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ABSTRACT 

Separation between non-deterministic and deterministic com­
ponents of gearbox vibration signals has been considered as 
important signal processing step for rolling-element bearing 
fault diagnostics. In this paper, the performance of bear­
ing fault detection after applying various discrete components 
removal (DCR) methods is quantitatively compared. Three 
methods that have become widely used, namely (i) time syn­
chronous average, (ii) self adaptive noise cancellation (SANC) 
and (iii) cepstrum editing, were considered. The three DCR 
methods with different parameter settings have been applied 
to vibration signals measured on two different gearboxes. In 
general, the experimental results show that cepstrum editing 
method outperforms the other two methods. 

1. INTRODUCTION 

Detecting bearing faults on rotating machinery based on vi­
bration signals is often a challenge due to the high energy 
(dominating) signals; originating from various machine ele­
ments including gears, screws, and shafts; that can mask weak 
signals (i.e. non-deterministic) generated by bearing faults. 
These dominant signals are deterministic, meaning that they 
will appear as discrete components in the frequency domain. 
When bearing faults detection is of interest, it is therefore 
important to remove these discrete components prior to ap­
plying further signal processing. Several methods have been 
proposed in literature for separating discrete components and 
non-deterministic components (i.e. residual signals) useful 
for bearing fault detection. Recently R. Randall and Sawalhi 
(2011) have presented a new method for separating discrete 
components from a signal based on cepstrum editing. The 
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the Creative Commons Attribution 3.0 United States License, which permits 
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choice of setting parameters when applying these methods 
can have a significant effect on the residual signals. A quali­
tative comparison of different methods has also been recently 
performed by R. Randall et al. (2011). However, to the au­
thors’ knowledge, the effects of different parameters setting 
on the performance of bearing fault detection have not been 
discussed yet elsewhere. To fill this gap, this paper aims at 
discussing the effects of parameters setting and eventually 
providing a quantitative comparison. The performance of 
bearing fault detection after applying different DCR methods 
is analyzed. Here, two other methods are evaluated and com­
pared to the cepstrum editing method, namely synchronous 
average and synchronous adaptive noise cancellation (SANC). 

The paper first presents the 3 discrete component removal 
(DCR) methods and discusses adjustable parameters for each 
one, and second, applies the methods to vibration signals mea­
sured on two gearboxes: (i) an industrial gearbox which is a 
part of a transmission driveline on the actuation mechanism 
of secondary control surface in civil aircraft and (ii) a lab­
oratory gearbox used in the PHM09 data competition. The 
residual signals obtained from these three methods are pro­
cessed following the optimized envelope analysis by using 
spectral kurtosis for determining the optimal frequency band 
for demodulation. Bearing detection performance is assessed 
on the envelope spectrum. 

2. DISCRETE COMPONENT REMOVAL METHODS (DCR) 

There exist a number of methods for separating signal compo­
nents with different pros and cons, such as time synchronous 
averaging (TSA), linear prediction, adaptive and self-adaptive 
noise cancellation (SANC), discrete/random separation (DRS), 
and the recently developed method, i.e. cepstral editing. The 
three methods considered in this work are briefly discussed in 
the following subsections. 
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2.1. Synchronous adaptive noise cancellation (SANC) 

SANC is an adaptive filtering method where the filter coef­
ficients w are adaptively updated according to the scheme 
shown in Figure 1. The filter coefficients are updated such 
that the prediction error e(n) obtained by subtracting the fil­
tered signal y(n) from the original signal x(n) is minimized. 
The input of the filter d(n) is a delayed version of the orig­
inal signal. SANC allows separation between determinis­
tic and non-deterministic signals. The reason is that a non­
deterministic signal is not correlated to previous sample un­
like deterministic signal. However, one needs to ensure that 
the delay should be greater than the time of decorrelation of 
the non-deterministic signal but it should exceed the decorre­
lation time of the deterministic part. The filter output y(n) is 
the deterministic signal containing gears and shaft signals and 
the output error represents the non-deterministic part contain­
ing bearing signals 

The most used adaptation algorithm is the celebrated least 
mean-square (LMS) developed by Widrow and Hoff (Widrow, 
Hoff, et al., 1960). It is characterized by its robustness and a 
low computational complexity. Its recursive procedure com­
putes the output of the filter and compares it to the original 
signal. The error is used to adjust the filter coefficient as 
shown in Eq. (1) 

w(n + 1) = w(n) − µ.e(n).d(n) (1) 

where
 
y(n) = wTd is the filter output,
 
e(n) = x(n) − y(n) is the output error,
 
d(n) is the delayed signal,
 
w(n) = [w0(n), w1(n), . . . wM−1]

T are the filter coefficients
 
at the time index n,
 
x(n) = [x(n), x(n − 1), . . . x(n − M + 1)]T is the input sig­
nal,
 
µ is the step size parameter that must be selected properly to
 
control stability and convergence.
 

The use of SANC implies the choice of 3 parameters and its
 
performance relies on them:
 

• the prediction depth or time delay L 

• the step size µ 

• the filter length M 

Antoni and Randall (2004) have discussed optimal settings of 
these parameters giving general guidelines, also presented in 
(R. Randall et al., 2011). The delay L should be chosen large 
enough to exceed the memory of the noise but not so long to 
destroy the correlation, which can be a bit disturbed in case of 
slight speed fluctuation. The length of the filter M should not 
exceed the signal length to have enough time for adaptation. 
The step size µ represents the convergence rate and will be a 
trade off between the desired accuracy and the computational 
cost. A low step size value results in high accuracy. 

Z-L

w +

Input  signal 
x(n)

Delayed signal 
d(n)=x(n-L) Error e(n)

-
y(n)

Figure 1. SANC filter process. 

2.2. Time synchronous average (TSA) 

Time Synchronous average (TSA) is a signal processing method 
aiming at extracting components from a signal that are phase-
locked to the shaft revolution by means of averaging several 
signal segments. The segments can represent one or several 
shaft revolutions. TSA cancels or significantly reduces the 
presence of non-synchronous phenomena, which can com­
prise bearing signals and background (white) noise. In order 
to perform TSA, the shaft position information is needed for 
re-sampling the signal in the angular domain. This informa­
tion can be retrieved from a tachometer or encoder signal. If 
the tachometer is not located on the shaft of interest, transfor­
mation is needed to convert angular positions of the shaft with 
the tachometer to angular position of the shaft of interest. 

In the absence of tachometer signal, Bonnardot et al. (2005) 
have reported a technique allowing TSA using a virtual tachome­
ter signal generated from accelerometer signal. However, this 
tachometer-less technique presents some limitations since it 
requires a very low variation of the speed. TSA can also 
be used for discrete component removal by subtracting the 
synchronous signal from the original signal. The remaining 
or the residual signal contains non-deterministic components 
comprising bearing signals. The adjustable parameter is the 
number of average which is related to the number of revolu­
tions in averaged segments. 

2.3. Cepstrum editing 

The cepstrum editing method gives some advantages com­
pared with all the techniques noted previously. One notable 
advantage of the editing cepstral method is that it can be used 
to remove the selected frequency components in one opera­
tion, without order tracking as long as the speed variation is 
limited, but it can leave some periodic components if desired. 
In some applications where the sidebands are not harmonics 
of the shaft speed, families of uniformly spaced sidebands 
can be removed with the editing cepstral method. The de­
tailed explanation and the performance of the latter method 
can be found in (R. Randall & Sawalhi, 2011). The following 
paragraphs will briefly revisit the method. 
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Let y be the measured vibration signal and Y (f) be the cor­
responding frequency domain signal. By definition, the cep­
strum of this signal C(τ) is calculated by taking the inverse 
Fourier transform of the logarithm of Y (f), i.e. 

C(τ) = F−1 [log (Y (f))] , (2) 

with F−1 denoting the inverse Fourier operation. 

In the same way that the word ”cepstrum” was coined from 
”spectrum” by reversing the first syllable, the term ”quefrency” 
is used for the x-axis of the cepstrum (even though it is time), 
”rahmonic” means a series of equally spaced peaks in the cep­
strum domain (resulting from a series of harmonics or side­
bands in the log spectrum) and ”lifter” represents a filter ap­
plied to the cepstrum (Bogert, Healy, & Tukey, 1963). 

Based on the cepstrum definition, it is quite simple to deduce 
the rationale behind the editing cepstral based DCR method. 
Given the fact that in the frequency domain, the response sig­
nal Y (f) is a multiplication of the excitation signal X(f) and 
the frequency response function H(f), i.e. 

Y (f) = X(f) × H(f), (3) 

by taking the logarithm of the response signal Y (f), Eq. (3) 
can thus be written as: 

log (Y (f)) = log (X(f)) + log (H(f)) . (4) 

Furthermore, by taking the inverse Fourier transform of Eq. (4): 

F−1 [log (Y (f))] = F−1 [log (X(f))] + F−1 [log (H(f))] . 
(5) 

It is clear now from Eq. (5) that in the cepstrum domain, the 
excitation signal and the transfer path are additive. This im­
plies that the unwanted excitation signal (e.g. gear and shaft 
related signals) can be removed (i.e. edited) in the cepstrum 
domain. The cepstral editing based DCR method developed 
by (R. Randall & Sawalhi, 2011; Sawalhi & Randall, 2011) 
is schematically shown in Figure 2. 

Figure 3 further illustrates the editing process in the cepstrum 
domain. To remove unwanted rahmonics corresponding to 
periodic components (i.e. gear signals), the lifter width Δ 
should be chosen appropriately. Up to now, there is no an 
automatic way for determining the lifter width Δ. The (con­
stant) width is typically selected visually based on inspection 
of the resulting signal. 

3. EXPERIMENTAL STUDY 

3.1. Description of test rigs 

To compare the cepstrum editing DCR method to TSA and 
SANC and assess the effect of parameters setting on perfor­
mance for bearing faults detection, two sets of experimental 

Input

 signal
Phase

Log

amplitude

Real 

cepstrum

Edited 

cepstrum

Edited log 

amplitude 

cepstrum

Edited log 

cepstrum

Complex 

spectrum

Time domain 

signal

FFT

IFFT

Edit

FFT

+

+

Exp.

IFFT

Figure 2. Schematic diagram of the editing cepstral method 
for removing selected families of harmonics and/or sidebands 
from time domain signals, reproduced from (R. Randall & 
Sawalhi, 2011). 

Figure 3. Liftering to remove unwanted rahmonics, repro­
duced from (Gao & Randall, 1996). 

data from gearboxes are used (hereafter called dataset#1 and 
dataset#2). 

3.1.1. Test rig#1 

Dataset#1 is measured on an industrial gearbox which is a 
part of a transmission driveline of the actuation mechanism 
of secondary control surface in civil aircraft shown in Fig­
ure 4. The test rig was designed to simulate the actual op­
eration conditions during the life cycle of the aircraft control 
system which implies the gearbox would experience a range 
of speed and torque conditions. It is driven by an electrical 
motor. A second motor acted as a generator is used to apply 
load to the system. The nominal speed of the motor is 710 
rpm. The gearbox consists of two spur bevel gears, each with 
17 teeth producing a gear ratio of 1:1. Two angular contact 
bearings are used to support the gears. 

The characteristic bearing fault frequencies for the operating 
speed of 60 rpm (1 Hz) and for the operating speed of 710 
rpm (11.83 Hz) including, (i) ball pass frequency of inner race 
(BPFI), (ii) ball pass frequency of outer race (BPFO), ball 
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(a) 

(b)
 

Figure 4. (a) The transmission gearbox test rig of a civil aircraft, (b) The gearbox layout and sensors location.
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damage frequency (BDF) and fundamental train frequency 
(FTF), are listed in Table 1. All vibration data are acquired 
using accelerometers fixed on the outer case of the gearbox. 
The sampling frequency is of 5 kHz. 

Table 1. Theoretical bearing fault frequencies for dataset#1. 

Fault frequencies [Hz] 
Rotation speed 60 rpm 710 rpm 

BPFI 7.03 83.2 
BPFO 4.96 58.8 
BDF 4.37 51.2 
FTF 0.41 4.9 

3.1.2. Test rig#2 

Dataset#2 has the particularity of being measured on a multiple-
shaft gearbox. These data were used for tghe PHM09 data 
competition on gearbox fault diagnosis. The gearbox test 
setup used for generating these data is depicted in Figure 5. 
On this gearbox setup, two different gear geometries can be 
used including spur and helical gears. The dataset analyzed 
in this paper is collected for which the gearbox is assembled 
with spur gears. The gearbox configuration is as follows: 

• Input shaft: input pinion of 32 teeth, 
• Idler shaft: 1st idler gear of 96 teeth, 
• Idler shaft: 2nd (output) idler gear of 48 teeth, 
• Output shaft: output pinion of 80 teeth. 

Vibration data are acquired by means of two Endevco 10 mV/g 
accelerometers (Sensor resonance frequency > 45 kHz). One 
of the two accelerometers is mounted on the input shaft side 
and the other one is mounted on the output shaft side. The 
external load is applied thanks to a magnetic brake. Data 
are sampled synchronously from the two accelerometers. The 
sampling frequency is of 200 kHz. A tachometer generating 3 
10 pulses per revolution is attached on a properly selected lo­
cation. The vibration signal analyzed here was collected at 50 
Hz shaft speed, under high loading. The characteristic fault 
frequencies of the bearing of interest are given in Table 2 for 
two speeds. 

Table 2. Theoretical bearing fault frequencies for dataset#1. 

Fault frequencies [Hz] 
Rotation speed 60 rpm 3000 rpm 

BPFI 4.947 247.4 
BPFO 3.052 152.6 
BDF 3.984 199.2 
FTF 0.382 22.89 

3.2. Results and discussion 

Data from the two test rigs have been processed to remove 
discrete components using the different methods presented 

Figure 5. Gearbox diagnosis setup used in the PHM09 data 
competition. 

above. The residual signals containing non deterministic com­
ponents are further processed using the envelope analysis pro­
posed in R. B. Randall (2011). Note that the demodulation 
frequency band used in the envelope analysis is determined 
by means of spectral kurtosis analysis using the fast kurtogram 
algorithm (Antoni, 2007). 

3.2.1. Fault indicator 

To assess the performance of bearing fault detection, a fault 
indicator is define as the amplitude of peak at the fault fre­
quency normalized with respect to the DC value in the enve­
lope spectrum. In dataset#1, the concerned fault is a bearing 
outer race fault while the fault present in dataset#2 is located 
on the inner race. 

3.2.2. Analysis of dataset#1 

The SANC is performed with different values of delay and 
filter length. The step size is kept equal to 0.01. The delay L 
is chosen among the following values: 100, 200, 500, 1000, 
1500, 2000, 5000 and 10000, while the filter length M = 12. 
The results show the best performance with L = 100 as 
shown in Figure 6 (i.e. highest fault indicator value). Then 
this best delay value is used with various filter lengths to cal­
culate the corresponding fault indicator values as shown in 
Figure 7. 

The cepstrum editing method is also applied to dataset#1 with 
different normalized liftering widths chosen among the fol­
lowing values: 0.02, 0.04, 0.08, 0.16 and 0.32. It is impor­
tant to notice here that the normalized liftering width is de­
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Figure 6. Effect of SANC delay on bearing fault indicator. 
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Figure 7. Effect of SANC filter length on bearing fault indi­
cator. 

fined as the ratio of the lifter width with respect to the period 
of discrete component of interest. The fault indicator values 
corresponding to the selected liftering widths are shown in 
Figure 8. 
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0.24
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0.3
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F
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in

di
ca

to
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Figure 8. Effect of cepstrum editing lifter width on bearing 
fault indicator. 

The results obtained with TSA using different number or shaft 
revolutions per segment are shown in Figure 9. By analyzing 
the best fault indicator values resulting from the above differ­
ent DCR methods, it comes that the cepstrum editing method 
gives the best fault indicator. Figure 10 shows the envelope 
spectra of residuals signals obtained for the 3 DCR methods. 
One can notice the low background noise achieved with the 
cepstrum editing method. This can be also concluded by ob­
serving the kurtosis values of the corresponding residual sig­

nals listed in Table 3. As shown in Figure 11, the cepstrum 
editing method leads to the most impulsive residual signal. 
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F
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Figure 9. Effect of TSA number of revolutions on bearing 
fault indicator. 
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Figure 10. Comparison of envelope spectrum for dataset#1. 

Table 3. Kurtosis of the residual signals of dataset#1. 

Kurtosis 
TSA residual 4.0158 

SANC residual 4.3990 
Cepstrum residual 5.0627 

3.2.3. Analysis of dataset#2 

Similar to the analysis on dataset#1, the SANC is performed 
with different values of delay and filter length. The step size 
is kept equal to 0.01. The delay L is first chosen among the 
following values: 100, 200, 500, 1000, 1500, 2000, 5000 and 
10000 while the filter length M = 12. The results show the 
best performance with L = 2000 as shown in Figure 12. Then 
this best delay value is used with varying filter length to cal­
culate the fault indicator as shown in Figure 13. 

The cepstrum editing method is applied to dataset#2 with dif­
ferent liftering widths chosen among the following values: 
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0.02, 0.04, 0.08, 0.16 and 0.32. Subsequently, the fault indi­
cator values for the corresponding liftering widths are calcu­
lated as shown in Figure 14. 
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Figure 11. Normalized residual signals for dataset#1 obtained 
after applying 3 DCR methods. 
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Figure 14. Effect of cepstrum editing lifter width on bearing 
fault indicator. 

The result obtained with TSA using different number or shaft 
revolution per segment is shown in Figure 15. In line with the 
results obtained from dataset#1, the cepstrum editing method 
also provides the best performance for dataset#2. Figure 16 
shows the envelope spectra of residuals signals obtained for 
the 3 DCR methods. It is seen in the figure that the cep­
strum editing method highlights the fault frequency better 
than the other methods. The kurtosis values of the corre­
sponding residual signal are given in Table 4. This indicates 
that the cepstrum editing leads to the most impulsive signal 
as it can also be seen in Figure 17. 

Table 4. Kurtosis of the residual signals of dataset#2. 

Kurtosis 
TSA residual 3.9653 

SANC residual 4.0478 
Cepstrum residual 6.7035 

Figure 12. Effect of SANC delay on bearing fault indicator 
for dataset#2. 
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Figure 13. Effect of SANC filter length on bearing fault indi­
cator for dataset#2. 
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Figure 15. Effect of TSA number of revolutions on bearing 
fault indicator. 
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Figure 16. Comparison of envelope spectrum for dataset#2. 
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Figure 17. Normalized residual signals for dataset#2 obtained 
after applying 3 DCR methods. 

4. CONCLUSION 

The performance of three different discrete component re­
moval (DCR) methods, namely (i) time synchronous averag­
ing (TSA), (ii) self adaptive noise cancellation (SANC) and 
(iii) cepstrum editing, has been quantitatively compared in 
this paper. For the comparison purposes, two metrics, i.e. the 
peak values at the fault frequencies of the envelope spectrum 
and the kurtosis of the time domain signal, were considered. 
These metrics have been extracted from the vibration signals 
measured on industrial and laboratory gearboxes by apply­

ing the three DCR methods with different parameter settings. 
The optimal parameter setting of each DCR method was de­
duced by visual inspection on the values of the two metrics. 
The higher the metric value is, the better the performance of 
a DCR method will be. The experimental results show that 
the values of the two metrics based on the cepstrum editing 
method are higher than those of the other two DCR methods. 
This suggests that the cepstrum editing method outperforms 
the other considered methods. 
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