The 

procedure is described as follows. 
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 First layer is the input layer which has n nodes where n is the representative of the 

system inputs number.  

 Second layer is the fuzzification in which each node represents a membership 

function. The node function of a node i can be expressed by: 

2

1

1

 i=1,2

 i=3,4

( ),   

( ),  

i

i

i A

i B

O x

O y









                                                                                                     (4) 

 Third layer provides the strength of the rule by means of multiplication operator 

in each node. 

2
 i=1,2( ) ( ),   

i ii A B
O x y 

                                                                                          (5) 

 Fourth layer is the normalization layer which normalizes the firing strength of the 

rules according to the following equation: 

1 2

i=1,2,    i

i

z
z

z z



                                                                                                      (6) 

 Fifth layer consists adaptive nodes each of which computes a linear function 

whose coefficients referred to as consequent parameters are adapted by using the 

error function of the feed-forward neural network [23].  

( )
i i i i i i

z f z p x q y r  
                                                                                       (7) 

 Sixth layer has a single node which is the sum of the inputs of the nodes in the 

fifth layer. The output f is computed as follows: 

1 1 2 2

1 1 2 2

1 2

z f z f
f z f z f

z z


  


                                                                                   (8) 
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ANFIS relates the gradient descent methodology to describe the optimal conditions for 

tuning the membership functions to map input variables to output variables. The main 

ideology of ANFIS is based on the back-propagation gradient descent methodology that 

quantifies error signals repetitively from the output layer backward to the input nodes 

(iteration). However, we used a hybrid method of the gradient descent and the least-

squares method to find optimal learning parameters. 

Data were split and shuffled into 80% training and 20% testing portions to avoid the 

overfitting drawback. Various membership functions of l: Built-in membership function 

composed of the difference between two sigmoidal membership functions (dsigmf), 2: 

Generalized bell-shaped built-in membership function (gbellmf), 3: Π-shaped built-in 

membership function (pimf), 4: Triangular-shaped built-in membership function (trimf), 

5: Trapezoidal-shaped built-in membership function (tramf), 6: Gaussian curve built-in 

membership function (gaussmf), and 7: Sigmoidally shaped built-in membership function 

(sigmf), were adopted in the modeling implementations. 

In modeling disciplines, it is absolutely essential to assess the performance of developed 

models by various statistical criteria. The mean square error (MSE) and the coefficient of 

determination (R
2
) are introduced for analysis of model quality as described below, 

respectively. 

2

1

1
( )

n

predicted actual
i

MSE Y Y
n 

 
                                                                                    (9) 

2

2 1

2

1

( )

( )

n

predicted actual
i

n

predicted mean
i

Y Y

R

Y Y














                                                                                           (10)                                           



This is the pre-print version of the paper published by Journal of Energy 

11 

 

where Yactual and Ypredicted are measured and predicted values of the developed models, 

respectively. 

4. Results and discussion 

As seen from Fig. 3, the greatest drawbar pull energy (DPE) value of 1.056 kJ 

corresponded to the treatment of wheel load at 4 kN, slippage at 15% and velocity at 1.2 

m/s. Additionally, the lowest DPE value of 0.368 kJ corresponded to the treatment of  

wheel load at 2 kN, slippage at 8% and velocity at 0.8 m/s. As appreciated from Fig. 3, 

increased slippage led to an increase in drawbar pull enegy where the increase in velocity 

had a similar effect. A comparative assessment among Figures 3a, 3b and 3c reveals that 

a reduction of wheel load resulted in a decrease in available drawbar pull energy. These 

phenomena are attributed to: 1) increase of velocity requires greater effort to be put on 

tractive characteristic of the vehicle (Eq. 3),  2) increased slippage (as a source of energy 

waste) results in greater available energy. Furthermore, slippage and drawbar pull have 

linear effect within the range of 0-15% and 3) increased wheel load leads to better 

interaction between tire and soil and thus increases the available drawbar pull energy. 

The aforementioned interpretations are compatibile with the literature [9, 24,25]. 

ANFIS implementations with various structures of MFs implied that triangular 

MF with three MFs outperformed other tested structures as tabulated in Table 3. 

Furthermore, it is deducible that the aforementioned ANFIS structure with the hybrid 

method of the gradient descent and the least-squares method to find optimal learning 

parameters have yielded the highest quality solutions to the corresponding problem when 

compared to the other tested configurations (Table 3). As can be seen, the outperforming 

model yielded MSE and R
2
 values of 0.00236 and 0.995, respectively. Response surface 
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curves of interactions between input parameters  related to the outdone ANFIS model are 

illustrated in Figs. 4-6. These figures are dedicated to the interaction between velocity 

and wheel load, the interaction between velocity and slippage and the interaction between 

wheel load and slippage, respectively. The trends elucidated in Figs. 4-6 are compatible 

with the trends of experimental data demonstrated in Fig. 3. Hence, the same 

abovementioned interpretations for the trends of DPE variations with respect to the input 

parameters are valid for the DPE variations in Figs. 4-6. Fig. 7 shows the assessment of 

the applied rules in the ANFIS model for the DPE parameter. The typified value of the 

objective parameter is also depicted in Fig. 7 at the example averaged multitudes of 

different input parameters. The fitting line is given as y = ax + b for the DPE parameter 

where the determined value for a is closer to 1 for ANFIS model and b is closer to 0 (Fig. 

8). The coefficient of determination value of 0.995 for DPE parameter was obtained. 

These satisfactory results confirm the promising ability of ANFIS-based modeling the 

DPE parameter and its appilicability in various soil-wheel interaction parameters. 

5. Concluding remarks 

The objective was to assess the potential of ANFIS technique for prognostication of the 

drawbar pull energy of driving wheels. The data were obtained through a soil bin tire 

testing facility at three levels of wheel load, three levels of tire slippage and three levels 

of velocity with three replications forming a total of 81 data points. Various ANFIS MFs 

were tested to discover the supervised ANFIS-based models for the objective parameters. 

On the basis of statistical performance criteria of MSE and R
2
, it was found that  

triangular membership function (trimf) configuration was found to denote MSE and R
2
 

values of 0.00236 and 0.995, respectively. It was discovered that increased slippage led 
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to an increase in drawbar pull energy where increase of velocity had the similar effect. 

Also it is concluded that a reduction of wheel load resulted in a decrease in available 

drawbar pull energy. 
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Figure Captions: 

Figure 1- Left side view of the single wheel tester on the soil bin. L-shaped frame is the 

frame having one segment composed of the two vertical members forward of the test tire 

and the other segment composed of the horizontal structure above the test tire. 

Figure 2- Adaptive neuro-fuzzy inference system configuration 

Figure 3- Experimental drawbar pull energy variation with respect to increased slippage 

at different velocities of 0.8, 1 and 1.2 m/s at a) wheel load of 2 kN, b) wheel load of 3 

kN and c) wheel load of 4 kN 

Figure 4- 3D surface curves of drawbar pull energy as affected by interactions of velocity 

and wheel load 

Figure 5- 3D surface curves of drawbar pull energy as affected by interactions of velocity 

and slippage 

Figure 6- 3D surface curves of drawbar pull energy as affected by interactions of wheel 

load and slippage 

Figure 7- ANFIS rule viewer and rules of the drawbar pull energy prediction model 

Figure 8- The scatterplot of ANFIS predicted values versus actual values 
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Table legends: 

 

Table 1 

 Summary of experiment conducted 

 
Independent Parameters 

 

Dependent Parameter 

Wheel Load 

(kN) 

 

Slippage (%) 

 

Velocity (m/s) 

 

2 8 0.8 

 

 

 

Drawbar pull energy (kJ) 3 

 

12 1 

 

4 

 

15 1.2 

 

 

 

 

 

 

 

 

Table 2   

Soil constituents and measured physical properties 

 

Item Value 

Sand (%) 34.3 

Silt (%) 22.2 

Clay (%)  43.5 

Bulk density (kg/m
3
) 2360 

Angle of internal friction (°) 

Cone Index (kPa) 

32 

700 
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Table 3 

The characteristics of the best structure of developed ANFIS architectures; DPE: 

Drawbar pull energy 

Item Type of MF Number of MF Learning 

method 

MSE for 

DPE 

R
2
 for 

DPE Input Output Input Epoch 

ANFIS1 dsigmf Linear 3,3,3 50 Hybrid  0.01428 0.953 

ANFIS2 Gbellmf Linear 3,3,3 50 Hybrid 0.01243 0.964 

ANFIS3 Gbellmf Linear 5,3,5 50 Hybrid 0.00892 0.942 

ANFIS4 Pimf Linear 3,3,3 50 Hybrid 0.01727 0.933 

ANFIS5 Trimf Linear 3,3,3 50 Hybrid 0.00236  0.995 

ANFIS6 Trimf Linear 4,4,4 50 Hybrid 0.00681 0.981 

ANFIS7 Tramf Linear 3,3,3 50 Hybrid 0.01245 0.977 

ANFIS8 Gaussmf Linear 3,3,3 50 Hybrid 0.01897 0.957 

ANFIS9 Gaussmf Linear 3,4,5 50 Hybrid 0.00962 0.985 

ANFIS10 Pimf Linear 3,5,3 50 Hybrid 0.01348 0.956 

ANFIS11 Tramf Linear 4,4,4 50 Hybrid 0.01699 0.978 

ANFIS12 dsigmf Linear 4,4,4 50 Hybrid 0.01728 0.969 
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Illustration number: Figure 1 
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Illustration number: Figure 2 
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Illustration number: Figure 3 (a) 
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Illustration number: Figure 3 (b) 
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Illustration number: Figure 3 (c) 
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Illustration number: Figure 4 
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Illustration number: Figure 5 
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Illustration number: Figure 6 
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Illustration number: Figure 7 
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Illustration number: Figure 8 

 


	Evaluating the effect  cs
	Evaluating the effect  pdf

