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A Novel Common Set of Weights Method for Multi-Period Efficiency
	

Measurement Using Mean-Variance Criteria
	

Abstract
	

Data envelopment analysis (DEA) is a popular method for evaluating a set of homogeneous 

decision-making units (DMUs). One of the main shortcomings of DEA is the weights flexibility 

where each unit can take its desirable weights. Several methods have been developed for finding 

a common set of weights (CSWs) and overcoming this drawback. The CSWs methods are used to 

evaluate the relative efficiency of the DMUs in a single time-period. However, single period DEA 

models cannot handle organizational units performing in a continuum of time. We propose a novel 

method for determining the CSWs in a multi-period DEA. Initially, the CSWs problem is 

formulated as a multi-objective fractional programming problem. Subsequently, a multi-period 

form of the problem is formulated and the mean efficiency of the DMUs is maximized while their 

efficiency variances is minimized. A fuzzy set-based approach is used to solve the multi-period 

CSWs problem. We present a real-world case study to demonstrate applicability and exhibit the 

efficacy of the proposed method. The results indicate a significant improvement in the 

discrimination power of the proposed multi-period method. 

Keywords: Data envelopment analysis; Common set of weights; Multi-period efficiency; Mean-

variance criteria; Fuzzy logic. 
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1. Introduction 

Data envelopment analysis (DEA), introduced by Charnes, Cooper, and Rhodes (1978) (known as 

the CCR model) is a well-known framework for evaluating the relative efficiency of a set of 

homogeneous organizational units, known as decision making units (DMUs). DEA illustrates the 

efficiency of the process that transforms inputs into outputs by applying an m-dimensional input 

vector to produce an s-dimensional output vector. DEA does not make any assumption about the 

system structure (Ang and Chen 2016). Liu et al. (2013) and later Emrouznejad and Yang (2018) 

surveyed several applications of DEA in different domains. In addition, a comprehensive review 

on the theoretical foundations of DEA can be found in Cooper et al. (2011). 

Beyond their advantages and strengths, the classic DEA models are confronted with some 

shortcomings. Dyson et al. (2001) has identified the homogeneity assumption, full flexibility of 

weights, and weight restrictions as the main pitfalls of DEA. Since its initial introduction, 

researchers have focused on resolving these shortcomings by extending new research directions. 

Liu et al. (2016) have shown that the main research topics in DEA are focused on: (1) 

bootstrapping and two-stage analysis, (2) undesirable factors, (3) cross-efficiency and ranking, and 

(4) network DEA, dynamic DEA, and SBM. 

The aim of research in cross-efficiency and ranking problems is increasing the 

discrimination power of classic DEA models in which, DMUs are classified into efficient and 

inefficient classes. The common set of weights (CSWs) problem is a popular research stream in 

DEA dealing with full flexibility of weights. DEA models provide a flexible condition for the 

DMUs to take their desirable weights of inputs and outputs and maximize the relative efficiency 

of the considered DMU. Solving the DEA model for n DMUs requires a set of n different weight 

vectors for the DMUs. The efficiency calculated with this weighting scheme will overestimate the 

real-world efficiency of each DMU. This type of weighting has some problems as described in 

Davoodi and Zhiani Rezaei (2012). To overcome these problems, the CSW seeks to find a set of 

common weights for the DMUs. Roll et al. (1991) and Roll and Golany (1993) were among the 

first researchers to work on the CSW problem. 

Kao and Hung (2005) proposed a compromise solution approach for generating common 

weights under the DEA framework to rank the DMUs with the same scale. Furthermore, Ramon 

et al. (2012) proposed a DEA approach aimed at deriving a CSWs to be used to obtain the ranking 

of the DMUs. Additionally, Qi and Guo (2014) presented a methodology by combining the CSWs 
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with the Shannon’s entropy. Jahanshahloo et al. (2010) also defined an ideal line and determined 

a CSWs for the efficient DMUs and used the new efficiency scores obtained to rank them. In 

addition, they developed a special line and ranked the efficient DMUs by comparing them with 

this line. Wang et al. (2011) proposed a new methodology based on regression analysis to find 

CSWs that are easy to estimate and can produce a full ranking of the DMUs. They used the most 

favorable weights to obtain the DEA efficiencies. 

Given the large number of DMUs in real applications, the computational and conceptual 

complexities are considerable with weights that are potentially zero-valued or incommensurable 

across units. In this regard, Saati et al. (2012) proposed a two-phase algorithm to address this 

situation. Similarly, Davoodi and Zhiani (2012) proposed an innovative method using a CSWs 

leading to solving a linear programming problem. Their method determines the efficiency score of 

all DMUs and ranks them simultaneously. Moreover, Ching et al. (2012) proposed a context-

dependent DEA model to address the shortcomings resulting from redundant restraints on the 

weights of an efficient DMU and converted the optimal weight to analyze the influences of 

redundant restraints on weights. Hosseinzadeh Lotfi et al. (2013) proposed an allocation 

mechanism using common dual weights approach and applied it to allocate the fixed resources to 

the units. Razavi Hajiagha et al. (2014) formulated the CSW problem as a multiple objective 

fractional programming model and then applied the Dutta et al. (1992) method for solving this 

problem. Wu et al. (2016) proposed a method of finding CSWs based on a DMU’s satisfaction 

degree with respect to common weights. Their model contained a min-max model and two 

approaches were proposed for solving this model. 

Considering uncertain situations, Omrani (2013) introduced a robust optimization 

approach to find common weights in DEA models with uncertain data. They considered 

uncertainty in inputs and outputs and developed a suitable robust counterpart for the DEA model. 

In addition, Tavana et al. (2015) illustrated a CSW model for ranking the DMUs with the stochastic 

data and the ideal point concept. Their proposed method minimizes the distance between the 

evaluated DMUs and the ideal DMU. Recently, Dong et al. (2014) provided a DEA-based 

approach for obtaining DMUs’ efficiencies by assuming the DMUs as a collection of rational units 

and maximizing an objective for satisfaction degrees of the DMUs. They also provided a maxim 

model and two corresponding algorithms for generating the CSWs. Furthermore, Hatami-Marbini 

et al. (2015) introduced an alternative DEA model for centrally imposed resource or output 
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reduction across the reference set. They determined the amount of input and output reduction
	

needed for each DMU to increase the efficiency score of all the DMUs. 

Another research direction in DEA is the problem of multi-period efficiency evaluation, 

known as dynamic DEA. While classical DEA models are considered as cross-sectional or single 

point evaluation, comparison of DMUs performance over several periods of time can be 

considerable as time series DEA (Charnes et al. 1994; Ramanathan, 2003) or multi-period 

(dynamic) DEA. In this context, each individual input or output measure is captured in the form 

of a time series which reflects the level of that measure in different time periods. Thus, a method 

is required for dealing with fluctuation. Using the concept of Debreu-Farrell technical efficiency, 

Park and Park (1995) proposed the multi-period DEA model that found the efficiency of DMUs in 

different periods. They call a DMU fully-efficient if it gains full efficiency in all periods. Sengupta 

(1996) introduced the concept of dynamic DEA to consider inputs and outputs change over time. 

Amirteimoori and Kordrostami (2010) defined the aggregate efficiency of a DMU as 

convex combination of its periodic efficiencies and proposed a method for finding the aggregated 

and periodic efficiencies. Kao (2013) proposed a model in which the complement of the system 

efficiency is a linear combination of period efficiencies. Similarly, Kao and Liu (2014) defined the 

overall efficiency of a DMU as a weighted average of its individual periodic efficiencies. Razavi 

Hajiagha et al. (2015) used the concept of Chebyshev inequality bounds for finding the confidence 

intervals of inputs and outputs and transformed the multi-period DEA problem into an equivalent 

interval DEA problem. They evaluated the multi-period efficiency of DMUs in the form of interval 

efficiencies. Kou et al. (2016) extended the idea of Kao (2013) to find the multi-period efficiency 

of a multi-division network. Kordrostami and Jahani Sayyad Noveiri (2017) proposed a method 

based on fuzzy expected value for determining the overall and period efficiencies of DMUs in a 

multi-period problem. Jahani Sayyad Noveiri et al. (2018) proposed a DEA-based procedure to 

estimate the multi-period efficiency of systems with desirable and undesirable outputs. They 

defined the overall efficiency of units as a weighted average of the efficiencies of the periods and 

approximated the efficiency changes between two periods. Multi-period DEA models are applied 

in commercial banks (Kao & Liu, 2014; Razavi Hajiagha et al. 2015), insurance companies (Kao 

and Hwang, 2014), international airports (Ahn and Min, 2014), universities (Flegg et al. 2004), 

and regional R&D efficiency (Kaihua et al. 2018). 

The aim of this paper is to bring together these two fields of study. Considering the above-
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mentioned researches, it is notable that while a great deal of attention is paid to solve multi-period
	

or dynamic DEA problems, the research on finding CSWs for measuring the efficiency of DMUs 

performed over several periods of time is very rare. In this study, we develop a mathematical 

model for determining the best CSWs for DMUs performing in multiple periods of time. The 

considered quandary, known as multi-period CSWs problem, is useful for those managers who 

seek a general weighting scheme to evaluate organizational units in a time horizon. To this end; 

first, the CSWs problem is formulated and after modification, it is extended to determine the multi-

period CSWs. 

The reminder of the paper is organized as follows. After the introduction, the problem 

considered in this study is described in Section 2. The mathematical formulation of this problem 

is presented in Section 3. In Section 4, we propose the solution procedure and in Section 5, we 

present a real-world case study to demonstrate the applicability and exhibit the efficacy of the 

proposed model. Finally, the paper is concluded in section 6. 

2. Problem description 

In this section, a description of multi-period CSWs problem is given. Suppose that there are a set 

of n DMUs, 𝐷𝑀𝑈௝, 𝑗 = 1,2, … , 𝑛, that are evaluated in a time horizon consisting of T time periods. 

௧ ௧ ௧ ௧At each period 𝑡, 𝑡 = 1,2, … , 𝑇, 𝐷𝑀𝑈଴ receives the input vector 𝑋଴ = (𝑥ଵ଴ , 𝑥ଶ଴ , … , 𝑥௠଴ ) and 
௧ ௧ ௧ ௧produces the output vector 𝑌଴ = (𝑦ଵ଴ , 𝑦ଶ଴ , … , 𝑦௦଴ ). This situation is illustrated in Figure 1. 

Insert Figure 1 Here
	

The relative efficiency of 𝐷𝑀𝑈଴ at any time-period t can be assessed using classic DEA 

models. Solving the individual DMU's model, the relative efficiency of 𝐷𝑀𝑈଴, 0 ∈ {1,2, … , 𝑛} at 

time-period t is determined. This is a single-period evaluation of relative efficiency, generally 

called as cross-sectional efficiency. The aim of multi-period DEA models is to determine a single 

measure of relative efficiency for DMUs that perform like Figure 1. 

On the other hand, solving the above model for each DMU, different weights are obtained 

for inputs and outputs at each time-period. The aim of the multi-period CSWs problem is to find a 

CSWs 𝑢௥, 𝑟 = 1,2, … , 𝑠 and 𝑣௜, 𝑖 = 1,2, … ,𝑚 that, 

a.		 Evaluate the relative efficiency of DMUs at a multi-period manner; 

b.		 Determine the common weights of inputs and outputs as a general baseline to evaluate 

efficiencies; 

c.		 Enhance the comparability of relative efficiencies among DMUs. 
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் ௧For any input measure 𝑋௜௝, 𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛 a mean 𝑋ത = ∑ 𝑥௜௝ ⁄𝑇 and variance ௜௝ ௧ୀଵ 

ଶଶ ் ௧𝜎௜௝ = ∑௧ୀଵ ൫𝑥௜௝ − 𝑋ത௜௝൯ ൗ(𝑇 − 1) is computable. Similarly, for output vector 𝑌௥௝, 𝑟 = 1,2, … , 𝑠; 𝑗 = 

ଶ் ௧ ଶ ் ௧1,2, … , 𝑛, the mean 𝑌ത௥௝ = ∑௧ୀଵ 𝑦௥௝ ⁄𝑇 and variance 𝛿௥௝ = ∑௧ୀଵ ൫𝑦௥௝ − 𝑌ത௥௝൯ ⁄𝑇 − 1 are calculated. 

3. Mathematical formulation 

The problem formulation is performed in two stages. Initially, a model is developed to find the 

CSWs and then a multi-period model is extended. Figure 2 illustrates an algorithmic scheme of 

the proposed method. 

Insert Figure 2 Here
	

3.1. Common set of weights modelling 

In this stage, a model is developed to find the CSWs. Assuming given time-period t, we consider 

the aforementioned notation of DMUs and their corresponding inputs and outputs, and develop the 

following problem, called the input-oriented CCR model: 

t t 
s 

u y r r0
	
t r1
E0  max m 

t tv x i i0
	
i1
	

t tu y r rj  
s 

(1) 
r1 
m  1, j  1,2, , n 

t tv x i ij
	
i1
	

ur
t  0, r  1,2, , s 

vi
t  0, i  1,2, ,m 

For each DMU, the relative efficiency of 𝐷𝑀𝑈଴, 0 ∈ {1,2, … , 𝑛} is determined for a single 

period (time-period t) using a cross-sectional efficiency model. Solving the above model for each 

DMU, different values are obtained for 𝑢௥
௧ , 𝑟 = 1,2, … , 𝑠 and 𝑣௜

௧, 𝑖 = 1,2, … ,𝑚. The goal is to find 

a CSWs; 𝑢௥
௧௖, 𝑟 = 1,2, … , 𝑠 and 𝑣௜

௧௖, 𝑖 = 1,2, … ,𝑚, as real weights of inputs and outputs. 

Accordingly, the CSWs problem is formulated as a vector maximum problem, with the following 

objective: 

௧௖ ௧௖ ௧௖}𝑀𝑎𝑥{𝐸ଵ , 𝐸ଶ , … , 𝐸௡ (2) 

where, 𝐸௝
௧௖, 𝑗 = 1,2, … , 𝑛, i.e. the relative efficiency of the jth DMU at time-period t by using the 
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common weights, is defined as:
	

s
	
tc t
ur yrj
	

t r1
E j  m (3) 
tc tv xi ij
	

i1
	

The extended form of Model (2), with its corresponding constraints is constructed as 

follows: 

s s s
 tc t tc t tc t 
u y u y u yr r1 r r2 r rn Ct r1 r1 r1E  max  m , m ,, m  
tc t tc t tc t v x v x v x  

   i i1 i i2 i in
 i1 i1 i1  

s 

utc yt r rj (4) 
r1  1, j  1,2,, n 

tc t 
m

v xi ij
	
i1
	

ur
tc  0,r  1,2,, s 

vr
tc  0,i  1,2,,m 

Model (4) is a multi-objective fractional linear programming problem producing the CSWs 

in each time-period t. 

4. Solution approach 

In this section, we develop a fuzzy approach for solving the CSWs problem in the multi-objective 

fractional linear programming problem (4). The proposed approach to solve the above problem is 

based on the idea of Dutta et al. (1992) in solving multi-objective fractional programming 

problems that later is extended by Razavi Hajiagha et al. (2014) to solve the DEA common set of 

weights problem. In this method, a membership function is developed for both the nominator and 

denominator of the objectives and then the sum of these membership functions is maximized. 

Razavi Hajiagha et al. (2014) proposed the above method for finding CSWs of a single-

period DEA problem. Comparing the results of their model with three models of Kao and Hung 

(2005) and Makui et al. (2008), the proposed method of Razavi Hajiagha et al. (2014) illustrated 

a high level of correlation with the classic CCR model and provided a great discriminant power 

among the DMUs. Therefore, in this paper, the method of finding CSWs is extended to multi-
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period conditions.
	

Considering the CCR Model (1), suppose a decision maker determines his/her satisfaction 

regard to input-oriented efficiency of DMUj according to the following membership function: 

 tc t 

0, if l  
s 

ur yrj
	
r1
	

t
 

 s (5)Ij tc t 

ur yrj l s
	
r1 tc t
 , if l  ur yrj  1
	

 1 l r1
	

Eq. (5) shows the input-oriented efficiency is in the range of [𝜃௟, 1], where 𝜃௟ is a DMU-

independent threshold determined by the decision maker. In the case that this efficiency is lower 

than 𝜃௟, its acceptance by the decision maker is zero. For efficiency scores between 𝜃௟ and 1, the 

acceptance is increased as a monotone increasing function. At the efficiency score of 1, the 

satisfaction degree will reach 1. It is notable that since input-oriented efficiency is always lower 

௦than one, the case of ∑ 𝑢௥ 
௧௖ < 1௧௖𝑦௥௝ is not considered in Eq. (5). The output-oriented efficiency௥ୀଵ 

also can be defined in the interval of [1, 𝜙௨], where 𝜙௨ is an upper-bound threshold determined by 

the decision maker. In the case of the CCR model considered here, 𝜙௨ = 1 𝜃௟, i.e. when the⁄ 

output-oriented efficiency is greater than 𝜙௨, its acceptance is zero, while when it is between 1 and 

𝜙௨, its acceptance is decreased linearly according to Eq. (6): 

 tc t 

0, if u  
m 

vi xij
	
i1
	

t
Oj  

 m 

tc (6)t 

u vi xij m
	
i1 tc t
 , if 1 v x i ij u

  1 i1 u 

The thresholds 𝜃௟ and 𝜙௨ are required to normalize the membership functions and 

becoming commensurable to proceed with the algorithm. In addition, since the nominators and 

denominators of the fractions in Eq. (4) are not in one direction, it is necessary to transform them 

into the above membership functions to put them in one direction and become commensurable, as 

is required. In Eq. (6), since the output-oriented efficiency is always greater than one, the case of 

௠∑ 𝑣௜
௧௖𝑥௜௝ 
௧௖ < 1 is not considered. Hence, the fractional programming problem in Eq. (1) is௜ୀଵ 

transformed into the following membership function maximization problem: 
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s m
	
tc t tc t
ur yr0 l u vi xij
	

t r1 i1
E0  max  
1 l u 1 

s.t. 

ti 0  Ij  1, j  1,2,..., n 

t (7) ii 0  Oj  1, j  1,2,..., n 

s m
	
tc t tc t
iii  ur yrj vi xij  0, j  1,2, ,n 

r1 i1 

ur
tc  0, r  1,2, , s 

vi
tc  0, i  1,2, ,m 

Eq. (7) is a fuzzy approach to solve Eq. (1). The fractional constraints of Eq. (1) are 

transformed to linear constraints (iii). Two sets of constraints (i) and (ii) are also obtained from 

the fact that the constructed membership functions, Eqs. (5) and (6), must be greater than zero and 

lower than one for all DMUs. 

௧If the definition of 𝜇ூೕ in Eq. (5) is replaced in the first constraint of Eq. (7), then 

௦ ௧ ௧∑ 𝑢௥𝑦௥௝ ≤ 1. Equivalently, for 𝜇ைೕ in Eq. (6), by substituting it in the second constraint of Eq. ௥ୀଵ 

௠ ௧(7), an inequality of the form −∑ 𝑣௜𝑥௜௝ ≤ −1 is obtained. Adding these two inequalities, the ௜ୀଵ
 

௦ ௧ ௠ ௧
inequality ∑ 𝑢௥𝑦௥௝ − ∑ 𝑣௜𝑥௜௝ ≤ 0 is obtained. Since the latter inequality is the linear ௥ୀଵ ௜ୀଵ 

combination of the above inequalities, it is a redundant constraint that can be eliminated (Bazaraa 

et al. 2009). Therefore, two sets of constraints (i) and (ii) imply the constraints of (iii) and thus, 

the sets of constraints (iii) are redundant. Dutta et al. (1992) and Stanco-Minasian and Pop (2003) 

have proved the efficiency of the results obtained by solving the fuzzy equivalent (Eq. (7)) of the 

fractional programming problems (Eq. (1)). Therefore, solving Eq. (7) is equivalent to solving Eq. 

(1). 

Eq. (7) is an ordinary linear programming problem that can be solved without difficulty. 

For finding the CSWs using Model (4), the summation of membership functions is maximized as 

suggested by Zimmerman (1978) and Tiwari et al. (1986). It is notable that according to Chen and 

Tsai (2001), the sum of the achievement degrees in a max-sum (additive) model is greater than in 

the ordinal max-min model of Bellman and Zadeh (1970); thus, this operator is selected in this 
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paper. Consequently, the CSWs problem of model (4) transforms as follows by ignoring the
	

constant values of the objective function: 

n s n m
1 tc t 1 tc t
max  u yrj   vi xr ij
	1 l j1 r1 u  1 j1 i1
	

s.t. 

 
s 

ur
tc yrj 
t  1, j  1,2, ,n 

r1 (8) 
m
	

tc t
vi xij  1, j  1,2, ,n 
i1 

ur
tc  0, r  1,2, , s 

vi
tc  0, i  1,2, ,m 

The CSWs for a given time-period t are determined by solving Eq. (8). As mentioned 

earlier, we seek to find a set of CSWs for a multi-period of times. Considering the time series 

nature of inputs and outputs in multiple periods, the deliberated problem will be a stochastic 

optimization problem, i.e. its parameters are determined as time series with unknown distributions. 

Consider any of the DMUs, e.g. DMU0, and its ith input measure. This input variable takes 

different values in each time-period, i.e. 𝑥௜଴ 
ଵ , 𝑥௜଴ , …, and 𝑥௜଴	 ෤୧଴ 

ଶ ் . These values form a time series 𝑥 = 

(𝑥௜଴ 
ଶ , … , 𝑥௜଴ ෤௜଴ is a random variable with an unknown statistical distribution and its 

ଵ , 𝑥௜଴ 
் ). In fact, 𝑥

values differ over time periods. The multi-period CSWs problem is formulated as follows by 

substituting these random variables: 

n s		 n m1 c 1 cmax  u y  rj   v x ij r i
1 l j1 r1 u  1 j1 i1
	

s.t. 

c  i		 
s

u y   1, j  1,2, ,nr rj
	
r1
	 (9) 

c  
m

v x  1, j  1,2, ,ii		 i ij n
	
i1
	

ur
c  0, r  1,2, , s 

vi
c  0, i  1,2, ,m 
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The above problem is a stochastic programming model. Considering the objective function 

of Eq. (9), this stochastic objective function is transformed into a bi-objective problem of 

maximizing its mean and simultaneously minimizing its variance. Therefore: 

n s n m1 c 1 cmax M  max  u y   v xr rj i ij
	1 l j1 r1 u  1 j1 i1
	
(10) 

n s n m1 2 1 2 c 2 c 2min V  min  u     v  2 r rj 2 i ij
	1  j1 r1  1 j1 i 1
l u 

The variance relation in Eq. (10) is obtained considering independence of inputs and 

outputs in the objective function of Eq. (9). Usually, original DEA models assume complete 

independence of inputs and outputs (Gomes and Lins 2007; Ji et al. 2015). If the assumption of 

independence holds, the above relation can be used since the covariance of the variables is zero. 

However, if the variables are correlated, methods like principal component analysis (PCA) or 

independent component analysis (ICA) can be used to produce uncorrelated linear combination of 

original inputs and outputs (Adler and Golany 2001, 2002; Adler and Yazhmesky 2010; Kao et al. 

2011; Ji et al. 2015). The above relation can be used to produce independent inputs and outputs 

using PCA or ICA. 

The stochastic model is then transformed into a bi-objective model using the mean-

variance concept taken from the theory of portfolio management developed by Markowitz (1952). 

Now, consider the stochastic inequality shown in constraint (i) of Eq. (9). There is no easy way to 

handle this inequality since this constraint is stochastic. In this paper, the stochastic constraints are 

transformed into linear constraints using the concept of Chebyshev inequality bounds. 

Suppose that X is a random variable with mean µ and standard deviation σ, and that its 

statistical distribution is unknown. Chebyshev inequality bounds state that with a probability of at 

least 1 − 1 ⁄𝑘ଶ, this random variable lies in the interval of (𝜇 − 𝑘𝜎, 𝜇 + 𝑘𝜎). For 𝑘 = 1 ⁄√𝛼, an 

approximation of the 100(1 − 𝛼)% confidence interval of X can be obtained. Now, for the random 

variable 𝑦෤௥௝ with mean 𝑦ത௥௝ and standard deviation 𝛿௥௝, its approximation of the 100(1 − 𝛼)% 

confidence interval is obtained as ൫𝑦ത௥௝ − 𝑘𝛿௥௝, 𝑦ത௥௝ + 𝑘𝛿௥௝൯. This interval contains the random 

value of 𝑦෤௥௝, and by substituting these confidence intervals in the considered constraint, its interval 

equivalent is obtained as follows with a probability of at least 100(1 − 𝛼)%: 
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c 
s

u  y  k , y  k   1, j  1,2, ,n (11)r rj rj rj rj
	
r1
	

Now, using interval numbers arithmetic (Moore et al. 2009), the above inequality is 

converted into: 

 c c  
 
s 

ur  yrj  k rj ,  
s 

ur  yrj  k rj   1, j  1,2, ,n (12) 
 r1 r1  

Ishibuchi and Tanaka (1990) has proposed an ordering relation among interval numbers. If 

𝐴 = [𝑎ଵ, 𝑏ଵ] and 𝐴 = [𝑎ଶ, 𝑏ଶ], they state that 𝐴 ≤ 𝐵 if 𝑏ଵ ≤ 𝑏ଶ and (𝑎ଵ + 𝑏ଵ⁄2) ≤ (𝑎ଶ + 𝑏ଶ⁄2). 

Applying this ordering relation to Eq. (12), the following inequalities can be obtained: 

 s 
uc  y  k   1 r rj rj 

 r1
 , j  1,2, , n (13) 
 
s

cu yr rj  1
 r1 

The constraints (ii) are reduced to the following interval constraints by using a similar 

reasoning: 

m c 

vi  xij  k ij   1 
 i1 , j  1,2, ,n (14)  m
 cv x  1
 i1 

i ij 

Applying Eqs. (10), (13), and (14), and using the mean-variance idea of Markowitz (1952) 

that later was extended by Amoozad Mahdiraji et al. (2018) to solve multi-objective stochastic 

programming problems, the stochastic multi-period CSWs problem in Eq. (9) is transformed into 

the following non-linear bi-objective problem: 

n s n m1 c 1 cmax M  max  r rj u y   v xiji
1 l j1 r1 u  1 j1 i1
	

n s n m1 2 1 2 (15) c 2 c 2min V  min  u     v  2 r rj 2 i ij
	1  j1 r1  1 j1 i 1
l u 

s.t. 
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
(i.1) 

s 

uc  y  k   1  r rj rj 
 r1
 , j  1,2, ,n 
 

s
c(i.2) u y  1

 r1 
r rj 

m 


c

(ii.1) v  x  k   1i ij ij 
 i1
 , j  1,2, , n 
 

m
c(ii.2) v x  1

 i1 
i ij 

ur
c  0, r  1,2, , s 

vi
c  0, i 1,2, ,m 

Considering constraints (i.1) and (i.2) in Eq. (15), it is evident that 

s c s cr1 ur yrj  r 1 ur yrj  k rj   1 . Correspondingly, (i.2) is a subset of (i.1); thus, the (i.2) 

constraints are redundant. With a similar argument, the (ii.2) constraints are likewise redundant 

and can be eliminated. In this model, 𝑥̅௜௝ and 𝑦ത௥௝, along with 𝜎௜௝ and 𝛿௥௝ act as fixed parameters, 

where 

𝑦ത௥௝ = ∑ 𝑦௥௝ 
௧் 

௧ୀଵ 𝑇⁄ , 

ଶ்𝛿௥௝ 

𝑥௜௝ 

𝜎௜௝ 

= ∑ ⁄𝑇 − 1 ,௧ୀଵ
 ൫𝑦௥௝ 
௧ − 𝑦ത௥௝൯

்
 ௧ = ∑ ⁄𝑇, and ௧ୀଵ
 𝑥௜௝ 

ଶ
்= ∑ ⁄𝑇 − 1 .௧ୀଵ ൫𝑥௜௝ 
௧
 − 𝑥̅௜௝൯

while 𝑣௜
௖ and 𝑢௥

௖ are decision variables. As a result, the model is derived as:
	

n s n m1 c 1 cmax M  max  u y   v xr rj i ij
	1 l j1 r1 u  1 j1 i1
	

n s n m1 2 1 2 (16) c 2 c 2min V  min  u     v  2 r rj 2 i ij
	1  j1 r1  1 j1 i1
l u 

s.t. 
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s
 c
	

ur  yrj  k rj   1, j  1,2,, n 
r1 

 
m

c
S : vi  xij  k ij   1, j  1,2,, n 

i1 
cur  0, r  1,2,, s 

 c
 i  0, i  1,2,v ,m 

This non-linear bi-objective problem is also solved via a fuzzy approach. Since M and V 

are incommensurable criteria, they are transformed into membership functions to allow their 

summation in a single objective. To find the membership functions of M and V as objectives of the 

problem; initially, these two problems presented below are solved: 

 M max M 
s.t. (17a) 
 ,  Su v 

 V max V 
s.t. (17b) 
u v,  S 

Model (17a) represents the ideal value of the mean, where greater is better, while Model 

(17b) represents the nadir ideal value of the variance, where smaller is better. Additionally, 𝑀ି 

which is the nadir ideal value of the mean objective is considered equal to zero, as its worst case, 

while the ideal value of the variance, i.e. 𝑉ା, as its lowest value is considered equal to zero (since 

variance is always positive). It is notable that since the objective function V is a polynomial of 

second order and considering the convexity of S (since it is constructed of convex linear 

constraints), 𝑉ା and 𝑉ି will be global optima. Consequently, the M objective function is 

transformed into the following membership function: 

0, if M  0
   M (18)M , if 0  M  M  
  M 

This membership function is illustrated in Figure 3. 

Insert Figure 3 Here
	

In the same manner, the V objective is transformed into the following membership 

function: 
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0, if V  V  

V  

V  V  

(19) 
, if 0  V  V  V 

This membership function is illustrated in Figure 4. 

Insert Figure 4 Here
	

Along these lines, the final multi-period CSWs problem model is formulated as follows: 

n s n m1  1 c 1 c  
max u y  v x   r rj  i ij 
M 1 l j1 r1 u 1 j1 i1 
 

 n s n m 1 1 2 1 2 c 2 c 2 
V 

V   u     v    2 r rj 2 i ij
	

 1 l  j1 r1 u 1 j1 i1 
  

s.t. 

n s n m
	
c c 
0  

1  u y  
1  v x  Mr rj i ij
	1 l j1 r1 u  1 j1 i1
	

n s n m1 c 2 2 1 c 2 2 (20)  u     v    02 r rj 2 i ij
	1  j1 r1  1 j1
	i1l u 

c 
s

u  y  k   1, j  1,2, ,nr rj rj
	
r1
	

m
	
c
v  x  k   1, j  1,2, ,ni ij ij
	

i1
	

ur
c  0, r  1,2, , s 

vi
c  0, i 1,2, ,m 

Where the first and second constraints results from the fact that 𝜇ெ, 𝜇௏ ≤ 1. Note that in the above 

formulation, it is expected that the lower bounds of inputs take some negative values, i.e. for some 

𝑖 ∈ {1,2, … ,𝑚}, the values of ൫𝑥̅௜௝ − 𝑘𝜎௜௝൯ can be negative. In this case, the method of handling 

negative inputs by their absolute values, proposed by Cheng et al. (2013) is applicable. 

The above problem is to maximize a non-linear programming problem consisting of non-

linear variables (𝑢௥
௖)ଶ and (𝑣௜

௖)ଶ. To prove the concavity of the objective function, considering the 

maximization objective, and the vector of variables (𝑢ଵ 
௖, 𝑣ଵ 

௖ ) respectively, the ௖, … , 𝑢௥ 
௖, … , 𝑣௠ 

Hessian matrix of the objective function can be calculated as: 
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 21
2 
j  

 2  0 0  0 
 
 1 l  
 
      
 
 
 2 sj 

2 
 
 0   2 0  0 1  l H   2 21 j 0  0  2  

 u  1 
 
 
 
       
 
 2 
 
 0  0 0   

2mj 
2 

 

  1  u  
This is a diagonal matrix with negative diagonal elements and therefore is a negative 

definite matrix. Thus, the objective function is concave. Since the constraints of the problem are 

linear, their convexity is straightforward. Therefore, Eq. (20) is to maximize a concave function 

over a convex feasible space and its global optimum can be determined easily using optimization 

packages such as Lingo or MATLAB. Furthermore, the following theorem illustrates that the 

model in Eq. (20) is unit invariant. 

Theorem1. Rescaling the inputs and outputs do not change the optimal solution of the model in 

Eq. (20). 

Proof. See appendix A.  

Since the inputs and outputs random variables are transformed into interval numbers, using 

confidence intervals, the resulted efficiency scores are therefore interval numbers. According to 

the ordering relations of Ishibuchi and Tanaka (1990), for two interval numbers 𝐸ଵ = ൣ𝐸ଵ, 𝐸ଵ൧ and 

𝐸ଶ = ൣ𝐸ଶ, 𝐸ଶ൧, 𝐸ଵ < 𝐸ଶ if 𝐸ଵ < 𝐸ଶ and 𝐸ଵୡ < 𝐸ଶୡ, where 𝐸ଵୡ is the mean value of 𝐸ଵ. 

Consequently, after finding the optimal weights 𝑢௥
௖ and 𝑣௜

௖, the mean relative efficiency of DMU0 

is evaluated as: 

c 
s

u y r r0
	
r1
E0c  m (21) 

cv xi i0
	
i1
	

And its upper bound efficiency is calculated as: 
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c 
s

u  yr0  k r r0 
r1E0  m (22) 

cv  x  k i i 0 i0 
i1 

Now, the multi-period CSWs based efficiency of DMUs can be compared and ranked based 

on Eqs. (21) and (22). It is worth noting here that considering the randomness of the CSWs multi-

period problem, due to inputs and outputs variance, it is logical to find a non-crisp solution for this 

problem, since reaching a crisp solution with uncertain data seems unrealistic. 

This can be summarized in the following steps to facilitate application of the above 

described procedure for evaluating the multi-period efficiency of the DMUs based on a CSWs: 

 Step 1. Identify decision making units, input and output measures, time periods in which the 

DMUs are evaluated, and threshold values of 𝜃௟ and 𝜙௨. 

 Step 2. If inputs and outputs are rationally independent, then go to step 4, otherwise if there 

are signs of dependence among inputs and/or outputs, go to Step 3. 

 Step 3. Using PCA or ICA, transform the dependent inputs and/or outputs into a set of 

independent components in each time-period and go to Step 4. 

 Step 4. Compute the mean and variance matrices of inputs and outputs for the DMUs over the 

considered time periods. 

 Step 5. Formulate and solve problems in Eqs. (17a) and (17b) to determine the optimal values 

of 𝑀ା and 𝑉ି . 

 Step 6. Formulate and solve the problem in Eq. (20) to find the CSWs 

(𝑣ଵ
௖, 𝑣ଶ
௖, … , 𝑣௠

௖ , 𝑢ଵ
௖, 𝑢ଶ
௖, … , 𝑢௦

௖). 

 Step 7. Determine the mean and upper bound relative efficiency of the DMUs, using Eqs. (21) 

and (22). 

5. Case study 

HCI bank is a medium-size bank founded in Iran in 2008. As its competitors are mainly well-

established banks, HCI needs to operate more efficiently (i.e. reduce its expenses and increase its 

productivity) to compete. DEA has been used widely in the banking industry to measure efficiency 

(Liu et al. 2013; Emrouznejad and Yang, 2018). In this study, we consider a six-month time 

horizon and apply the guidelines proposed by Berger and Humphrey (1997) and Luo and Liang 

(2012) and select personnel costs (I1), general and administrative costs (I2), account-related costs 
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(I3), and rental expenses (I4) as inputs and sum of deposits (O1), loans (O2), securities (O3), and 

branch income (O4) as outputs as shown in Table 1. 

Insert Table 1 Here
	

Considering a six-month period, for four inputs and four outputs at 125 branches, a 

database with 6804 records is constructed to capture monthly transactions. It is necessary to 

determine M+ and V- using Eqs. (17a)- (17b) when applying Model (20). The senior managers 

estimated 𝜃௟ = 0.3 (i.e. the desirability of the input-oriented efficiency score below 0.3 is 0) and 

therefore, ∅௨ = 3.33 (i.e. the desirability of the output-oriented efficiency score above 3.33 is 0). 

These values were determined through in-depth discussions with senior management and the 

amount of 0.3 was obtained as they believed that there is no justification for a branch to act with 

an efficiency below threshold value. However, the model can be deployed with any other value 

for 𝜃௟. Solving models (17a) and (17b), the values are obtained as: 

𝑀ି = 0 and 𝑀ା = 66.5339 

𝑉ି = 1.263402 and 𝑉ା =0 

The values of 𝑀ି and 𝑀ା are found easily using the MATLAB Linprog command, while 

𝑉ି and 𝑉ା are determined using the MATLAB Optimtool toolbox. Next, the problem in Eq. (20) 

is formulated and solved using the sequential quadratic programming approach of the MATLAB 

Optimtool. To avoid some inputs or outputs being dominated by other, the following assurance 

region type constraints (Charnes et al. 1994) are used: 

𝑢௥ 
≤ 3, 𝑟, 𝑝 = 1,2,3,4, 𝑟 ≠ 𝑝 

𝑢௣ 

and 

𝑣௜ 
≤ 3, 𝑖, 𝑘 = 1,2,3,4, 𝑖 ≠ 𝑘 

𝑣௞ 

These constraints are added to the constraints in Model (20) and the obtained CSWs are 

summarized in Table 2. 

Insert Table 2 Here
	

Applying these weights in models (21) and (22), the multi-period CSWs based mean and 

upper bound relative efficiency of DMUs are illustrated in Table 3. For instance, considering the 

mean input-output vector of DMU1099 as (𝑥̅ଵଵ଴ଽଽ, 𝑥̅ଶଵ଴ଽଽ, 𝑥̅ଷଵ଴ଽଽ, 𝑥̅ସଵ଴ଽଽ) = (599,121,15957,0) 

and (𝑦തଵଵ଴ଽଽ, 𝑦തଶଵ଴ଽଽ, 𝑦തଷଵ଴ଽଽ, 𝑦തସଵ଴ଽଽ) = (732604,652260,241243,61146), the mean efficiency is 
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calculated as: 

[1.32(732604) + 2.70(652260) + 4.37(241243) + 0.901(61146)]10ି଺ 3.84 
= = = 0.40 𝑬𝟏𝒄 [6.87(599) + 17.10(121) + 5.69(15957) + 5.69(0)]10ିସ 9.69 

Insert Table 3 Here
	

Similarly, considering the input vector (𝑥̅ଵଵ଴ଽଽ − 3.16𝜎ଵଵ଴ଽଽ, 𝑥̅ଶଵ଴ଽଽ − 

3.16𝜎ଶଵ଴ଽଽ, 𝑥̅ଷଵ଴ଽଽ − 3.16𝜎ଷଵ଴ଽଽ, 𝑥̅ସଵ଴ଽଽ − 3.16𝜎ସଵ଴ଽଽ) = (396,195,17501,0) and the output 

vector (𝑦തଵଵ଴ଽଽ + 3.16𝛿ଵଵ଴ଽଽ, 𝑦തଶଵ଴ଽଽ + 3.16𝛿ଶଵ଴ଽଽ, 𝑦തଷଵ଴ଽଽ + 3.16𝛿ଷଵ଴ଽଽ, 𝑦തସଵ଴ଽଽ + 3.16𝛿ସଵ଴ଽଽ) = 

(1285416,786765,637349,211443), the upper bound efficiency is calculated as: 

[1.32(1285416) + 2.70(786765) + 4.37(2637349) + 0.901(211443)]10ି଺ 6.8 
ഥ𝑬 = = = 0.64 𝟏 [6.87(396) + 17.1(195) + 5.69(17501) + 5.69(0)]10ିସ 10.6 

Table 3 also present the results of the aggregated and network connected models of Kao 

and Liu (2014). Since none of the existing methods can determine the CSWs in multi-period 

problems, required comparisons are examined between the proposed method with some existing 

multi-period models to exhibit the improvement of the discrimination power. 

Improvement in the discrimination power of the CSWs model can be seen by comparing 

the proposed CSW’s based results with the aggregated and network connected models. The 

aggregated model includes 7 DMUs with efficiency of 1, while this number is observed by 16 

DMUs in the network connected model. Admittedly, the aggregated model classifies 5.6% of the 

DMUs as efficient without any discrimination between them. Compared with the network 

connected model, 12.8% of the DMUS are classified as efficient (representing a weak 

discrimination power). On the other hand, there is only a single DMU with an upper bound 

efficiency of 1 by the proposed method, i.e. only 0.8% of the DMUs are indiscriminable. 

Another feature of the proposed method is that there is a DMU with an upper efficiency 

of 1 (fully efficient), which is a general requirement for CSWs problems as argued by Roll et al. 

(1991) and Golany and Yu (1995). 

Figure 5 illustrates the scatter diagram of mean efficiencies in the proposed CSWs model 

with the results of multi-period efficiencies. Figure 5a compares the mean and upper bound 

efficiencies with the aggregated model, while Figure 5b illustrates the comparison with the 

network connected model. 

Insert Figure 5 Here
	

This figure reveals a decrease in the mean efficiencies. Hence, it can be argued that the
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proposed CSWs model dramatically increases the discrimination power of the multi-period
	

efficiency appraisal. Usually, the aim of CSWs is to find a CSWs to evaluate the DMUs’ 

efficiencies. These CSWs will increase the differentiation of the DMUs’ efficiencies. The low 

efficiency scores of DMUs in this case may be due to the weak performance of DMUs in inputs 

and outputs and the strict approach of CSWs in evaluating the DMUs’ efficiencies with respect to 

ordinal multi-period DEA models which improve the model’s discrimination among the DMUs. 

Table 4 summarizes the Spearman rank correlations among different efficiencies reported in Table 

3. The third column shows the obtained p-values of significance of correlations. 

Insert Table 4 Here
	

As shown in Table 4, all pairwise rank correlations are significant at a significance level of 

95%. On the other hand, as it is expected, the greatest correlation of about 81% is between the 

mean and upper-bound efficiencies in the proposed method. Then, there is a correlation of 70.3% 

between the aggregated and connected network models of Kao and Liu (2014). The correlations 

in Table 4 show both the mean and upper-bound efficiencies have greater correlation with the 

aggregated model, which is more evidence for greater discrimination power in the aggregated 

model. For more explanation on results, Table 5 illustrates the hypothesis tested on significance 

of differences among mean efficiencies of different methods. 

Insert Table 5 Here
	

The results show significant differences between the means of performance efficiency 

scores obtained by the paired methods in all rows. Also, the upper and lower boundaries 

establishing “the intervals of the differences” show negative figures. The interval related to 𝐸଴௖ – 

Connected method results (-0.49273, -0.38439) suggests that the efficiencies obtained by the 

network connected model are 38 to 49 percent above the efficiencies obtained by the mean 

efficiency scores of the proposed method. The network connected model also obtains efficiencies 

about 32 to 44 percent above the upper-bound efficiencies. This can be interpreted as the optimistic 

behavior of the network connected model, as it might overestimate the efficiencies. These 

differences are lower for the aggregated model. 

Considering Tables 4 and 5, it can be argued that the proposed method has an acceptable 

correlation with other methods, while it produces more warily estimation of efficiencies as it is 

more compatible with the uncertainty of multi-period problems. 

The final point regarding the results is about the low values of efficiency for some DMUs. 
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The obtained results mainly illustrate the pattern of inputs and outputs. Consider the trends of the 

inputs and outputs for DMU1121 in Figure 6. Figures 6a to 6d are related to I1, I2, I3, and I4, and 

Figures 6e to 6h are related to O1, O2, O3, and O4, respectively. 

Insert Figure 6 Here
	

The cases above are illustrated based on data related to DMU 1211 whose efficiency is 

calculated about 0.05. Concentrating on the inputs, it is inferred that the increasing slopes of the 

inputs range from 50 to 856; while, the increasing slopes of the outputs range from 0.39 to 0.51 

suggests diversity in the ascending trend. Next, the above figure is repeated for data related to 

DMU 1102 with an efficiency score of 0.45. In this figure again, Figures 7a to 7d are related to 

inputs and figures 7e to 7h are related to outputs. 

Insert Figure 7 Here
	

As shown in Figure 7, the slopes of the outputs differ from 44914 to 407234 compared 

with slopes of the inputs (32 to 1895). This hundreds of times difference completely emphasizes 

the effect of the proposed method, especially concerning the branches of the HCI Bank with a poor 

performance. 

6. Conclusion 

Most managers in large companies must deal with the challenging problem of performance 

evaluation from time to time. As Simons (1999) believed, a good performance evaluation system 

transforms information, is established based on rational and formal disciplines, usable by 

managers, and determines directions for performance improvement. DEA is an accepted method 

for approximating the best production frontier and evaluating the business units according to their 

distance from this frontier. Beyond its acceptability, DEA is primarily applied in a single time-

period, while organizations operate over several continuous time periods. Several researchers have 

proposed different methods for multi-period DEA which often produce efficiency scores with low 

discrimination power. With the goal of enhancing the discrimination power of DEA models in a 

multi-period mode, we propose a method for finding CSWs for DMUs performing over several 

time periods. To achieve this goal, initially the CSWs problem is formulated as a multi-objective 

fractional programming. Then, this formulation is extended to several time periods. Following the 

mean-variance criteria of Markowitz, the problem is formulated to maximize the mean efficiency 

of all DMUs over the time horizon and simultaneously minimize its variance. Afterwards, the 

constraints of the problem are handled by using the notion of confidence intervals and interval 
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numbers ranking order. Application of the proposed method is examined in a case of 125 bank 

branches that are evaluated in six months’ time periods. The obtained results show that the 

proposed model increases the discrimination power of the multi-period DEA model. 

This result is clear considering the obtained results that only one of the DMUs reaches a 

full efficiency in its upper bound. The main features of the proposed method can be summarized 

as (1) using mean-variance logic to find CSWs in a multi-period DEA problem, (2) using a fuzzy 

membership based approach for solving the obtained bi-objective non-linear CSWs model, (3) 

increasing the discrimination power of the model compared with the ordinal multi-period method, 

(4) the proposed method determines an interval for the efficiency of DMUs that is much more 

consistent with the uncertainty of a multi-period efficiency appraisal problem. These findings can 

also be extended to the case of fuzzy multi-period DEA problems, where some inputs and outputs 

are defined as fuzzy numbers and extending the model by finding CSWs when the DMUs are 

designed as a network of activities. 
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Appendix A. Proof of theorem 1. 

To prove this theorem, let us first transform the nonlinear problem of Eq. (20) into an equivalent 

linear problem. Let ( ௖)ଶ𝑢௥ = 𝑈௥
௖ and ( ௖)ଶ = 𝑉௜

௖𝑣௜ . The linearized model is obtained as: 

n s n m1  1 c 1 c  
max u yrj   ij  i  r v x 

M 1 l j1 r1 u 1 j1 i1  

 n s n m 1  1 c 2 1 c 2 V   U    V   2 r rj 2 i ij
	V  1l  j1 r1 u 1 j1 i1 
 

s.t. 

n s n m
1 c 1 c 
0   u y   v x  Mr rj i ij
	1 l j1 r1 u  1 j1 i1
	

n s n m
1 c 2 1 c 2
	
2  Ur   2  Vi   0rj ij
	1l  j1 r1 u 1 j1 i1
	

c 
s

u  y  k   1, j  1,2, ,nr rj rj
	
r1
	

m
	
c
vi  xij  k ij   1, j  1,2, ,n 

i1 

ur
c  0, r  1,2, , s 

vi
c  0, i 1,2, ,m 

The dual model of above linear model can be obtained as: 

min M 1 V 
1 

s.t. 

n n n 1  1 11 2    yrj   j  yrj  k rj     yrj , r  1,2, , s 
 1 l j1  j1 M 1l j1 

n n n 1  1 11 2    xij   j  xij  k ij      xij , , i  1,2, , m 
u 1 j1  j1 M u 1 j1 

2 1   
V 

1 
 

, , ,  0   1 1 2 2 

Now, suppose that an output is rescaled, e.g. 𝑦′ 𝑦௥ → 𝑎௥ ௥ . Substituting this rescaled variable 
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in the first constraint, if follows that; 

n n n 1  1 1     y '    y '  k '    y ' 1 2 rj j rj rj  rj 

 1 l j1  j1 M 1 l j1 

Since 𝑦ത′௥ = 𝑎௥𝑦ത௥ and 𝛿′௥ = 𝑎௥𝛿௥, then 

n n n 1  1 1    ay   a  y  k   a  y ' 1 2 rj j rj rj  rj
	

 1 l j1  j1 M 1l j1
	

This inequality can be simplified as: 

n n n 1  1 11 2    yrj   j  yrj  k rj     y ' rj 
 1 l j1  j1 M 1 l j1 

This indicates the initial inequality. Correspondingly, this feature is satisfied when an input 

is rescaled, e.g. 𝑥′௜ → 𝑏௜𝑥௥. Hence, the model is unit invariant. 

30
	



 
 

 

      

 

  

Figure 1. Multi-period DMU performance measurement
	

31
	



 
 

 

        

 

  

Figure 2. Algorithmic scheme of multi-period CSWs calculation
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Figure 3. Membership function of the first objective in the multi-period problem
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Figure 4. Membership function of the second objective in the multi-period problem
	

34
	



 
 

 

 

 

 

       

  

    

     

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5 

Mean efficiency Upper bound efficiency Aggregated model 

(a)
	

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5 

Mean efficiency Upper bound efficiency Connected network model 

(b) 

Figure 5. Scatter diagram of mean efficiencies 
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(a) (e) 

(b) (f)
	

(c) (g)
	

(d) (h) 
Figure 6. Inputs/outputs trend for DMU1121 during the considered time period 
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Figure 7. Inputs/outputs trend for DMU1102 during the considered time period 
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Table 1. Input and output measures
	

Inputs Outputs 

Personnel costs (I1) Sum of deposits (O1) 
General and administrative costs (I2) Loans (O2) 

Account-related costs (I3) Securities (O3) 
Rental expenses (I4) Branch income (O4) 
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Table 2. Input and output measures for the CSWs
	

I1 
I2 
I3 

Inputs 

687(10-6) 
1710(10-6) 
569(10-6) 

Outputs 

O1 1.32(10-6) 
O2 2.70(10-6) 
O3 4.37(10-6) 

I4 569(10-6) O4 0.901(10-6) 
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Table 3. Multi-period CSWs based relative efficiencies
	

DMU 
Proposed CSWs based efficiencies Kao and Liu (2014) 

𝑬𝟎𝒄 𝑬𝟎 Aggregated model Connected network model 

1099 0.40 0.64 1.00 
1101 0.06 0.09 1.00 
1102 0.45 1.00 1.00 
1103 0.29 0.59 0.94 
1104 0.05 0.11 0.33 
1105 0.12 0.15 0.37 
1106 0.14 0.15 0.45 
1107 0.10 0.14 0.32 
1108 0.06 0.24 0.53 
1109 0.05 0.06 0.22 
1110 0.11 0.14 0.34 
1111 0.17 0.36 0.56 
1112 0.44 1.00 1.00 
1113 0.06 0.18 0.24 
1201 0.07 0.10 0.30 
1202 0.11 0.17 0.44 
1203 0.07 0.08 0.68 
1204 0.14 0.18 0.99 
1206 0.11 0.16 0.42 
1207 0.06 0.09 0.20 
1208 0.14 0.20 0.35 
1209 0.14 0.26 0.36 
1210 0.32 0.59 1.00 
1211 0.05 0.12 0.29 
1212 0.03 0.12 0.17 
1213 0.01 0.03 0.10 
1214 0.00 0.01 1.00 
1301 0.05 0.10 0.23 
1302 0.10 0.15 0.28 
1303 0.06 0.08 0.27 
1304 0.06 0.07 0.23 
1305 0.11 0.12 0.41 
1306 0.06 0.06 0.23 
1307 0.09 0.08 0.36 
1308 0.05 0.08 0.18 
1309 0.09 0.07 0.32 
1310 0.09 0.07 0.32 
1311 0.08 0.07 0.31 
1312 0.07 0.10 0.28 
1313 0.03 0.10 0.15 
1401 0.04 0.07 0.18 
1402 0.08 0.11 0.24 
1403 0.04 0.05 0.16 
1404 0.05 0.07 0.18 
1405 0.08 0.14 0.25 
1408 0.04 0.10 0.33 
1501 0.09 0.11 0.30 
1502 0.07 0.12 0.17 

1.00 
1.00 
1.00 
1.00 
0.45 
0.58 
0.87 
0.45 
1.00 
0.24 
0.64 
0.84 
1.00 
0.35 
0.41 
0.49 
0.99 
1.00 
0.61 
0.22 
0.78 
0.51 
1.00 
0.33 
1.00 
0.13 
0.00 
0.31 
0.96 
0.48 
0.38 
0.76 
0.76 
1.00 
0.20 
1.00 
0.88 
0.65 
0.40 
0.15 
0.20 
0.37 
0.29 
0.23 
0.44 
0.38 
0.45 
0.29 

1503 0.08 0.09 0.27 0.40 
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DMU 
Proposed CSWs based efficiencies Kao and Liu (2014) 

𝑬𝟎𝒄 𝑬𝟎 Aggregated model Connected network model 

1504 0.09 0.33 0.28 
1505 0.06 0.10 0.35 
1506 0.12 0.12 0.34 
1507 0.10 0.14 0.21 
1508 0.05 0.07 0.44 
1509 0.10 0.12 0.28 
1601 0.08 0.12 0.23 
1602 0.10 0.13 0.28 
1603 0.15 0.17 0.32 
1604 0.15 0.33 0.30 
1605 0.10 0.14 0.47 
1606 0.05 0.08 0.44 
1406 0.08 0.26 0.44 
1407 0.11 0.18 0.21 
1701 0.11 0.19 0.60 
1702 0.07 0.08 0.19 
1703 0.10 0.13 0.30 
1704 0.08 0.10 0.29 
1705 0.07 0.08 0.24 
1706 0.03 0.04 0.15 
1707 0.08 0.05 0.25 
1708 0.09 0.12 0.29 
1709 0.13 0.16 0.38 
1710 0.02 0.03 0.11 
1711 0.03 0.07 0.20 
1712 0.01 0.02 0.06 
1713 0.02 0.04 0.12 
1801 0.10 0.14 0.26 
1802 0.12 0.14 0.49 
1803 0.05 0.07 0.26 
1804 0.25 0.20 0.69 
1805 0.10 0.13 0.31 
1806 0.09 0.14 0.36 
1807 0.09 0.12 0.34 
1808 0.05 0.04 0.25 
1809 0.08 0.11 0.28 
1901 0.07 0.11 0.28 
1902 0.05 0.10 0.23 
1903 0.12 0.18 0.45 
1904 0.09 0.12 0.31 
1905 0.05 0.06 0.22 
1906 0.14 0.18 0.48 
1907 0.07 0.09 0.32 
1908 0.31 0.47 1.00 
1909 0.13 0.28 0.50 
1910 0.08 0.11 0.26 
1911 0.07 0.10 0.26 
1912 0.07 0.12 0.38 
2001 0.04 0.05 0.16 
2002 0.08 0.09 0.28 

0.41 
0.41 
0.38 
0.23 
0.64 
0.47 
0.24 
0.65 
0.48 
0.53 
0.91 
0.47 
0.54 
0.25 
1.00 
0.75 
0.60 
0.55 
0.49 
0.59 
0.45 
0.43 
0.78 
0.51 
0.27 
0.07 
0.17 
0.48 
0.56 
0.47 
1.00 
0.54 
0.72 
0.92 
1.00 
0.92 
0.37 
0.26 
0.50 
0.34 
0.38 
0.65 
0.63 
1.00 
0.68 
0.29 
0.28 
0.45 
0.22 
0.52 

2003 0.08 0.10 0.27 0.40 
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DMU 
Proposed CSWs based efficiencies Kao and Liu (2014) 

𝑬𝟎𝒄 𝑬𝟎 Aggregated model Connected network model 

2004 0.08 0.11 0.27 0.40 
2005 0.04 0.08 0.17 0.21 
2006 0.04 0.17 0.22 0.48 
2007 0.05 0.10 0.21 0.24 
2009 0.04 0.06 0.18 0.22 
2010 0.05 0.03 0.25 0.50 
2011 0.06 0.07 0.26 0.44 
2012 0.04 0.06 0.17 0.22 
2101 0.08 0.12 0.36 0.42 
2102 0.11 0.13 0.33 0.55 
2103 0.13 0.21 0.46 0.71 
2104 0.09 0.14 0.32 0.40 
2105 0.11 0.19 0.37 0.56 
2106 0.06 0.11 0.25 0.30 
2107 0.05 0.08 0.22 0.27 
2108 0.10 0.18 0.32 0.43 
2201 0.05 0.06 0.82 1.00 
2202 0.09 0.11 0.28 0.36 
2203 0.06 0.09 0.23 0.30 
2204 0.05 0.08 0.17 0.28 
2205 0.05 0.07 0.23 0.26 
2206 0.07 0.08 0.46 0.53 
2207 0.09 0.09 0.35 0.73 
2208 0.08 0.11 0.26 0.36 
2209 0.14 0.21 0.36 0.56 
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Table 4. Spearman rank correlation among results
	

Pairs compared 
Spearman rank 
correlation 

Significance (P-
value) 

𝑬𝟎𝒄 ~𝑬𝟎 0.809 3.58E-30 
𝑬𝟎𝒄 ~𝐀𝐠𝐠𝐫𝐞𝐠𝐚𝐭𝐞𝐝 𝐦𝐨𝐝𝐞𝐥 0.678 3.52E-18 
𝑬𝟎𝒄 ~𝐂𝐨𝐧𝐧𝐞𝐜𝐭𝐞𝐝 𝐧𝐞𝐭𝐰𝐨𝐫𝐤 0.579 1.44E-12 

𝑬𝟎 ~𝐀𝐠𝐠𝐫𝐞𝐠𝐚𝐭𝐞𝐝 𝐦𝐨𝐝𝐞𝐥 0.588 5.81E-13 

𝑬𝟎 ~𝐂𝐨𝐧𝐧𝐞𝐜𝐭𝐞𝐝 𝐧𝐞𝐭𝐰𝐨𝐫𝐤 0.431 5.36E-7 
𝐀𝐠𝐠𝐫𝐞𝐠𝐚𝐭𝐞𝐝 𝐦𝐨𝐝𝐞𝐥~𝐂𝐨𝐧𝐧𝐞𝐜𝐭𝐞𝐝 𝐧𝐞𝐭𝐰𝐨𝐫𝐤 0.703 6.75E-20 
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Table 5. Paired t-test of mean differences among different methods
	

Pairs 

Paired Differences 

t df 
Sig. (2-
tailed) Mean Std. Deviation 

Std. Error 
Mean 

99% Confidence Interval 
of the Difference 
Lower Upper 

𝐸0𝑐 − 𝐸0 -.05384 .08588 .00768 -.07393 -.03375 -7.009 124 .000 

𝐸0𝑐 − Aggregated -.26040 .16964 .01517 -.30009 -.22071 -17.162 124 .000 

𝐸0𝑐 − Connected -.43856 .23150 .02071 -.49273 -.38439 -21.180 124 .000 

𝐸0 − Aggregated -.20656 .15941 .01426 -.24386 -.16926 -14.487 124 .000 

𝐸0 − Connected -.38472 .23686 .02119 -.44014 -.32930 -18.160 124 .000 

Aggregated - Connected -.17816 .21050 .01883 -.22741 -.12891 -9.463 124 .000 
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