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ABSTRACT
Nowadays, a huge amount of data is generated due to rapid
Information and Communication Technology development. In this
paper, a digital banking strategy has been suggested applying
these big data for Iranian banking industry. This strategy would
guide Iranian banks to analyse and distinguish customers’ needs
to offer services proportionate to their manner. In this research,
the balances of more than 2,600,000 accounts over 400weeks are
computed in a bank. These accounts are clustered based on justi-
fied RFM parameters containing maximum balances, the most
number of maximum balances and the last week number with
the maximum balance using k-means method. Subsequently, the
clusters are prioritised employing Best Worst Method- COmplex
PRoportional ASsessment methods considering the diverse inner
value of each cluster. The accounts are classified into six clusters.
The experts named the clusters as special, loyal, silver- high inter-
action, silver- low interaction, bronze, averted- low interaction. sil-
ver- low interaction cluster and loyal cluster are picked in order
by experts and BWM-COPRAS as the most influential clusters and
the digital banking strategy is developed for them. RFM parame-
ters are modelled for customers’ accounts singly. The aggregation
of the separate accounts of a customer should be considered.
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1. Introduction

Today, organisations and business enterprises’ customers carry different needs and tastes
in markets. Good and service providers try to attract these customers and create value
for them in a fierce competition. The organisations would be the champion that identify
the customers’ behaviour agile and take the suitable actions. Concentrating on some of
the groups of customers would be profitable while this procedure is not applicable for
others. Customers are diagnosed in the stage of analysis and recognition during the pro-
cess of strategic management. Customers, customer orientation and customer satisfaction
are influential for organisations notably service organisations. Identifying customers,
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understanding their expectations, setting up process found on their desire and at last
achieving the customers satisfaction and loyalty are a part of today’s business goals
(Amoozad Mahdiraji & Razavi Hajiagha, 2017). Consequently, grouping and clustering
the customers and determining the interaction strategy for each of them is significant.

A huge volume of data are generated, gathered, stored and refined everyday by cus-
tomers. It is impossible to analyse and process these data and extract knowledge from
them using traditional ICT and data mining tools. Big data include four features (4V)
covering volume, variety, velocity and value (Qi, Tao, Zuo, & Zhao, 2018).

At first glance these data seem to be valueless and do not relate to each other
logically; however, in recent years these data are called ‘new oil (Kantarcioglu,
Ferrari, & States, 2019). Refinement and analysis of these data could create value,
gain competitive advantage and improve performance in organisations. Organisations
can study their customer’s behaviours and needs, respond them and designate the
discrepancy between customers to provide goods and services tailored to them
(Grover, Chiang, Liang, & Zhang, 2018).

According to the Gartner’s Institute, global investing in the field of big data ana-
lysis is rising uninterruptedly. In 2013, approximately 2.1 billion dollars and in 2014
nearly 3.8 billion dollars has been invested in this field. In the review of big busi-
nesses (e.g., GE), 87% believes that analysis and proper use of big data will change
their competition in next three years. Additionally, 89% suppose that they will lose a
significant portion of their market share during next year without employing the big
data analysis’ techniques.

In order to extract knowledge from these data, data mining tools are used to identify,
predict and respond to customers’ actions. Clustering methods are some of the tools
applying in data mining. In this paper, customer analysis with strategic management
approach and using data mining tools is employed to choose the best strategy for offering
goods and services to customers and create value for them. For this purpose, the market is
clustered focusing on the performance of 2,600,000 accounts in an Iranian bank to develop
an appropriate strategy by experts after prioritising the clusters using Best Worst Method
(henceforth BWM)-COmplex PRoportional ASsesment (henceforward COPRAS).

The remaining of this research is organised as follow. First the theoretical foundation
of the research including data mining, Recency, Frequency, Monetary (Hereafter RFM)
model, clustering, Multi Criteria Decision Making (henceforth MCDM) and digital
banking strategies is reviewed. Afterwards, previous researches are presented, explained
and analysed. Next, the clustering variables are computed based on RFM parameters.
Subsequently, the market is clustered applying k-means method. Finally, the clusters are
labelled by experts, prioritised by BWM-COPRAS and the marketing group has devel-
oped a digital banking strategy for the two customers’ most influential clusters.

2. Literature review

2.1. Data mining

The ability of generating, gathering and processing data from various resources has
been improved due to extension of computers and ICT. Explosive growth in storing
and transferring data have highlighted the need of mechanised techniques to convert

ECONOMIC RESEARCH-EKONOMSKA ISTRA�ZIVANJA 2883



data to knowledge. This need has led to emergence of a modern science in computers
field called data mining (Cheng, Chen, Sun, Zhang, & Tao, 2018).

In other words, extracting the patterns accumulating in data banks, webs, data
bases and data flows that express knowledge is labelled as data mining (Han, Kamber,
& Pei, 2011). Data mining discusses some issues in statistics, machine learning, pat-
tern recognition, data base technology, data recycling, network science, knowledge-
based systems, artificial intelligence and etc. In the Figure 1, some of the available
tools in data mining are demonstrated. Among the tools in Figure 1, clustering is
used in this research.

2.2. Data modelling based on RFM model in banking industry

RFM is a model in customer value analysis. This model studies the customer value
based on three parameters including the purchase frequency, monetary and recency.
The basis of the suggested model is the balance of customers’ accounts (Roshan &
Afsharinezhad, 2017). In this research the average balance of each customer’s
accounts has been computed during 403weeks and the below steps are performed.

1. The account balances are computed for each day (RemainAcc�No
Day�No).

2. The weekly average balance is calculated on previous step (RemainAcc�No
Week�No).

3. The maximum of the weekly average is determined applying (1).

AAcc�No ¼ maxðRemainAcc�No
Week�NoÞ (1)

4. There is a number as a maximum of the weekly average for each account.
Formula 2 is used to compute the peak balance and analyse the customers with
more than one account.

AAcc�No
m ¼ aAAcc�No (2)

Note that in formula 2, a is a number between zero and one. The experts have
chosen 0.5 in this research considering conservative circumstances in banking indus-
try of Iran. In the following, the RFM parameters are defined.

Figure 1. Data mining techniques (Source created by authors).
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� Recency. The number of the last week that the weekly balance is equal or more
than peak balance.

� Frequency. The number of the weeks that the weekly balance is equal or more
than peak balance.

� Monetary. The average of peak periods balance.

Moreover, the below assumptions are considered in RFM modelling.

1. Weeks starts at Saturday and ends in Fridays, considering Iranian
national calendar;

2. The balances are calculated at the end of the working time of each day;
3. RFM has been modelled for customers’ accounts solely. The aggregation of the

separate accounts of a customer should be discussed (Gultom et al., 2018).

2.3. Clustering

The process of placing data in the groups that have the most resemblance in some
features is called clustering. Each cluster contains a set of data similar to other data
in that cluster and different from data in other clusters (Han et al., 2011).

The subject matter in clustering is the similarities and differences of the samples.
Similar samples are sat in a cluster; thus, data features are used to compare samples.

Distance is the similarity criterion and the formula to measure distance is signifi-
cant in clustering. The distance assists the moving in data space and forming the
clusters. The closeness of data is perceived by measuring the distance. There are dif-
ferent ways to measure distance (Jintana & Mori, 2019).

2.4. Best worst method

BWM is a new and efficient technique in MCDM. It is used to derive the weights of crite-
rions in decision making. There are some approaches to BWM which is illustrated in
Figure 2.

In this paper, nonlinear approach to BWM is employed. The steps of nonlinear
BWM is described as below (Rezaei, 2015):

Figure 2. Different approaches to BWM (Source created by authors).
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1. A set of decision criteria is determined ( C1:C2 . . . :Cnf g).
2. The best and the worst criteria is elected by each expert or focus group decision;
3. The preference of the best criteria over the all criteria is determined using a number

between 1 and 9 (AB ¼ Ab1:Ab1 . . . :Abnð Þ) by each expert or focus group decision;
4. The preference of the all criteria over the worst criteria is determined using a number

between 1 and 9 (AW ¼ A1w:A2w . . . :Anwð Þ) by each expert or focus group decision;
5. The optimal weights are found by solving the nonlinear (NLP) model of (3)

( W1:W2 . . . :Wnf g).
minn
st :����

WB

Wj
� Abj

���� � n; for all j
����Ajw � Wj

WW

���� � n; for all j
P

Wj ¼ 1,
Wj � 0

(3)

BWM has been employed in many researches in recent years. Garoosi
Mokhtarzadeh et al, in 2018 used BWM to find the weights of criterion to rank the
technologies for R&D in an Iranian high tech company (Garoosi Mokhtarzadeh,
Amoozad Mahdiraji, Beheshti, & Zavadskas, 2018).

Furthermore, Gupta performed BWM to prioritise the service quality attribute for
airline industry (Gupta, 2018). Moreover, Rezaei et al., in 2018 applied BWM to
assign weights to logistic performance index which is significant for policymakers
(Rezaei, Roekel, Van, & Tavasszy, 2018). Note that, recently the integrations and
applications of this method has been analysed and presented (Xiaomei et al., 2019)

2.5. COPRAS method

COPRAS is a MCDM technique introduced by Zavadskas to rank alternatives based
on decision criteria (Zavadskas, Kaklauskas, & Sarka, 1994). The steps of this method
are expressed below.

1. The decision matrix is formed.

X ¼ xij½ �m�n
(4)

In (4), X is the decision matrix and xij denotes the value of criteria jth for the alter-
native ith. In this matrix, m is the number of alternatives and n is the number
of criteria.

2. The decision matrix is normalised by (5).

R ¼ rij½ �m�n
¼ xijPm

j¼1xij
(5)

In (5), R is the normalised matrix and rij presents the normalised elements.
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3. Weights are provided to the matrix by using (6).

D ¼ yij½ �m�n
¼ rij � wj (6)

Note that, D is the weighted normalised matrix and yij indicates the weighted nor-
malised elements.

4. Weighted normalised scores are calculated for beneficial criteria as well as cost
criteria employing (7).

Sþi ¼
Xn

j¼1

yþij

S �i
¼

Xn

j¼1

y�ij

(7)

Remark that, Sþi is the beneficial score and S�i is the cost score in (7).

5. Relative priority of alternatives (QiÞ is obtained by (8).

Qi ¼ Sþi þ
S�min �

Pm
i¼1S�i

S�i �
Pm

i¼1
S�min
S�i

(8)

6. Absolute priority of alternatives (UiÞ is measured applying (9).

Ui ¼ Qi

Qmax
� 100 (9)

In current years, COPRAS has been performed in many researches. Beheshti et al.,
in 2016 used COPRAS-G to select organisational strategy found on boundaries of its
resources (Beheshti, Amoozad Mahdiraji, & Zavadskas, 2016). Similarly, Arunodaya
et al., in 2018 employed COPRAS under the condition of hesitant fuzzy sets to choose
service quality (Arunodaya, Rani, & Pardasani, 2018).

Moreover, a mixed fuzzy approach of this method with BWM has been per-
formed by Amoozad Mahdiraji et al., in 2018 to rank the key factors of the sustain-
able architecture (Amoozad Mahdiraji, Arzaghi, Stauskis, & Zavadskas, 2018).
Furthermore, Roy et al., in 2019 applied COPRAS to prioritise hotels across several
criteria from tourists’ view of point (Roy, Sharma, Kar, Zavadskas, & Saparauskas,
2019). Recently, a novel uncertain approach of this method has been presented
(Garg & Nancy, 2019).

2.6. Digital banking strategy

Technology development in bank sector is critical to attract and maintain customers.
Digital banking has been used to reach this aim via telephones, internet and mobiles
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(Mbama & Ezepue, 2018). Digital banking will begin a serious competition between
banks with other banks and other financial actors e.g., finteches (Grym, Koskinen, &
Mannien, 2018). Hence, developing an appropriate strategy for digital banking
is crucial.

Digital banking influences on every aspect of banking and gains many competitive
advantages such as providing more accessible products and reducing cash payments
in markets (Nguyen & Dang, 2018). In return, banks face a wide range of challenges
on the way of digitalisation for instance lack of infrastructural facilities, network
problems, customers’ resistance in front of technology and etc. (Nayak, 2018).

Previous related researches in the field of data mining, clustering methods, big
data and MCDM is reviewed in Table 1.

According to Table 1, there are three types of related researches.

� Type 1. Researches focusing on reviewing and developing the algorithms
and methods;

� Type 2. Researches demonstrating the application of these algorithms and meth-
ods in different fields e.g., banking industry.

� Type 3. Researches comparing and analysing the use of different algorithms and
methods on a similar problem.

However big data can create value in serving customers, though a few researches
have been found to focus on the application of data mining in Iranian banking indus-
try. Moreover, the volume of big data employed in other researches has been limited
in most cases. Besides, developing digital banking strategy is not skilled adequately in
Iranian banks and this can harm the success of the banks. After all, the capacity of
data mining tools and the combination of these tools with MCDM methods has not
employed sufficiently.

This research is similar to type two that combines clustering and MCDM techni-
ques in a banking system to segment the customers and develop a strategy for each
cluster. This research has a new approach to RFM and employs expert opinion which
is novel among similar researches. Further, the huge volume of data are used in this
research containing the data from over 2,600,000 accounts for 403weeks (including
more than 200 million transactions) in a bank. This research provides a framework
to develop a digital banking strategy by applying the power big data and aggregation
of data mining and MCDM methods. This framework can be practiced by Iranian
banking industry and other analogous bank in other countries.

3. Research methodology

This research is performed on a specific real-world case study that employs data of
transactions in a bank during 403weeks. The research community is all the customers
of a bank in Iran which is unnamed due to security considerations. There are
2,636,540 accounts in this bank. It should be noted that an account holder can have
more than an account at the same time. Over 200 million transactions have been ana-
lysed during these weeks and the below steps are scheduled.
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� Step 1. Data Collection.

In the first step, financial transactions data of the customers are gathered from Oracle
database. These data are anonymised by reason of preserving confidentiality. It means
that customer’s personal data (e.g., account number, phone number and etc.) is changed
in a way that doesn’t affect undesirably on research. All the data contain 260 mil-
lion records.

� Step 2. Data preparation.

RFM values described in 2.2 are calculated found on prepared data for each
account. In total, 2,636,540 data records have been formed that each demonstrates an
account data.

� Step 3. Clustering.

The number of clusters is determined 6 based on the need of the bank (experts’
opinions). In this step the RFM data are clustered using IBM SPSS Modeller, employ-
ing the K-Means method.

� Step 4. Ranking Clusters.

In this step, the clusters are named and ranked applying experts’ opinion and
BWM-COPRAS methods. LINGO software is employed for this step.

� Step 5. Strategy Development.

The significant clusters are preferred in this step. Experts can develop appropriate
strategy for them. In Figure 3, the methodology process is shaped.

Figure 3. Methodology process.
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4. Research finding

In total, 2,636,540 data record have been formed that each demonstrates an account data.
These data are gathered from transactions in Iran banking systems for 403weeks; hence,
Over 200 million transactions have been analysed during these weeks. RFM parameters
are computed after data collection which was described in step 1. These data have been
collected in collaboration with Kish Informatics Services Corporation which provides the
banking information and communication infrastructure at national level.

As bolded in Figure 4, the maximum of weekly average balances is 900 using
Formula (1). Experts have determined a ¼ 0:5, therefore the peak balance is 450 by
formula (2). The weekly average balances are more than peak balances in 8weeks.
The average of these weeks is 796 and the last week with the balance more than peak
balance is the 18th week. Hence, the result of step 2 is demonstrated in Table 2.

In the following, the accounts are clustered applying k-means method found on
step 3. The result is illustrated in Table 3.

The cluster 6 includes the most frequency of the members and the cluster 2 has
the least. Figure 5 pictures the relative frequency of clusters.

The clusters are named and ranked by experts and prioritised by BWM-COPRAS
in step 4. First the experts elected the account balance as the most significant criteria.
Name and Rank of clusters employing experts’ opinion is shown in Table 4. It is
worth noting here that the experts of this research consist of highly ranked managers
from Iranian Central Bank; thus, the results nearly present the real situation.

Figure 4. Average balances per week.

Table 2. RFM results.
Recency Frequency Monterey

18 8 796

Table 3. Clusters emanated from K-mean.
Cluster number Frequency of members Relative frequency

Cluster 1 732,615 27.79%
Cluster 2 132 0.01%
Cluster 3 687,777 26.09%
Cluster 4 141,161 5.35%
Cluster 5 262,641 9.96%
Cluster 6 812,214 30.81%
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The meaning of each cluster is characterised in Table 5 based upon
experts’ decision.

In the following, 5 criteria are selected based upon focus group expert’s opinion
including monetary average, frequency average, monetary standard deviation (SD),
frequency SD and the frequency of members. Decision matrix is presented in Table 6.

BWM method is used to derive the weights of criterions. Average of monetary has
been determined as the most important and the frequency of members as the least
important criteria by experts. Table 7 displays the resulted weights.

Eventually, priority of the customer’s clusters by applying COPRAS could be
viewed in Table 8.

Figure 5. Frequency of members.

Table 4. Name and rank of clusters.
Cluster number Cluster rank Frequency of members Cluster name

Cluster 1 4 732,615 Silver- low interaction
Cluster 2 1 132 Special
Cluster 3 6 687,777 Averted- low interaction
Cluster 4 2 141,161 Loyal
Cluster 5 3 262,641 Silver- high interaction
Cluster 6 5 812,214 Bronze

Table 5. Description of clusters name.
Cluster rank Cluster name Description

1 Special � Mostly companies and legal entities
� High account balance
� High interaction

2 Loyal � High recency
� High frequency
� High monetary

3 Silver- high interaction � Nearly high recency
� Moderate high frequency
� Nearly moderate monetary

4 Silver- low interaction � Similar to 3 but less interaction
5 Bronze � Less recency

� Less frequency
� Less monetary

6 Averted- low interaction � Having no interaction for a while
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As shown in Table 8, Cluster 2 is the most significant cluster which is similar to
expert opinion expressed in Table 4. Table 9 and Figure 6 demonstrate the compari-
son between Expert Opinion and COPRAS ranks.

Table 6. Decision matrix.
Cluster number Monetary average Frequency average Monetary SD Frequency SD Frequency of members

Cluster 1 717,490,820/35 12 5,483,337,621/14 8/53 732,615
Cluster 2 2,301,022,466,851/30 32 4,011,183,233,619/01 37/87 132
Cluster 3 530,463,451/39 18 5,162,324,110/23 21/39 687,777
Cluster 4 1,357,507,405/66 142 8,813,678,707/63 48/15 141,161
Cluster 5 1,315,814,831/33 48 7,127,540,832/04 15/26 262,641
Cluster 6 2,921,915/91 112 562,598,014/06 106/65 812,214

Table 7. Weights derived by BWM.
Criterion Monetary average Frequency average Monetary SD Frequency SD Frequency of members

Weight 0.42 0.31 0.13 0.1 0.04

Table 8. Cluster ranks by COPRAS.
Cluster number Absolute priority Rank

Cluster 1 27/33 3
Cluster 2 100/00 1
Cluster 3 15/02 6
Cluster 4 31/59 2
Cluster 5 22/82 5
Cluster 6 25/87 4

Table 9. Comparison between expert opinion and COPRAS rank.
Cluster number Cluster name Cluster rank by experts Cluster rank by COPRAS

Cluster 1 Silver- low interaction 4 3
Cluster 2 Special 1 1
Cluster 3 Averted- low interaction 6 6
Cluster 4 Loyal 2 2
Cluster 5 Silver- high interaction 3 5
Cluster 6 Bronze 5 4

Figure 6. Comparing ranking results.
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Expert opinion and COPRAS results are similar for clusters 2, 3 and 4 though dis-
similar for cluster 1, 5 and 6. The reason of dissimilarity can be the frequency of
members which is meaningless for experts; however, it is applied in
COPRAS method.

Cluster 1 (silver- low interaction) and cluster 4 (loyal) are picked in order by
experts and COPRAS as the most influential clusters and the digital banking strategy
is developed for them which is described in Table 10.

5. Conclusion

This research has been implemented applying customer-oriented and service-centric
approach. First, customers’ behaviour has been identified and studied employing
bank transaction analysis. In the following, customers have been clustered by k-means
and ranked by expert and BWM-COPRAS. Two influential clusters have been picked
and digital banking strategy has developed for them according to Table 10.

Table 10. Digital banking strategy development.

Target Strategic area Strategy Loyal customers

Silver- low
interaction
customers

Customer orientation
and
service-centrism

Countering
cyber threats

Employing biological
parameters for
authentication

�

Developing multilayer
authentication tools

� �

Digital banking Extending communication
channels (e.g., mobile
applications, internet, etc.)

� �

Establishing digital and self-
service branches

�

Developing boarding
customer service

�

Expanding e-wallet service
(using cellphones as
bank card)

� �

Developing connection and
interaction with
foreign banks

�

Developing credit card service �
Integrated management of

organisational
customer’s accounts

�

Legal customer’s payments
with ID

�

Advanced
analysis methods

Fraud detection service �
Customer behavior prediction � �

Infrastructure Cloud services Cost reduction � �
Concentrating on customers

and becoming
service-centric

� �

Concentration on
innovation and
competition

Participation with non-bank
customers
(telecommunication
companies and finteches)

� �

Creating innovation lab � �
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Among various weighing methods in this research nonlinear BWM has been
employed. Performing other possible weighing methods encompassing AHP, FARE,
DEMATEL, Entropy or other BWM methods such as Euclidean, fuzzy, interval,
multiplicative or Z numbers BWM may affect the results of this research.

In our proposed approach, expert’s opinion has been considered for weighing and
ranking the clusters under certain circumstances. Considering this research under
uncertain situations by performing grey, fuzzy, hesitant fuzzy, intuitionistic fuzzy or
interval valued fuzzy could be interesting. Moreover, the ranking results could be
compared with other similar methods such as VIKOR, LINMAP, TOPSIS, CODAS
or EDAS.
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