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Multi-period data envelopment analysis based on Chebyshev inequality bounds 

Abstract 

Data envelopment analysis is a cross-sectional approach to evaluate the relative efficiency of 
a set of homogeneous units in a single time point; nonetheless, organizational units have been 
performing continuously over a period of time; hence, their performances are considered within 
this period. Cumulating inputs and outputs over the time periods provide an unnecessary 
compensating impact, making the efficiency appraisal unrealistic. To avoid this negative impact 
of data accumulation, a two-stage approach on the basis of Chebyshev inequality bounds is 
proposed to find interval efficiency of decision making units (henceforth DMUs). The proposed 
method is applied in a real case encompassing 115 bank branches over 6 periods of time. This 
application indicated the significant cautious approach of the proposed method in multi-period 
data envelopment analysis (hereafter DEA). 
Keywords: Data envelopment analysis; Multi-period Efficiency; Chebyshev inequality 

bounds; Two-stage efficiency approximations. 

1. Introduction 

Data envelopment analysis, initially introduced by Charnes, Cooper, and Rhodes (1978) is 
an accepted and widely employed framework to analyze the relative efficiency of a set of DMUs, 
using m inputs to produce a set of s outputs. DEA is extended based on economic foundations of 
production possibility sets and seeks a production frontier to measure the relative efficiency of 
DMUs (Charnes, Cooper, Lewin, & Seiford, 1994; Førsund, Kittelsen, & Krivonozhko, 2009). 
Recent investigations by Emrouznejad, Parker and Tavares (2008) and Liu, Lu, Lu and Lin 
(2013) have shown a large variety of applications using DEA for measuring and improving the 
efficiency. 
Classical DEA models can be considered as cross-sectional analysis. Admittedly, the 

performance of DMUs is compared with a particular point of time. Contrariwise, comparing the 
performance of DMUs over several periods of time is considerable, knowing as longitude or time 
series analysis (Charnes, Cooper, Lewin, & Seiford, 1994; Ramanathan, 2003). This problem is 
generally called multi-period DEA. Some implications of multi-period DEA can be found at 
universities (Kao, & Liu, 2014) and international airports (Kao, & Hwang, 2014). 
In a nutshell, multi-period DEA deals with inputs and outputs fluctuation among DMUs. 

Classically, stochastic DEA models can be applied for handling this fluctuation, where inputs 
and outputs are assumed to follow certain statistical distributions. Cooper, Huang, and Susan 
(2011), Wei, Chen, and Wang (2014), and Branda (2015) are some of the latest researches 
regarding stochastic DEA; nevertheless, a different perspective is followed in multi-period DEA 
models in which, data are observed in different time points and are captured in the form of time 
series. A conventional approach for dealing with multiple periods is to aggregate the data of 
different periods in a single data point and to ignore the specific situation of each period 
(Charnes, Clarck, Cooper, & Golany, 1985). 
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To avoid this simplification mode, several methods are proposed for time series DEA 
problems. One of the first approaches in DEA analysis of multiple time periods is window 
analysis; where a moving average pattern of analysis is applied (Caves, Christensen, & Diewert, 
1982). Actually, the performance of a DMU is compared with its performance in other periods, 
and with other DMUs’ performance in the same period (Ramanathan, 2003). However, as 
mentioned by Charnes, Cooper, Lewin, and Seiford (1994), choosing the number of time periods 
in the window is really a controversial issue. Alongside with, another classic approach is 
Malmquist-type indexes of productivity (Färe, & Grosskopf, 1996). Beyond their usefulness, 
Kao and Liu (2014) pointed that these methods “do not take into account an aggregated measure 
of efficiency for multiple-period production systems”. 
Classes of dynamic DEA models are also extended for multi-period problems. Their main 

advantage is the ability to account the effect of carry-over activities between two consecutive 

terms. Dynamic DEA models were initially introduced by Färe and Grosskopf (1996), 
subsequently were developed by Nemoto and Goto (1999, 2003), Sueyoshi and Sekitani 
(2005), as well as Bogetoft, Färe, and Grosskopf (2008). On the other hand, it is worth noting 
here that, as a weakness these models need a perfect foresight regard to input costs, while 
Thompson, Langemeier, Lee, Lee, and Thrall (1990), besides Thompson, Dharmapala, and 
Thrall (1995) believed that exact input cost is not determined even in a given period. 
Sengupta (1995; 1999) developed different types of dynamic DEA models, via which 

various possible scenarios of aggregating input costs were considered over the time. In these 
models, an optimal level is determined for inputs and the overall efficiency is defined as the ratio 
of actual used inputs over optimal expected inputs. Sengupta (1995) model assumed that inputs’ 
future prices are determined exactly, while Sengupta (1999) extended his initial model to 
incorporate the uncertainty of inputs’ future prices for measuring overall efficiency. As 
previously declared, the main restriction of dynamic DEA models is their dependency on 
knowledge about input prices, especially in the future, imposing an additional uncertainty to the 
models. 
The multi-period DEA problems can be imagined in the context of network DEA models, 

whilst classic network DEA models (Kao, 2008, 2014a, b) considered DMUs internal structures 
and the relations among the subunits of DMUs, the multi-period DEA model can be considered 
as a network of time frames where a DMU performed continually in a time horizon whereas the 
aim of the model is to evaluate the relative efficiency of DMUs in this time-based network. A 
similar conceptualization of multi-period DEA in the form of network DEA is considered by Kao 
and Liu (2014). 
Park and Park (1995) presented a multi-period data envelopment analysis (MDEA) model 

upon the concept of Debreu–Farrell’s technical efficiency. The MDEA model relies on finding 
the efficiency of DMUs in different periods whereas a DMU is called full efficient if it gains full 
efficiency in all periods. 
Amirteimoori and Kordrostami (2010) defined the aggregated efficiency of a DMU as a 

convex combination of individual period efficiencies and developed a model to find total and 
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period efficiencies of DMUs. Kao and Liu (2014) proposed a model for multi-period efficiency 
evaluation, through which the overall and period efficiencies of a DMU are calculated 
simultaneously, while the overall efficiency is defined as the weighted average of the period 
efficiencies. Kao and Hwang (2014) applied the idea of overall efficiency as the weighted 
average of period efficiencies in two-stage network production systems. 
Whilst different methods presented valuable views toward finding multi-period efficiency of 

a set of DMUs over a period of time, the main drawback to these models is ignoring the 
individual input and output variances during the time. Since the performance of DMUs is 
evaluated in multiple periods, the inputs and outputs of these DMUs are treated differently over 
the period of time, remark that these marked differences should be considered in their efficiency 
evaluation. Different methods usually accumulate inputs and outputs of considered periods to 
evaluate relative efficiency of units with cumulative data. This accumulation results in an 
unnecessary compensating effect ignoring the impact of inputs and outputs fluctuation on 
efficiency. As a case in point, if one of the outputs of a given DMU is increased in a specific 
time period, while this output is decreased dramatically in another time period, without 
considering the variance of this output engenders an unrealistic approximation of efficiency. The 
aim of this paper is to extend a DEA model incorporating the variability of input and output 
measures directly in the model. 
The reminder of paper is organized as follows. Section 2 describes the perceived problem of 

evaluating bank branches efficiency during a period of 12 months. The proposed algorithm is 
explained in section 3. Numerical results are presented in section 4. Finally, the paper is 
concluded in section 5. 

2. Problem description 

Banks play an important role in the economic system of countries. This importance makes 
them an interesting subject of DEA applications. As Emrouznejad, Parker and Tavares (2008) 
and Liu, Lu, Lu and Lin (2013) surveys’ illustrated, financial institutions including banks are the 
most implicational field of DEA. 
The noted problem in this paper deals with evaluating the efficiencies of 115 branches of 

HNI, a corporate bank in Iran. A set of 5 inputs and 4 outputs are identified to appraise the 
branches efficiency. These inputs and outputs are specified upon Berger and Humphrey (1997) 
and Luo and Liang (2012). Table 1 depicts the input and output measures. Among the inputs, the 
ratio of non-current to total receivables is an undesirable output. Different methods are proposed 
encompassing undesirable outputs. Färe, Grosskopf, Lovell, and Pasurka (1989), Färe, 
Grosskopf, and Tyteca (1996), as well as Tyteca (1997) modeled and developed the concept of 
hyperbolic output efficiency measure to deal with undesirable outputs in terms of an 
equiproportionate increase in desirable outputs and decrease in undesirable ones. Seiford and 
Zhu (2002) introduced a linear monotone decreasing transformation for undesirable outputs. The 
transformed outputs are treated as desirable outputs. Considering undesirable outputs as inputs is 
applied in different DEA studies (Matthews, 2013). The main strength of this approach is its 
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easiness of use. In conjunction with the main advantage this approach doesn't rely on any 
assumption about data structure and shape of linear transformation. 
In this study, data are gathered from the second half of the financial year 2013, from 1 July 

2013 to 1 January 2014. Accordingly, there are a set of 6 input/output matrices of the size of 
115×9. According to these matrices, a set of 9 time series data, each for one of the inputs or 
outputs is constructed. The aim of the problem is to assess the efficiency of bank branches in 
aforementioned time horizon. 

<Please insert table 1 here> 
The attended data in this problem are observed values of inputs and outputs in discrete time
	

points forming different time series for every input and output of each DMU.
	

3. Problem formulation 

Generally, suppose that there are a set of n DMUs which received an m-dimensional input 
vector X to produce an s-dimensional output vector Y. The efficiency of these DMUs will be 
evaluated in a time horizon of T periods. Let 

௧𝑥௝ 
௧ ௧ ௧ = ൫𝑥ଵ௝ , 𝑥ଶ௝ , … , 𝑥௠௝ ൯ be the m-dimensional input vector of DMUj, 𝑗 = 1,2, … , 𝑛; 

௧𝑦௝ 
௧ ௧ ௧ ൯ be the s- dimensional output vector DMUj, 𝑗 = 1,2, … , 𝑛;= ൫𝑦ଵ௝ , 𝑦ଶ௝ , … , 𝑦௦௝ 

 𝑢 = (𝑢ଵ, 𝑢ଶ, … , 𝑢௦) be the s- dimensional output vector prices; 

 𝑣 = (𝑣ଵ, 𝑣ଶ, … , 𝑣௠) be the m- dimensional input vector costs; 
Referring to DEA fundamentals, efficiency of a DMU is defined as dividing its weighted 

sum of outputs by weighted sum of inputs, e.g.: 

s 

ur yrj 
r1E  (1) j m
	

vi xij
	
i1 

Where 𝐸௝ ≤ 1 for all 𝑗 = 1,2, … , 𝑛 and 𝑢௥ ≥ 0, 𝑟 = 1,2, … , 𝑠 and 𝑣௜ ≥ 0, 𝑖 = 1,2, … ,𝑚. In 

cross sectional DEA problems, the efficiency of DMUs is obtained easily by solving a problem 
of maximizing individual efficiencies subjected to the above constraints. De facto, to evaluate 
the relative efficiency of a given DMU0, a linear programming problem of the form 

൛𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐸଴, Subject To 𝐸௝ ≤ 1, 𝑗 = 1,2, … , 𝑛ൟ is solved. 

Note that, there are a set of 𝑚 + 𝑠 time series associated with each inputs and outputs. 
T tSuppose that ij Tt 1 xij t T and sij    x    T 1 are the mean and standard deviation of 
t 1 ij ij 

T tith input of jth DMU, and rj  Tt1 yij t T and drj  t 1yrj ij  T 1 are the mean and standard 
deviation of rth output of jth DMU, respectively; thus, the input mean and standard deviation 
matrices are constructed as: 
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   1m11 

21 

 12 

22 

 

2 

 1 

2 

 



 




 

 



 




 


 
 
 

 m 

(2) 
    


 
  
 
  n1 n2 nm n 

And
	

  s s  s11 12 1 s1m



 




 

 



 




 

s s  s s21 22 2 2mS (3) 
    

sn s  s  s1 2n nm n 

Similarly, for output variables:
	

 
 
 
 11 12 1s 1 



 




 

 



 




 


 
 
21 22 2 1s (4) 
    

n
  
    n1 n2 ns 

And
	

  d d d11 12 d1 1s



 




 

 



 




 

d d d d21 22 2 2sD  (5) 
    

d d dn d  1 2n ns n 

Where, δ and D Stand for output time series mean and variance matrices, respectively. It is 
well known that the variance of a sample mean is the ratio of variables’ variance to the sample 
size. Therefore, input and output variables mean, Eqs. (2) and (4), have a sample variance of 
𝑆′ = 𝑆⁄𝑇 and 𝐷′ = 𝐷⁄𝑇. Now, the Chebyshev inequality stated that for a random variable X 
with a mean of M and standard deviation of σ is remarkable: 

1
	
(6) 

K 2
Pr
	
X

M
 
 

1
K
	

M
	


 

Or,
	

1

 





K K 

If 𝐾 = √20, the above inequality is hold with a probability of at least 95%. 

100 1 


 
 
 
 
 
Pr
	M
 X
	 1
	 (7) 
K 2 

K 2 %
Applying the Chebyshev inequality, at least
 1
	 significant confidence interval
	

of input variables can be constructed as follows:
	

, KS  
The corresponding inequality for outputs can be proclaimed as: 

 

 
KS
 (8) 

KD , KD  
If the lower bound of inputs or outputs is a negative number, it is fixed at zero. The input 

oriented CCR model is formulated as the following linear programming problem: 
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s 

Max u yr r 0
	
r1
	

S.T. 

 
m

v x  1i i0 
i1 (10) 
s m 

ur yrj vi xij  0, j  1,2,, n 
r1 i1 

vi  0, i  1,2,, m 

ur  0, r  1,2,, s 

It is worth noting here that the non-Archimedean element, ε, can be added to the model
	
variables, if necessary (e.g. 𝑣௜ ≥ 𝜀, 𝑖 = 1,2, … ,𝑚 and 𝑢௥ ≥ 𝜀, 𝑟 = 1,2, … , 𝑠.). However, as 
pointed by Jahanshahloo and Khodabakhshi (2004), solving a DEA problem by simply choosing 
a value for ε can lead to erroneous results. Hence, the use of non-Archimedean elements is 
unusual in customary applications of linear programming and it is usually discarded (Arnold, 
Bardhan, Cooper, & Gallegos, 2008) as it is done in the proposed model. 
The above problem can be easily presented with matrix notation: 

Maxut y0 
S.T. 
tv x  1 (11) 0 

ut y j  vt x j  0, j 1,2,, n 

v  0,u  0 

Incorporating Eqs. (8) and (9) in Eq. (11), the Chebyshev-based DEA model is obtained: 

  Kd  t 0 0 Maxu    Kd 0 0  
S.T. 

   Kst 0 0  v    1
  Ks 0 0  

(12) 

 
t j 
u  j 

 Kd  j   
t j v    Kd j   j 

 Ksj 
 Ksj 



  
 
0, j  1,2, , n 

v  0,u  0 

Applying interval number operators (Moore, Kearfott, & Cloud, 2009) on Eq. (12), the 
equivalent formulation is garnered as: 
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t tMaxu   Kd ,u   Kd 0 0 0 0 

S.T. 
t tv   Ks ,v   Ks 1 (13)0 0 0 0 

t t t tX  

u  j  Kdj  v  j  Ksj ,u  j  Kdj  v  j  Ksj  0, j 1,2,, n 
 v  0,u  0 
When the left hand side of the obtained confidence intervals becomes negative an important 

feature is noticeable. As it is described below, since the constraints of the problem are of the less 
than or equal type, the model manipulated their upper bound and central point's only; hence, the 
issue of negative data isn’t considered here. 
Eq. (13) is an interval linear programming problem. An algorithm is needed to solve the 

interval-DEA model (13). Different algorithms are proposed for solving interval linear 
programming problems (Chinneck, & Ramadan, 2000; Sengupta, Pal, & Chakraborty, 2001; 
Chen, Chen, Chen, & Wang, 2004; Razavi Hajiagha, Akrami, & Hashemi, 2012). The proposed 
algorithm is developed based on the idea of Kao and Liu (2000; 2011) on the basis of the 
relational ranking rules introduced by Ishibuchi and Tanaka (1990). 

Considering 
~ 
A  a a , and ~ B  b b , , then ~ A  

~ 
B if 

a  b (14) 

And 

 a  a
 
 2 


  
 

 b  b 
 2 

 
 
 

(15) 

~ ~ 
Similarly, A  B if: 

a  b (16) 

And 

 a  a
 
 2 

  b  b
    2 

 
 
 

(17) 

These ordering relations are consistent with the possibility degree of Li, Yamaguchi, and 
Nagai (2007). Remained constraints are handled upon Ishibuchi and Tanaka (1990) ordering 

t t t trelations. For a constraint u   Kd   v   Ks ,u   Kd   v   Ks  0, thesej j j j j j j j 

ordering relations are implied: 
t tu   Kd   v   Ks  0 j j j j

 t tu  j  v  j  0 
(18) 

 

Applying Eq. (18), the Eq. (13) is now transformed into the model represented in Eq. (19): 
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t tmax u   Kd  ,u   Kd 0 0 0 0 

S.T. 

vt 0 1 
(19) t tu  j  Kdj  v  j  Ksj  0, j  1,2,, n 

ut j  vt  j  0, j  1,2,, n 

ut  0, vt  0 

Considering the second and third constraints of Eq. (19), we can easily recognize that the 
third constraint is a subset of the second one; thus, the third constraint can be eliminated. Solving 

Eq. (19) by eliminating its third constraint, an optimal weight vector u and v is obtained. 
Applying these weights, we can calculate the interval efficiency for DMU0 as 
t tu   Kd  ,u   Kd  .0 0 0 0 

To find these weights, Kao and Liu (2000; 2011) proposed a two-stage model of finding 

interval efficiency of DMUs. Considering DMU0, its lower bound efficiency, 𝐸଴
௟ , is found by 

setting its inputs in their upper bound and its outputs in their lower bound, while other DMUs 
inputs are fixed at their lower bound and their outputs at their upper bound. Therefore, the lower 
bound efficiency model is constructed as: 

l t E0  max u 0  Kd0  
S.T. 
tv   Ks   1 (20) 0 0 

t tu   Kd   v   Ks  0, j  1,2,, n, j  0j j j j 

ut  0, vt  0 

On the other hand, the upper bound efficiency of DMU0, 𝐸଴
௨, is computed by setting its 

inputs at their lower bound and its outputs at their upper bound, while other DMUs inputs are 
fixed at their upper bound and their outputs at their lower bound. Hence, the upper bound 
efficiency model is constructed as: 

l tE  max u   Kd  0 0 0 

S.T. 
tv 0  Ks0   1 (21) 
t tu   Kd   v   Ks  0, j  1,2,, n, j  0j j j j 

ut  0, vt  0 

Solving two problems in Eqs. (20) and (21), the interval efficiency of DMUs is determined 
~ l uas E 
j  E E  . These interval efficiencies provide a lower bound and upper bound for 0 , 0 

efficiency score of DMUs. Subsequently, if ranking the efficiency of DMUs is considered, 
comparing relative interval efficiencies is necessary. For the sake of this comparison, a discrete 
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representative of each DMU is required. As previously mentioned, Ishibuchi and Tanaka (1990) 
proposed a ranking method for interval numbers by computing their bounds and means; 
accordingly, the mean score of these intervals can be considered for ranking interval efficiencies: 

l uE Ej 
  jE j  (22) 
2 

4. Case study 

As described in section 2, the above algorithm is applied in a bank with 115 branches during 
a financial year. The data are gathered in 6 months; therefore, there are 6 input matrices of the 
size 115×5 and 6 output matrices of the size 115×4. The mean and variance matrices of input and 
output measures are calculated for different units and the Chebyshev-based confidence intervals 
are computed for different inputs and outputs of DMUs. Afterwards, the proposed model is 
applied for evaluating DMUs efficiency. 
Following preparing the appropriate matrix, the model is solved for per DMU applying a 

MATLAB code. The obtained results are summarized in table 2. In this table, the problem is also 
solved by aggregated and network connected models of Kao and Liu (2014). 

<Please insert table 2 here> 

It is clear that there are marked differences between interval efficiencies lower bound and 
upper bound in the interval efficiency column of table 2. These differences are mainly due to 
large standard deviations of input and output measures in the original data. In addition, there is 
not a constant increasing trend in inputs and outputs of DMUs. As a case in point, the inputs and 
outputs trends of DMU 1002 are shown in Fig. 1. 

<Please insert Fig. 1 here> 

According to Fig. 1, there is a large increasing trend in inputs of DMU 1002, while the 
outputs trends do not indicate a similar trend. These large standard deviations cause a large 
difference between lower and upper bounds of efficiency scores. Coupled with, it is notable that 
penny difference of interval and mean efficiencies of the proposed method among many DMUs 
in this case are just due to their data similarity, which doesn’t happen on a regular basis. The 
equality of upper bound efficiencies in DMUs is also due to a similar phenomenon, being not 
necessary in all problems. 
Differently, Fig. 2 reveals the trends of interval efficiencies lower and upper bounds against 

the aggregated and network connected efficiencies in table 2. 

<Please insert Fig. 2 here> 
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According to Fig. 2, the aggregated and network connected scores take their values among 
the lower and upper bounds efficiencies. A comparison is made between interval efficiency 
scores mean values and the aggregated and network connected scores. This comparison is shown 
in Fig. 3. 

<Please insert Fig. 3 here> 

Analyzing the differences between mean efficiency scores, aggregated and network 
connected scores indicates that mean efficiency scores of the proposed method is meaningfully 
smaller than both aggregated and network connected efficiencies with a confidence of 95%. In 
fact, the proposed method provides a warily approximation of DMUs efficiencies by applying 
their inputs and outputs variations directly in evaluating DMUs efficiency. 
Considering the results emanate from proposed method in table 2, its main advantages can 

be summarized as follow. First of all, as previously mentioned, the proposed method directly 
applies the variance of inputs and outputs in evaluating DMU's efficiency over a time horizon 
consisting several time periods, providing a more realistic appraisal of DMUs by considering 
their fluctuations in inputs and outputs. Furthermore, as Liu and Lin (2006) proclaimed, a 
principal axiom of uncertain problems is nonexistence of exact result. As we clarified in table 2, 
since the outputs and inputs are fluctuated randomly over time horizon, the considered problem 
of multi period efficiency appraisal is an uncertain problem. Considering this axiom, the 
proposed method finds interval efficiencies for DMUs, while other methods determined exact 
efficiencies. Eventually, the proposed method revealed the highest discrimination power since 
just one DMU is classified as full efficient; nonetheless, other methods classified several DMUs 
as fully efficient declining their discrimination power. 

Conclusion 

Classic data envelopment analysis proposed a well-known and widely accepted method to 
evaluate the relative efficiency of a set of homogeneous units in a single period. However, 
organizational units perform in different periods of time, and it is interesting for their managers 
to have a comprehensive picture of the performance over multiple periods of time. In this paper, 
a method is proposed to measure the relative efficiency of DMUs in multiple periods, called time 
series DEA. 
Aggregating the inputs and outputs of DMUs over different periods is one of the most popular 

approaches used in time series DEA. Cumulating inputs and outputs data in different periods in a 
single period provides a compensating impact for DMUs. Admittedly, the low values of outputs 
in some periods can be countervailed by high values of outputs in other periods. This 
compensating impact provides an easy-emptive efficiency evaluation framework for DMUs. The 
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proposed approach in this paper, initially found a confidence interval for inputs and outputs of 
different DMUs over time periods based on Chebyshev inequality bounds. It is remarkable that if 
the time periods increased to more periods, exact parametric confidence intervals can be used to 
find confidence intervals of inputs and outputs. Following that a multi-objective model is solved 
to find the interval efficiencies of DMUs. It is a well-known axiom that when data are uncertain, 
it is impossible to obtain a crisp solution for the problem. This axiom implies that since input and 
output’s data over a period of time follows a statistical distribution, the efficiency of DMUs 
cannot be an exact number. This fact is applied in the proposed method by finding interval 
efficiency for DMUs. In fact, since the inputs and outputs data are captured in the form of 
different time series, there isn’t any deterministic and exact feasible space for the linear 
programming DEA model in a multi-period efficiency appraisal problem. This randomness is 
formulated with constructing interval constraints in the proposed method. Absence of an exact 
result for the uncertain multi-period DEA model is handled by interactively incorporating some 
confidence levels in finding inputs and outputs confidence intervals and finding efficiency scores 
under confidence levels. It is largely taken for granted that any change in this confidence level 
has certain impacts on objective function and feasible space of the proposed method and the 
results will be changed. By and large, if the problem is solved in a certain confidence level, the 
obtained efficiency results are only valid in its confidence level. 
The proposed method is applied in a case of evaluating 115 bank branches in a six-period 

time horizon. The obtained results are compared with some previous presented methods of time 
series DEA. As shown in this case, results of the proposed method provide a cautious 
approximation of DMUs efficiencies. These approximations are more truly representing the real 
condition of DMUs efficiencies since data variations are implied in evaluations directly. This 
approach can increase the discrimination power of DEA model. As it can be seen from the 
results of case study, there is only one fully efficient DMU, 1001, while there are many full 
efficient DMUs in two other approaches. 
Future researches could be directed toward extension of the proposed method when outputs 

and inputs of the DMUs are determined uncertainly by fuzzy sets. Besides, the proposed method 
is applicable in network and supply chain DEA. On the other hand, the problem of return to scale 
and its fluctuations is examinable in multi period DEA models. 

Reference 

Arnold, V., Bardhan, I., Cooper, W. W., Gallegos, A. (2008). Primal and dual optimality in 
computer codes using two-stage solution procedure in DEA. In: J. E. Aronson, S. Zionts (Eds.), 
Operations Research: Methods, Models, and Applications (pp. 57-96), Connecticut: Quorum 
Books. 
Ahn, Y. H., & Min, H. (2014). Evaluating the multi-period operating efficiency of 

international airports using data envelopment analysis and the Malmquist productivity index. 
Journal of Air Transport Management, 39, 12-22. 

11
	



 
 

           
          

 
             

            
 
               
           
         

     
               

           
                 
              

      
               
         
             

         
              

  
            

        
               

              
   

              
                

      
            
   
            
            
     

              
         

  
                  

           
 

Amirteimoori, A., & Kordrostami, S. (2010). Multi-period efficiency analysis in data 
envelopment analysis. International Journal of Mathematics in Operational Research, 2(1), 113-
128. 
Berger, A. N., & Humphrey, D. B. (1997). Efficiency of financial institutions: International 

survey and directions for future research. European Journal of Operational Research, 98(2), 
175-212. 
Bogetoft, P., Färe R, Grosskopf S, Hayes K, Taylor L. Network DEA: some applications and 

illustrations. 1st ed. Proceedings of DEA Symposium 2008, Tokyo: Seikei University. 
Branda, M. (2015). Diversification-consistnt data envelopment analysis based on directional-

distance measures. Omega, 52, 65-76. 
Caves, D., Christensen, L., & Diewert, W. E. (1982). The economic theory of index numbers 

and the measurement of input, output, and productivity. Econometrica, 50(6), 1393-1414. 
Charnes, A., Clark, C. T., Cooper, W. W., & Golany, B. (1985). A development study of data 

envelopment analysis in measuring the efficiency of maintenance units in the US air forces. 
Annals of Operations Research, 2(1), 95-112. 
Charnes, A., Cooper, W. W., Lewin, A. Y., & Seiford, L. M. (1994). Data Envelopment 

Analysis: Theory, Methodology and Applications. Kluwer Academic Publishers: Massachusetts. 
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision-

making units. European Journal of Operational Research, 2(6), 429-444. 
Chen, Z., Chen, Q., Chen, W., & Wang, Y. (2004). Grey linear programming. Kybernetes, 

33(2), 238-246. 
Chinneck, J. W., & Ramadan, K. (2000). Linear programming with interval coefficients. 

Journal of the Operational Research Society, 51(2), 209-220. 
Cooper, W. W., Huang, Z., & Susan, X. L. (2011). Chance-constrained DEA. In: W. W. 

Cooper, L. M. Seiford, J. Zhu (Eds.), Handbook on data envelopment analysis (pp. 211-240). 
New York: Springer. 
Emrouznejad, A., Parker, B. R., & Tavares, G. (2008). Evaluation of Research in Efficiency 

and Productivity: A Survey and Analysis of the First 30 Years of Scholarly Literature in DEA. 
Socio-Economic Planning Sciences, 42(3), 151-157. 
Färe, R., & Grosskopf, S. (1996). Intertemporal Production Frontiers: with Dynamic DEA. 

Kluwer Academic Publishers. 
Färe, R., Grosskopf, S., Lovell, C.A.K., & Pasurka, C. (1989). Multilateral productivity 

comparisons when some outputs are undesirable: a nonparametric approach. The Review of 
Economics and Statistics, 71(1), 90-98. 
Färe, R., Grosskopf, S., Tyteca, D. (1996). An activity analysis model of the environmental 

performance of firms––application to fossil-fuel-fired electric utilities. Ecological Economics, 
18(2), 161-175. 
Flegg, A. T., & Allen, D. O., & Field, K., & Thurlow, T. W. (2004). Measuring the efficiency 

of British universities: a multi-period data envelopment analysis. Education Economics, 12(3), 
231-249. 

12
	



 
 

             
            

   
             

          
           

            
   

           
          
            
    

           
     

             
           

                
   
                

     
             
            
   
              

          
            
  
                   
           
   
               
           

 
            

           
                

  
            

               

Førsund, F. R., Kittelsen, S. A. C., & Krivonozhko, V. E. (2009). Farrell Revisited— 
Visualizing Properties of DEA Production Frontiers. The Journal of the Operational Research 
Society, 60(11), 1535-1545. 
Ishibuchi, H., & Tanaka, H. (1990). Multi objective programming in optimization of the 

interval objective function. European Journal of Operational Research, 48(2), 219-225. 
Jahanshahloo, G. R., & Khodabakhshi, M. (2004). Determining assurance interval for non-

Archimedean element in the improving outputs model in DEA. Applied Mathematics and 
Computation, 151(2), 501-506. 
Kao, Ch. (2008). Network data envelopment analysis: current development and future 

research. Asia-Pacific Productivity Conference (APPC), 17-19 Jul 2008, Taipei, Taiwan. 
Kao, Ch. (2014a). Network data envelopment analysis: A review. European Journal of 

Operational Research, 239(1), 1-16. 
Kao, Ch. (2014b). Efficiency decomposition in network data envelopment analysis with 

slacks-based measures. Omega, 45, 1-6. 
Kao, Ch., & Hwang, Sh. N. (2014). Multi-period efficiency and Malmquist productivity index 

in two-stage production systems. European Journal of Operational Research, 232(3), 512-521. 
Kao, C., & Liu, S. T. Fuzzy efficiency measures in data envelopment analysis. Fuzzy Sets and 

Systems, 113(3), 427-437. 
Kao, C., & Liu, S. T. (2011). Efficiencies of two-stage systems with fuzzy data. Fuzzy Sets 

and Systems, 176(1), 20-35. 
Kao, Ch., & Liu, Sh. T. (2014). Multi-period efficiency measurement in data envelopment 

analysis: The case of Taiwanese commercial banks. Omega international journal of management 
science, 47, 90-98. 
Li, G. D., Yamaguchi, D., & Nagai, M. (2007). A grey-based decision-making approach to 

the supplier selection problem. Mathematical and Computer Modelling, 46(3-4), 573-581. 
Liu, S., & Lin, Y. (2006). Grey Information: Theory and Practical Applications. Springer-

Verlag: London. 
Liu, S. J., Lu, L. Y. Y, Lu, W. M., & Lin, B. J. Y. (2013). Data Envelopment Analysis 1978– 

2010: a citation-based literature survey. Omega international journal of management science, 
41(1), 3-15. 
Luo, Y., Bi, G., & Liang, L. (2012). Input/output indicator for DEA efficiency evaluation: An 

empirical study of Chinese commercial banks. Expert Systems with Applications, 39(1), 1118-
1123. 
Matthews, K. (2013). Risk management and managerial efficiency in Chinese banks: A 

network DEA framework. Omega international journal of management science, 41(2), 207-215. 
Moore, R. E., Kearfott, R. B., & Cloud, M. J. (2009). Introduction to Interval Analysis. SIAM 

Press: Philadelphia. 
Nemoto, J., & Goto, M. (1999). Dynamic data envelopment analysis modeling intertemporal 

behavior of a firm in the presence of productive inefficiencies. Economic Letters, 64(1), 51-56. 

13
	



 
 

             
            

  
             
      

           
       

              
            

 
            
   
            
       
             

             
   
               
    
                   

            
   
               

            
    
           
           

 
             

    
 

Nemoto, J., & Goto, M. (2003). Measuring dynamic efficiency in production: An application 
of data envelopment analysis to Japanese electric utilities. Journal of Productivity Analysis, 
19(2-3), 2-3. 
Park, K. S., & Park, K. (1995). Measurement of multiperiod aggregative efficiency. European 

Journal of Operational Research, 193(2), 567-580. 
Ramanathan, R. (2003). An introduction to data envelopment analysis for performance 

measurement. Sage Publication India: New Delhi. 
Razavi Hajiagha, S. H., Akrami, H., Hashemi, S. S. (2012). A multi objective programming 

approach to solve grey linear programming. Grey Systems: Theory and Application, 2(2), 259-
271. 
Sengupta, J. K. (1995). Dynamic Farrell efficiency: a time series application. Applied 

Economics Letters, 2(10),363-366. 
Sengupta, J. K. (1999). A dynamic efficiency model using data envelopment analysis. 

International Journal of Production Economics, 62(3), 209-218. 
Sengupta, A., Pal, T. K., & Chakraborty, D. (2001). Interpretation of inequality constraints 

involving interval coefficients and a solution to interval linear programming. Fuzzy Sets and 
Systems, 119(1), 129-138. 
Sueyoshi, T., & Sekitani, K. (2005). Returns to scale in dynamic DEA. European Journal of 

Operational Research, 161(2), 536-544. 
Thompson, R. G., Langemeier, L. N., Lee, C. T., Lee, E., & Thrall, R. M. (1990). The role of 

multiplier bounds in efficiency analysis with applications to Kansas farming. Journal of 
Econometrics, 46(1-2), 93-108. 
Thompson, R. G., Dharmapala, P. S., & Thrall, R. M. (1995). Linked-cone DEA profit ratios 

and technical efficiency with application to Illinois coal mines. International Journal of 
Production Economics, 39(1-2), 99-115. 
Tyteca, D. (1997), Linear programming models for the measurement of environment 

performance of firms–concepts and empirical results. Journal of Productivity Analysis, 8(2), 
183-197. 
Wei, G., Chen, J., Wang, J. (2014). Stochastic efficiency analysis with a reliability
	

consideration. Omega, 48, 1-9.
	

14
	


	Multi-period data  cs
	Multi-period data envelopment analysis  pdf

