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Abstract 

Carbon nanotubes (CNTs) are popular as the chosen reinforcement to achieve excellent 

mechanical and functional performance in aluminum matrix nanocomposites (AMNCs). 

However, the key bottleneck problems restrict the strengthening effect using CNTs in AMNCs 

due to the dispersion homogeneity of CNTs, the distinct differences in physical properties, poor 

wettability and interface bonding between CNTs and aluminum matrix. This study aims to 

address these key issues by introducing a continuous SiC nano layer synthesized from carbon-

silicon reaction, acting as a compatibility transition layer prior to mixing with aluminum powders. 

The results clearly show that the SiC cladding layer provides a good wettability and strong 

interfacial bonding between CNTs and aluminum matrix, and the interfacial reaction between 
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CNTs and aluminum matrix could be effectively regulated. It is also conducive to reducing the 

mass density difference and specific surface energy, improving the dispersion of CNTs in matrix. 

Those factors make a strong contribution to the strengthening effect of CNTs enforcement by 

achieving high load transfer efficiency. The AMNCs reinforced by this new CNTs/SiC 

composite powder show clear improvement of mechanical performance without compromising 

in ductility and electrical conductivity, as compared to AMNCs reinforced by only CNTs or SiC.  

1. Introduction  

Lightweight materials offer great advantages to tackle the energy crisis and environmental 

pollution by reducing the component weight but maintaining the strength. Among these 

lightweight materials, Al based nanocomposite have been extensively studied due to its great 

potential for good mechanical performance with relatively low cost [1-4]. Carbon nanotubes 

(CNTs) have shown excellent mechanical and functional characteristics such as extreme high 

strength, ultrahigh Young’s modulus, thermal and electrical properties, hence considered as an 

ideal reinforcing phase for composite materials [5, 6]. Actually, CNTs reinforced aluminum 

matrix nanocomposites (AMNCs) have already attracted wide attention because it offers a rout to 

achieve both excellent structural and functional properties, including low density, higher specific 

strength, low expansion coefficient, excellent thermal and electrical conductivity [7-10]. AMNCs 

show broad application prospects in the fields of aerospace, automotive and transportation, 

meeting the increasing demand for high-performance materials in engine parts, high-speed train 

brake system and a wide range of other key industrial components [11, 12]. 

Great efforts have been made to improve the properties of AMNCs by utilizing the super-

high strength and good conductivity of CNTs as an enforcement. In particular, significant 

progress has been made in improving their mechanical performance [13-15]. It was reported that 
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the tensile strengths of CNTs reinforced AMNCs were effectively improved (to be over 200 

MPa), but the high strength was achieved at the expense of ductility (reduce to less than 6%) and 

other functional properties [9, 16]. The performance of AMNCs strongly depends on the 

distribution of CNTs in Al matrix, but the mass density difference makes CNTs difficult to 

disperse uniformly [17-19]. CNTs tend to agglomerate due to the large Van der Waals force 

which caused by its small size, and lead to poor compatibility in metals. The agglomeration trend 

of CNTs is associated with specific surface energy, surface tension and the characteristics of the 

complex interface bonding and the wettability between CNTs and Al matrix [20, 21]. Among 

these factors, the poor wettability needs be addressed primarily, due to the distinct differences in 

physical properties between CNTs and Al [22-24]. In previous studies, it was suggested that 

introducing an Al4C3 interlayer via reaction between CNTs-Al could improve the wettability 

between CNTs and Al matrix, but this interlayer should be well designed and elaborated. 

Interface layer without carefully optimization could easily cause Al4C3 unstable and hydrolyzed: 

superabundant Al4C3 formed in AMNCs will compromise the mechanical performance by 

causing severe failure during service [25-27]. In summary, poor wettability, homogeneity, 

interfacial bonding and unstable interface are considered as the main factors limiting the 

applications of CNTs in AMNCs. In order to address these problems, it is necessary to regulate 

the interface: one possible solution is to introduce cladding suitable transient layer on CNTs 

surface, which can wet both CNTs and Al matrix, hinder interfacial reaction and reduce the gap 

of the mass density between CNTs and Al. 

SiC has been studied as a promising candidate for the transition layer, showing good 

wettability with Al matrix [25, 28]. It was also found that SiC can stably exist in the process of 

preparing AMNCs by powder metallurgy [26], implying that a SiC transition layer can improve 
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wettability between CNTs and Al matrix as a transition layer. At the same time, SiC transition 

layer can prevent the direct contact between CNTs and Al matrix, hindering the adversely 

interfacial reaction; and it can also enhance the interfacial bonding by the formation of a covalent 

SiC bond [29]. In addition, the gap of mass density between CNTs and Al can be reduced by the 

heavier SiC decorating layer on the surface of CNTs, improving the dispersion homogeneity of 

CNTs in Al matrix [30]. However, the morphologies and structures of SiC layer are difficult to be 

effectively controlled: the SiC layer is prone to adhesion due to the transition reaction and it is 

still a challenge to obtain the composite phase with integrated structure and uniform dispersion 

[28-30]. These bottlenecks should be further studied then regulated to achieve high performance 

of CNTs reinforced AMNCs with good repeatability.  

Few researches have documented improvement in interfacial wettability by SiC, enhancing 

the strengthening effect in CNTs reinforced AMNCs. T. Laha et al. investigated the wetting 

behavior and the interface between the hypereutectic Al-Si alloy and the MWCNTs in composite 

by thermal spray, and the formation of an ultrathin β-SiC reaction layer was found to be 

responsible for improving the wetting kinetics [29]. K.P. So coated SiC on the CNTs surface 

through a three-step process to improve the wettability of CNTs during Al melting [31]. The 

methodology presented in this study show significant overall improvement as compared to the 

previously reported results, benefitting from the good affinity and reactivity between silicon and 

CNTs. Based on the detailed interface study, we have demonstrated that through the proportion 

design and control of processing parameters, a continuous nano-SiC transition layer with 

controllable thickness was directly synthesized on the outer wall of CNTs by one-step heat 

treatment through solid state reaction to regulate the interfacial characteristic prior to mixing 

with Al powder in an innovative way. Thus, it can act as a good compatibility and wettability 
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intermediate phase between CNTs and Al matrix, forming a better bonding for load transfer as 

well as other physical and chemical information transmission [32-33]. The effects of SiC 

transition layer and its content on densification process, interfacial structure, mechanical and 

electrical properties of AMNCs will be discussed. 

2. Experimental procedures 

2.1 Synthesis of SiC-clad carbon nanotubes 

Near-spherical nano Si powders (Purity >99.9 wt.%, diameter ~30 nm) were selected as the 

raw materials to synthesize nano SiC layer on the outer walls of MWCNTs (diameter ~150 nm, 

length 10~50 µm, density 2.0 g/cm3). CNTs and Si powders were mixed by synchronized 

ultrasonic dispersion and mechanical stirring, while 1% polyvinyl pyrrolidone (PVP) was used as 

polymer surfactant to promote its uniform dispersion. The proportion of CNTs and Si powders 

was regulated to ensure the final volume ratio of CNTs to SiC equaling to 1:1 in as-obtained SiC-

clad CNTs (simplified as CNTs/SiC) powders. Then, CNTs-Si powder mixtures were heated 

inside a vacuum furnace for 1 hour at different temperatures in the range of 1000~1300 °C. 

2.2 Application of CNTs/SiC composite reinforcements in AMNCs 

The obtained CNTs/SiC composite powders were used as reinforcements to fabricated 

AMNCs. The schematic diagrams of preparation process of CNTs/ SiC composite powders and it 

reinforced AMNCs are shown in Figure 1. Planetary ball milling (200 rpm for 4 hours) was 

performed to mix Al powders and as-prepared CNTs/SiC powders with different content (0.25, 

0.5, 1.0 and 1.5% CNTs in volume fraction after reacted with Si) in argon gas condition. The 

powder mixtures were mixed with 2 wt.% ethanol which was used as process control agent, the 

ratio of ball to powders is 5:1 while the ZrO2 milling balls ratio of 10 mm to 5 mm is 4:1. Then, 

spark plasma sintering (SPS) was used to consolidate the powder mixtures (sintering at 630 °C 
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for 30 min with an applied pressure of 30 MPa in a vacuum of ~5 Pa). Finally, the as-sintered 

bulks were extruded into rods for tests at 400 °C with a reduction ratio of ~18 and a ram speed of 

3 mm/s in a flowing Ar atmosphere. As a comparison, AMNCs reinforced by CNTs or nano SiCp 

(Purity >99.9 wt.%, diameter ~30 nm) were also prepared following the same procedure. Near-

spherical nano-SiC powders are shown in the supplementary materials (Figure S1). In addition, 

pure Al was chosen as a reference material.  

 

Figure 1. Schematic diagrams of preparation process of CNTs/SiC composite powders and it 

reinforced aluminum matrix nanocomposites (AMNCs). 

2.3 Characterization of microstructure and evaluation of properties  

The morphologies of CNTs-Si powder mixtures and as-prepared CNTs/SiC powders were 

characterized by a field emission scanning electronic microscope (FESEM, Merlin Compact, 

ZEISS, Germany), while an EDS detector (INCA X-Max, Oxford, UK) was attached to the 

FESEM to observe the distribution of the elements. A transmission electronic microscope (TEM, 
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JEM-2010, JEOL, Japan) was used to reveal the details of the microstructure and interface of 

CNTs/SiC powders and it reinforced AMNCs. Chemical bonding state of CNTs and CNTs/SiC 

were investigated by X-ray photoelectron spectroscopy (XPS) (AXISULTRA, Kratos, UK). X-

ray diffraction (XRD-7000, SHIMADZU, Japan) was employed to confirm the phase 

compositions of the reinforcements and AMNCs with the scanning speed of 8°/min. The 

crystallographic structures of CNTs/SiC powders were tested by a microscopic laser Raman 

spectrometer (ARAMIS, HORIBA, Japan). Tensile tests were carried out in a universal testing 

machine (AGS-X, SHIMADZU, Japan), the strain rate chosen as 5 x 10-4 s-1. A portable eddy 

current tester (Sigma-2008B1, TIAN YAN, China) was used to detect the electrical 

conductivities of as-extruded materials. 

3. Results and discussion 

3.1 Morphologies of as-mixed CNTs-Si and CNTs/SiC composite powders 

Morphologies and corresponding EDS mappings of as-mixed CNTs-Si powder before and 

after heat treatment at 1200 °C are analyzed to confirm the formation of SiC layer on the surface 

of CNTs. Figure 2a clearly shows that nano Si powders were uniformly dispersed on CNTs 

surface after synchronized ultrasonic dispersion and mechanical stirring before heat treatment. 

Nano Si powders reacted with outer walls of CNTs and formed a nearly continuous SiC 

transition layer on the surface of CNTs during the heat treatment, observing from the rough 

surface, as shown in Figure 2b. Figures 2c-e show the microstructures with the corresponding 

EDS mappings of CNTs/SiC covering the similar area after heat treatment. It can be seen that a 

nano layer existing on the surface of rod-like CNTs structures. The rich carbon content areas 

present the shape of fibrous structures, corresponding to the raw CNTs. Meanwhile, high 

concentration map of element Si shows a similar pattern, revealing CNTs cladded by forming a 
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nano SiC layer. 

 

Figure 2. Scanning electrical microscope (SEM) images showing morphologies of powder 

mixtures. (a) CNTs-Si powder mixtures before heat treatment. (b, c) CNTs/SiC composite 

powders after heat treatment. (d, e) The corresponding EDS mapping showing the Carbon and Si 

distribution respectively covering the area in (c).  

3.2 Interface, phase composition and formation mechanism of CNTs/SiC powders 

TEM images with the corresponding selected area electron diffraction (SAED) pattern of 

CNTs/SiC powders after heat treatment at 1200 °C are shown in Figure 3. Meanwhile, more 

TEM micrographs of formed CNTs/SiC composite powders were indexed as supplementary 

material (Figure S2) to further support the results. It is obvious that SiC was synthesized on the 

surface of CNTs, while the majority of the internal parts of CNTs still maintained their original 

fibrous structure and component (Figures 3a-c and Figure S2). The interface between CNTs and 

SiC can be clearly observed through the high resolution TEM (HR-TEM, Figures 3d-e), where 

two different atom plane spaces (0.25 nm for area A2, A3 and A4, 0.34 nm for area A1 and A6 in 
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Figure 3d and 3e) on both sides of the interface are distinguished visibly, corresponding to the 

planes of (111) of SiC and (002) of CNTs, respectively [31, 34]. It confirms that area A5 in 

Figure 3e corresponding to CNTs-SiC junction region. The statistical thickness of SiC layer 

measured based on these experimental observations is 24.79 nm. Taking a simple assumption 

those CNTs rod-like structures covered by a nearly continuous SiC transition layer, the 

theoretical thickness of SiC layer with the volume ratio of CNTs to SiC as 1:1 is calculated to be 

25 nm, which is in excellent agreement with the measured thickness. By adding SiC transition 

layer, the theoretical density of CNTs/SiC composite powder was found to be 2.6 g/cm3, a 

significant increase compared to the density of CNTs (~2.0 g/cm3). The higher density of 

CNTs/SiC composite powder helps to reduce the specific gravity difference with Al matrix, 

promoting a uniform dispersion in Al matrix. Meanwhile, considering the cladding structure of 

CNTs/SiC composite reinforcement and the consumption of CNTs during the reaction procedure, 

multi-walled CNTs with large diameter were selected as raw materials at the beginning and 

CNTs were kept in excess state. The microstructures (Figure 2 and Figure 3) of CNTs/SiC 

display that the residual CNTs presents a diameter of about 100 nm, showing a small reduction 

as compared with the original CNTs. It was also indicated that the outer walls of CNTs were 

indeed consumed in the reaction process, but it still maintained a relatively complete structure 

and composition. Undoubtedly, the new combined structure (containing the SiC layer and 

residual CNTs) plays the key role in improving the mechanical performance of AMNCs, but it is 

hard to separate the individual strengthening contribution of CNTs and SiC layer.  
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Figure 3. Microstructures and interfaces of CNTs/SiC powders. (a-c) TEM images and 

corresponding SAED of CNTs/SiC powders after heat treatment at 1200 °C. (d-i) HR-TEM 

images of CNTs/SiC and the atom planes corresponding to areas A1-A2 in (d), areas A3-A6 in 

(e).  

The XRD patterns of CNTs-Si powder mixtures and CNTs/SiC powders after heat treatment 

at different temperatures in the range of 1000~1300 °C are shown in Figure 4. After heat 

treatment at 1000 °C, only the diffraction peaks of graphite and Si can be found in CNTs-Si 

powder mixtures. This suggests that there is no reaction yet between CNTs and Si at this 

temperature. The formation of SiC through interfacial reaction between CNTs and Si is detected 

when the temperature is above 1100 °C. The SiC diffraction peaks are detected at 35.7°, 60.1° 

and 72.0°, 41.5° and 75.7° corresponding to (111), (220), (311), (200) and (222) crystallographic 

planes of cubic β-SiC, respectively. Increasing the temperature further will assist this reaction, 

and nano Si powders are believed to be completely consumed by forming the SiC layer with the 
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outer walls of CNTs, evidenced by the strong SiC peaks appearing at 1200 °C and no residual 

diffraction peaks of Si. This also agrees with the morphological results in Figure 2 and Figure 3, 

and the formation of SiC layer seems not compromise the structure and composition of the core 

of CNTs.  

 

Figure 4. X-ray diffraction (XRD) patterns of CNTs-Si powder mixtures and CNTs/SiC 

composite powders after heat treatment at four different temperatures 1000, 1100, 1200 and 

1300 °C.  

The XPS results of original CNTs and CNTs/SiC after 1200 °C heat treatment are shown in 

supplementary material (Figure S3) and Figure 5. The charge neutralizer was used to compensate 

for surface charge effects, and binding energies were calibrated using the C 1s hydrocarbon peak 

at 284.8 eV. Figure S1a shows that two primary XPS peaks are observed clearly in original 

CNTs, corresponding to the peaks of C 1s and O 1s, respectively. Five C 1s peaks are displayed 

in Figure S1b, with fitted peak values at about 280.8, 282.6, 284.3, 286.0 and 287.8 eV, 

corresponding to the sp
2
 and sp

3
 of C-C, C-O, C=O and O-C=O band respectively [35, 36]. 

Figure S1c shows a sub-peak of O 1s at about 528.6 eV, corresponding to the chemisorbed 

oxygen. Figure 5a reveals the XPS spectra of CNTs/SiC, C, Si and O band can be detected 

clearly after heat treatment. Besides the photoelectron peaks of C 1s (281.3, 283.1 and 285.0 eV 
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for sp2, sp3 and C-O band, respectively, Figure 5c) and O 1s (529.1 eV, Figure 5d), Si 2s and Si 

2p XPS peaks can also be identified. Two strong bands of Si 2p (Figure 5b) at about 97.9 and 

99.7 eV can be ascribed to the Si-C and Si-O band, which strongly indicates the formation of SiC 

[33, 35]. In addition, both C 1s and O 1s peaks have a 0.5 eV integral shift to high binding 

energy compare with raw CNTs, normally caused by the formation of new bonds and changes in 

the environment around atoms. It is believed that C=O and O-C=O band were completely 

destroyed, which implies that the reaction between CNTs and Si preferentially occurred at CNTs 

defects, because those area containing more active groups after acidizing treatment [33]. It can 

be concluded from the observation evidence that the composite structure of CNTs/SiC were 

synthesized on the surface of CNTs by the proposed method. 

 

Figure 5. (a) XPS results of CNTs/SiC reinforcement after 1200 °C heat treatment. (b, c, d) XPS 

pattern of Si 2p, C 1s and O 1s band respectively.  
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Figure 6 shows the variation of Gibbs free energy with temperature and schematic diagram 

of formation mechanism of SiC layer on CNTs surface synthesized from CNTs-silicon reaction. 

The reaction between CNTs and silicon is described below: 

C(s)+Si(s, l) =SiC(s)                                                              (1) 

Calculations according to Equation (1) confirm that the Gibbs free energy (∆G) of formation for 

SiC phase by solid-solid reaction (<1685 K) and solid-liquid reaction (>1685 K) between 

graphite and silicon are negative. This indicates that the SiC formation from CNTs-silicon 

reaction is thermodynamically favorit. It is believe that the formation of SiC begins at the active 

site on CNTs defects, and the solid state reaction mainly depends on the diffusion of carbon 

atoms through the interstitial sites and Si atoms by vacancy migration in regular silicon sites 

[29]. Thus, silicon and carbon atoms diffusion each other through the formed SiC layer, reaches 

the interface of carbon-silicon carbide and reacts to form a continuous β-SiC reaction layer [37]. 

However, the formation of SiC layer limits the further atom diffusion, as a result, SiC prefers to 

grow in the axial direction (parallel to CNTs axis) than the radial direction (vertical to CNTs 

axis) [29, 38]. Furthermore, the close-packed plane of β-SiC is {111} and its surface energy is 

the lowest, which is conducive to the directional preferential growth of SiC. This is confirmed by 

the HR-TEM micrographs (Figure 3d, Figure S2 and Figure 6): SiC can achieve <111> 

directional growth in the axial direction by stacking atoms on this plane to maintain minimum 

energy requirements.  
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Figure 6. Thermodynamic analysis results and schematic diagram of formation mechanism of 

SiC layer synthesized from carbon-silicon reaction. 

3.3 Analysis of phase composition of AMNCs 

After consolidating the CNTs/SiC-Al powder mixtures, the phase compositions were 

studied to analyze the interfacial reaction in AMNCs. XRD patterns of pure Al, CNTs reinforced 

AMNCs (CNTs-Al) and CNTs/SiC reinforced AMNCs (CNTs/SiC-Al) are shown in Figure 7. 

Graphite peak can be detected at 26.6° in CNTs-Al and CNTs/SiC-Al, and distinct Al4C3 peaks 

can only be found at about 31.7°, 40.2° and 55.1° in CNTs reinforced AMNCs. Slight SiC 

diffraction peaks are detected at 35.7°, 60.1° and 72.0°, corresponding to (111), (220) and (311) 

crystallographic planes of β-SiC, respectively [39, 40]. This result implies that SiC remains as a 

transition layer on CNTs surface in AMNCs preventing the formation of Al4C3 phase. 
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Figure 7. XRD patterns of pure Al, CNTs and CNTs/SiC reinforced AMNCs.  

The Raman spectra obtained from the area of primary particle boundaries and CNTs clusters 

in AMNCs are shown in Figure 8. Strong Al4C3 peaks can be found at 485 cm-1 and 855 cm-1 in 

CNTs reinforced AMNCs [41], confirming the interfacial reaction between CNTs and Al matrix 

during consolidation. The Raman results obtained from CNTs/SiC reinforced AMNCs also show 

no-existence of Al4C3 reaction phase, and SiC peaks were found at 796 cm
-1

 and 972 cm
-1

. 

Furthermore, Raman peaks of CNTs still survive at 1344 cm
-1

 and 1576 cm
-1

 in CNTs/SiC 

reinforced AMNCs, indicating that Si reacted with the outer walls of CNTs, and the core still 

maintained its original structure and composition (also see Figure 2). These results indicate that, 

as a transition layer, SiC formed on the surface of CNTs effectively regulates the interfacial 

reaction, which hinders the generation of easily hydrolyzed brittle phase Al4C3. Moreover, the 

SiC transition layer provides a stronger interfacial bonding between CNTs and Al matrix by the 

formation of a covalent Si-C bond, advantaging to the CNTs strengthening effect by achieving 

high load transfer efficiency [42, 43]. 
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Figure 8.  Raman spectra of CNTs or CNTs/SiC reinforced AMNCs. 

3.4 Microstructure and interface of AMNCs 

The interfacial structure of CNTs/SiC/Al was observed to evaluate the effect of SiC on the 

interfacial reaction and bonding between CNTs and Al matrix. Figures 9a-c show TEM images 

with corresponding SAED of 1.0CNTs-Al. It can be seen that there is an obvious interface 

reaction layer between CNTs and Al matrix. The corresponding SAED patterns (Diff. 1 and Diff. 

2) also suggest that Al4C3 layer is formed through the interfacial reaction. Combining the results 

of XRD pattern and Raman spectra, it can be preliminarily concluded that the interface product 

(Al4C3) is formed in CNTs reinforced AMNCs, but the inner walls of CNTs still maintain its 

original structure and component. CNTs/SiC reinforcements are dispersed individually in 

AMNCs as observed from the bright field (BF, Figure 9d) and dark field image (DF, Figure 9e). 

Magnifying image (Figure 9f) shows that CNTs/SiC displays the hollow rod-like microstructure 

in AMNCs which resembles to its composite powder, and SiC acts as a transition layer on the 

surface of CNTs. HR-TEM images (Figures 9g-h) show the biphasic interfaces between CNTs-

SiC and SiC-Al. The atom planes (002) (0.36 nm) of CNTs, (111) (0.25 nm) of SiC and (111) 

(0.23 nm) of Al of the different districts in Figure 9h are observed. The phases of different areas 

in Figure 9h are identified by SAED (Diff. 3 and Diff. 4). Diffraction spots of CNTs and SiC are 
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confirmed, and no interfacial reaction phase is found. These results provide further evidence that 

CNTs/SiC reinforcements fundamentally inhibit the Al4C3 formation in AMNCs.  

 

Figure 9. TEM images with the corresponding SAED of CNTs-Al and 1.0CNTs/SiC-Al. (a) A 

bright TEM image of 1.0CNTs-Al. (b, c) SAED patterns of area Diff.1 and Diff.2 in (a). (d-g) 

Bright and dark TEM image of 1.0CNTs/SiC-Al. (h) HR-TEM image in (g). (i-j) Corresponding 

SAED to image (h).  

3.5 Strengthening effect of CNTs/SiC in AMNCs  

Table 1 

Summary of mechanical and electrical performance of pure Al and various AMNCs (enhanced 

by CNTs, SiC and CNTs/SiC)   

Materials 
Relative  

density/% 
YS/MPa UTS/MPa 

Elongation 
/% 

Conductivity 
/IACS% 

Pure Al 99.88 106.2 127.1(±2.1) 29.8 58.0 
0.25CNTs-Al 99.41 133.4 163.5(±1.5) 19.5 54.4 
0.5CNTs-Al 99.57 121.3 152.7(±3.3) 18.3 52.3 
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The mechanical tests of pure Al and AMNCs were carried out to evaluate the strengthening 

effect of the reinforcement. The corresponding test results are summarized in table 1. The stress-

strain curves of AMNCs containing 1.0 vol.% reinforcements (CNTs, SiC or CNTs/SiC) are 

shown in Figure 10a. The yield strength (YS) and ultimate tensile strength (UTS) of 1.0CNTs 

reinforced AMNCs were measured as 110 MPa and 148 MPa, respectively. However, its 

elongation decreases to 16.2%. The strength of 1.0SiC reinforced AMNCs reaches 157 MPa in 

UTS in combination with a good elongation (29.7%). This can be attributed to the reasons, i.e. 

Nano SiC hardly splits and reduces the continuity and flexibility of the matrix structure [44]; SiC 

particle is easy to cooperate with matrix plastic deformation duo to the small size, which can 

greatly reduce the probability of premature failure of composites at large size reinforced particles 

[45, 46]; in the process of tension, the stress concentration produced by near spherical particles is 

less than that of the particles with larger aspect ratio, it may effectively reduce the initiation and 

propagation of cracks caused by stress concentration. Therefore, nano SiC particle is very 

unfavorable to the elongation [47], preserving the good ductility of Al matrix. It is clear that 

1.0CNTs/SiC reinforced AMNCs shows further improved synthetically mechanical properties: 

YS and UTS reach 161 MPa and 199 MPa respectively, 41.5% and 55.9% stronger than pure Al 

respectively (106 MPa for YS and 127 MPa for UTS). The improvement in strength is mainly 

attributed to the effectively load transfer to CNTs by the strong interfacial bonding between 

1.0CNTs-Al 99.43 108.3 148.3(±1.0) 16.2 51.9 
1.5CNTs-Al 99.28 103.9 138.3(±1.2) 15.2 45.9 
0.25SiC-Al 99.86 131.8 158.6(±1.7) 28.0 57.2 
0.5SiC-Al 99.79 131.2 157.7(±1.6) 28.5 54.1 
1.0SiC-Al 99.63 132.0 157.0(±2.5) 29.7 53.9 
1.5SiC-Al 99.72 129.5 155.0(±2.1) 25.6 52.0 

0.25CNTs/SiC-Al 99.85 125.7 176.6(±1.5) 25.3 54.6 
0.5CNTs/SiC-Al 99.46 122.3 181.2(±3.2) 19.5 53.6 
1.0CNTs/SiC-Al 99.78 161.1 198.8(±2.4) 19.0 52.4 
1.5CNTs/SiC-Al 99.42 120.1 173.5(±3.7) 17.6 50.6 
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CNTs/SiC and Al matrix [48]. In addition, the existence of SiC layer effectively inhibits the 

interfacial reaction, and further improves the mechanical properties and structural stabilities of 

AMNCs without reducing their ductility significantly compared with CNTs reinforced AMNCs, 

[26, 49], as shown in Figure 10b and 10c. Table 1 and Figure 10b also show that the strengths of 

CNTs/SiC reinforced AMNCs increase constantly when the increase of CNTs content (except the 

sample of 1.5 vol.%), while the performance of CNTs reinforced AMNCs and SiC reinforced 

AMNCs decline or stay the same level with the increase of the reinforcements content.  

 

Figure 10. The stress-strain curves and mechanical properties of AMNCs. (a) Stress-strain 

curves of pure Al and AMNCs with 1.0vol% reinforcement (CNTs, nano SiC or CNTs/SiC). (b) 

Strength of various AMNCs. (c-d) Elongation curves of various AMNCs. 

At the end of tensile test, the fracture surfaces of CNTs reinforced AMNCs are shown in 

Figure 11a and b. A large number of dimples appear in the fracture, proving the ductile fracture 
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in Al matrix. However, in addition to the fractured CNTs distribute in Al matrix dimples, a small 

amount of CNTs clusters (denoted as CNT ①) are pulled out directly from the Al matrix, i.e., 

they are debonded with the matrix because of the weak interfacial bonding. It implies that 

the agglomeration of CNTs fails to transfer load from matrix to CNTs, and also could lead to 

defects during loading, causing premature failure of materials. Figure 11c shows the 

corresponding failure diagram of CNTs in Al matrix. The ruptured and non-debonding CNTs/SiC 

tensile fractures are observed on the fracture surface of AMNCs reinforced with CNTs/SiC 

(Figure 11d and 11e), matching the expected uniform dispersion. This also corroborates our 

initial expectation that the SiC cladding layer is conducive to reducing the mass density 

difference and specific surface energy, improving the dispersion of CNTs in matrix. The peeled 

CNTs/SiC (denoted as CNTs/SiC ② and ③) and a tearing CNTs/SiC (denoted as CNTs/SiC ④) 

are also observed, as shown in Figure 11e. CNTs/SiC ② and ③ show one-time peeling 

morphology with a clear transition slope. And it is accompanied by a significant change in 

diameter as an arrow indicated in Figure 11e. The morphology schemes of the peeling of 

CNTs/SiC are shown in Figure 11f. The breaking and interlaminar peeling of CNTs/SiC indicates 

a good interface bonding between reinforcements and Al matrix. A large number of well-

distributed dimples also support the ductile fracture. It suggests that the interface between 

CNTs/SiC and Al matrix is firmly bonded, improving load transfer from the matrix to 

reinforcements. As reported, the contact angle is used to estimate the wettability and bonding 

between the reinforcement and matrix which defined by a sessile drop method [50]. More details 

are included in supplementary material. In So’s study [31], Al droplets were dropped on the 

surface of CNTs and CNTs/SiC pellet to test the contact angle. The average contact angle of Al 

droplet and CNTs (145.8°) is larger than that of Al droplet and CNTs/SiC (134.6°) [25, 51]. The 
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interfacial bonding force was reflected by the work of adhesion (Пa) of Al liquid and 

reinforcement according to Young-Dupre equation [52] 

Пa =γlv(1+cosθ)                                                          (2) 

Where γlv is the specific energy of liquid-vapor interface (≈850 mJ/m
2
) [53]. The values of Пa are 

estimated to 200 mJ/m
2
 for CNTs and 1300 mJ/m

2
 for CNTs/SiC at 1100 K [25], respectively. It 

indicates that the improvements of wettability and interface bonding between CNTs and Al 

matrix are attributed to the covalent bonding from the introduction of nano SiC transition layer 

on CNTs surface, which is favorable for improving the efficiency of load transfer from Al matrix 

to CNTs. For instance, the strong interfacial bonding also provides a good ductility as shown in 

Figure 10c by transferring the load from matrix to reinforcements. 

 

Figure 11. The fracture surfaces and the failure diagrams of CNTs, CNTs/SiC reinforced 

AMNCs. (a, b) The fracture surfaces of CNTs reinforced AMNCs with 1.0vol% reinforcement. 

(c) CNTs failure diagram corresponding to (a) and (b). (d, e) The fracture surfaces of 

1.0CNTs/SiC reinforced AMNCs. (f) CNTs/SiC failure diagram corresponding to (d) and (e). 
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A summary of the measured of electrical conductivity data from different AMNCs enhanced 

by various reinforcements (CNTs, SiC or CNTs/SiC) at different volume fractions (0.25, 0.5, 1.0 

and 1.5 vol.%) is shown in Figure 12 and Table 1. It can be seen that the overall trend of 

conductivity of AMNCs decreases gradually with the increase of the content of reinforcement 

due to the more scattering of electrons by the interface [54], especially for the CNTs reinforced 

AMNCs. This mainly related to the poor interface bonding, the aggregation of CNTs and the 

formation of Al4C3 in Al matrix. Nano SiC reinforced AMNs show relatively better conductivity, 

even close to pure Al (58.0 %IACS), due to the good wettability and interface bonding between 

SiC and Al matrix. In addition, nano-scale SiC particles will not split and reduce the continuity 

of the matrix structure, thus the good conductivity of metal Al can be well preserved. After 

cladding the nano SiC layer on the surface of CNTs, the wettability and interface bonding is 

improved and the dispersion of CNTs is promoted by reducing the specific mass difference and 

specific surface energy at the same time [26, 54]. Therefore, AMNCs reinforced with CNTs/SiC 

show an intermediate conductivity in comparison with CNTs or SiC reinforced AMNCs in the 

same content of reinforcements. Nevertheless the conductivity values of CNTs/SiC reinforced 

AMNCs can be maintained above 50%IACS. 
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Figure 12. The electrical conductivity of AMNCs reinforced with various reinforcement  (CNTs, 

nano SiC or CNTs/SiC) at different volume fractions  (0.25, 0.5, 1.0 and 1.5 vol.%). 

In summary, nano SiC transition layer was synthesized from the reaction between CNTs and 

nano Si. It was proved that the thickness and structure of CNTs/SiC composite reinforcement can 

be designed and controllably prepared. As a compatibility nano transition layer, SiC-clad CNTs 

improve the wettability and interfacial bonding between the reinforcement and matrix, which 

is favorable to reduce the agglomeration trend of CNTs caused by Van der Waals force and 

regulate the adverse interfacial reaction. As the reinforcement content increases, the performance 

of CNTs/SiC reinforced AMNCs increases first and then decreases when the CNTs/SiC content 

exceed 1.0 vol.%, while the mechanical properties of AMNCs enhanced with CNTs decline 

constantly. The ductility and electrical conductivity of CNTs/SiC-Al are also improved in 

comparison with CNTs-Al in the same reinforcement content. Meanwhile, the strengthening 

mechanism of CNTs reinforced metal matrix composites has been investigated in previous 

studies and the results show that the strengthening effect of AMNCs is mainly contributed to 

impactful load transfer from matrix to CNTs, which is closely related to the firm interfacial 

bonding between CNTs and matrix [55-58]. The major compound of CNTs survived after 

reacting with Si powder which observed from the micrographs (Figure S2 and Figure 3). CNTs 

still presents the primitive fibrous structures. Moreover, the characteristic of the fracture surfaces 

of CNTs/SiC reinforced AMNCs shows interlaminar peeling morphology with a clear transition 

slope (see Figures 11e-f), further supporting the argument that the improvement in strength is 

mainly attributed to the effectively load transfer to CNTs by the strong interfacial bonding 

between CNTs/SiC and Al matrix. In additional, the movement of the dislocation when plastic 

deformation occurs in Al matrix can be hindered by nano CNTs/SiC composite reinforcements. 
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Generally, the mechanical properties of CNTs/SiC reinforced AMNCs are further improved 

without reducing its ductility. There is a slight reduction of electrical conductivity, but still a 

significant improvement when compared to CNTs only reinforced AMNCs. 

4. Conclusions 

The proposed methods in this study and fundamental understanding show the ability to 

design and improve the characterization of CNTs/SiC reinforced AMNCs by controlling the SiC 

transition layer. SiC was synthesized from carbon-silicon reaction as a compatibility transition 

layer on the surface of CNTs prior to mixing with Al powders. The actual thickness (24.79 nm) 

of formed SiC cladding layer is very close to its theoretical calculation (25 nm). It is found that 

the existence of SiC layer effectively regulates the interfacial reaction between CNTs and Al 

matrix, which hinders the generation of easily hydrolyzed Al4C3 phase. In addition, the SiC 

transition layer reduces the specific surface energy and the gap of mass density between CNTs 

and matrix. The results reported in this study suggest the interfacial bonding between CNTs and 

Al matrix make strong contribution to the strengthening effect of CNTs by achieving high load 

transfer efficiency. Comparing with CNTs or nano SiC reinforced AMNCs, CNTs/SiC reinforced 

AMNCs show remarkably better mechanical properties. In addition, the ductility and 

conductivity of CNTs/SiC enhanced AMNCs are also maintained at a reasonable high level. 
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Appendix A. Supplementary material 

The supplementary material file includes: SEM image of near-spherical nano-SiC powders 

(Figure S1); TEM micrographs of formed CNTs/SiC composite powders (Figure S2); XPS result 

of raw CNTs (Figure S3); more details about the estimation of the wettability and interfacial 

bonding between the reinforcement and matrix.  

References 

 [1] S. Yadav, S. Gangwar, S. Singh. Micro/Nano Reinforced Filled Metal Alloy Composites: A 

Review Over Current Development in Aerospace and Automobile Applications. Materials 

Today: Proceedings 4 (2017) 5571-5582. 

[2] Anthony Xavior M, Ajith Kumar J P. Machinability of Hybrid Metal Matrix Composite - A 

Review. Procedia Engineering 174 (2017) 1110-1118. 

[3] A. Azarniya, A. Azarniya, S. Sovizi, H. Reza M. Hosseini, T. Varol, A. Kawasaki, S. 

Ramakrishna. Physicomechanical properties of spark plasma sintered carbon nanotube-

reinforced metal matrix nanocomposites. Prog. Mater. Sci. 90 (2017) 276-324. 

[4] Yashpal, Sumankant, C.S.Jawalkar, A.S. Verma, N.M. Suri. Fabrication of Aluminium 

Metal Matrix Composites with Particulate Reinforcement: A Review. Materials Today: 

Proceedings 4 (2017) 2927-2936. 

[5] B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz, H.D. Espinosa. 

Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-

induced crosslinking improvements. Nat. Nanotechnol. 3 (2008) 626-631. 

[6] M.F. Yu, O. Lurie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff. Strength and breaking 

mechanism of multiwalled carbon nanotubes under tensile load. Science 287 (2000) 637-

640. 



26 

[7] M.F. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart. Carbon nanotubes: present and 

future commercial applications. Science 339 (2013) 535-539. 

[8] L.F. Mondolfo. Aluminum alloys: structure and properties, Elsevier 2013.  

[9] L. Jiang, Z.Q. Li, G.L. Fan, L.L. Cao, D. Zhang. The use of flake powder metallurgy to 

produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT 

distribution. Carbon 50 (2012) 1993-1998.  

[10] S.R. Bakshi, Agarwal A. An analysis of the factors affecting strengthening in carbon 

nanotube reinforced aluminum composites. Carbon 49 (2011) 533-544. 

[11] C.F. Deng, X.X. Zhang, Y.X. Ma, D.Z. Wang. Fabrication of aluminum matrix composite 

reinforced with carbon nanotubes. Rare Metals 26(5) (2007) 450-455. 

[12] J.H. Nie, C.C. Jia, N. Shi, Y.F. Zhang, Y. Li, X. Jia. Aluminum matrix composites 

reinforced by molybdenum-coated carbon nanotubes. International journal of materials, 

metallurgy and materials 18(6) (2011) 695-702.  

[13] Z.J. Zhang, Z. Sun, Y.W. Chen. Improve the field emission uniformity of carbon nanotubes 

treated by ball-milling process. Appl. Surf. Sci. 253(6) (2007) 3292-3297. 

[14] X.D. Yang, C.S. Shi, C.N. He, E.Z. Liu, J.J. Li, N.Q. Zhao. Synthesis of uniformly 

dispersed carbon nanotube reinforcement in Al powder for preparing reinforced Al 

composites. Composites: Part A 42 (2011) 1833-1839. 

[15] F.T. Fisher. Nanomechanics and the Viscoelastic Behavior of Carbon Nanotubes Reinforced 

Polymers, PhD Thesis. Northwestern University USA  (2002) 85-87. 

[16] X.Q. Liu, C.J. Li, J. Eckert, K.G. Prashanth, O. Renk. Microstructure evolution and 

mechanical properties of carbon nanotubes reinforced Al matrix composites. Mater. 

Charact. 133 (2017) 122–132. 



27 

[17] B. Chen, S. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi, K. Kondoh. An approach for 

homogeneous carbon nanotube dispersion in Al matrix composites. Mater. Design. 72 

(2015) 1-8. 

[18] S.C. Tjong. Recent progress in the development and properties of novel metal matrix 

nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. 

Eng. R 74 (2013) 281-350. 

[19] M.L. Chen, G.L. Fan, Z.Q. Tan, D.B. Xiong, Q. Guo, Y.S. Su, J. Zhang, Z.Q. Li, M. Naito, 

D. Zhang. Design of an efficient flake powder metallurgy route to fabricate CNT/6061Al 

composites. Mater. Design 142 (2018) 288-296. 

[20] C. He, N. Zhao, C. Shi, X. Du, J. Li, H. Li, Q. Cui. An approach to obtaining 

homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-

matrix composites. Adv. Mater. 19 (2007) 1128-1132. 

[21] B. Chen, J. Shen, X. Ye, H. Imai, M. Takahashi, K. Kondoh. Solid-state interfacial reaction 

and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix 

composites. Carbon 114 (2017) 198-208. 

[22] C.F. Deng, X.X. Zhang, D.Z. Wang, Q. Lin, A.B. Li. Preparation and characterization of 

carbon nanotubes/aluminum matrix composites. Mater. Lett. 61(8-9) (2007) 1725. 

[23] H.J. Choi, G.B. Kwon, G.Y. Lee, D.H. Bae. Reinforcement with carbon nanotubes in 

aluminum matrix composites. Scr. Mater. 59(3) (2008) 360. 

[24] H. Kurita, M. Estili, H. Kwon, T. Miyazaki, W. Zhou, J.F. Silvain, A. Kawasaki. Load 

bearing contribution of multi-walled carbon nanotubes on tensile response of aluminum. 

Composites: Part A 68 (2015) 133-139. 

[25] K. Landry, S. Kalotgeropoulou, N. Eustathopoulos. Wettability of carbon by aluminum and 



28 

aluminum alloys. Mater. Sci. Eng A. 254 (1998) 99. 

[26] X. Zhang, S.F. Li, D. Pan, B. Pan, K. Kondoh. Microstructure and synergistic-strengthening 

efficiency of CNTs-SiCp dual-nano reinforcements in aluminum matrix composites. 

Composites: Part A 105 (2018) 87-96. 

[27] L. Ci, Z. Ryu, N.Y. Jin-Phillip, M. Rühle. Investigation of the interfacial reaction between 

multi-walled carbon nanotubes and aluminum. Acta Mater. 54 (2006) 5367-5375. 

[28] V. Laurent, C. Rado, N. Eustathopoulos. Wetting kinetics and bonding of Al and Al alloys 

on a-SiC. Mater. Sci. Eng. A: Struct. 205 (1996) 1. 

[29] T. Laha, S. Kuchibhatla, S. Seal, W. Li, A. Agarwal. Interfacial phenomena in thermally 

sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite. Acta Mater. 55 

(2007) 1059-1066. 

[30] I.H. Kim, W. Lee, C.W. Lee, S.H. Ko, J.M. Jang. Effect of SiC coating on interfacial 

reaction between carbon short fiber and Al melt. Surf. Interface Anal. 42 (2010) 743. 

[31] K.P. So, J.C. Jeong, J.G. Park, H.K. Park, Y.H. Choi, D.H. Noh, Dong Hoon Keum, H.Y. 

Jeong, C. Biswas, C.H Hong, Y.H. Lee. SiC formation on carbon nanotube surface for 

improving wettability with aluminum. Compo. Sci. Technol. 74 (2013) 6-13. 

[32] H. Kwon, M. Leparoux, A. Kawasaki. Functionally graded dual-nanoparticulate-reinforced 

aluminum matrix bulk materials fabricated by spark plasma sintering. J. Mech. Sci. Technol. 

30(8) (2014) 736-742.  

[33] L.P. Rajukumar, M. Belmonte, J.E. Slimak, A.L. Elías, E.C. Silva. 3D Nanocomposites of 

Covalently Interconnected Multiwalled Carbon Nanotubes with SiC with Enhanced 

Thermal and Electrical Properties. Adv. Funct. Mater. 25 (2015) 4985-4993. 

[34] Y. Gang, X.L. C, K.J. Wang, X.F. Wang, H.P. Sun, Y.G. Chen. Experimental study on 



29 

interfacial reaction of CNTs/Al matrix composites. Mining and Metallurgical Engineering 

33(1) (2013) 109-112. 

[35] D. Dutta, S. Chandra, A. K. Swain, D. Bahadur. SnO2 Quantum Dots-Reduced Graphene 

Oxide Composite for Enzyme-Free Ultrasensitive Electrochemical Detection of Urea. Anal. 

Chem. 86 (2014) 5914−5921. 

[36] Z.Y. Yu, Z.Q. Tan, R. Xu, G. Ji, G.L. Fan, D.B. Xiong, Q. Guo, Z.Q. Li, D. Zhang. 

Enhanced load transfer by designing mechanical interfacial bonding in carbon nanotube 

reinforced aluminum composites. Carbon 146 (2019) 155-161. 

[37] R.P. Messner, Y.M. Chiang. Processing of reaction-bonded silicon carbide without residual 

silicon phase. Cera Engi and Sci Proc. 9(7~ 8) (1988) 1053-1059. 

[38] B. R. Pamplin. Crystal Growth. Pergamon Press. 1980: 58~60. 

[39] X.F. Du, T. Gao, D.K. Li, Y.Y. Wu, X.F. Liu. A novel approach to synthesize SiC particles 

by in situ reaction in Al-Si-C alloys. J. Alloy. Compd. 588 (2014) 374-377. 

[40] Z.Y. Xiu, W.S. Yang, R.H. Dong, M. Hussain, L.T. Jiang, Y.X. Liu, G.H. Wu. 

Microstructure and Mechanical Properties of 45 vol.% SiCp/7075Al Composite. J. Mater. 

Sci. Technol. 31 (2015) 930-934. 

[41] Y. Sun, H. Cui, L. Gong, J. Chen, P. Shen, C. Wang. Field nanoemitter: onedimension Al4C3 

ceramics. Nanoscale 3(7) (2011) 2978-82. 

[42] S.F. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, J. Umeda, Y.B. Fu. Strengthening behavior of 

in situ-synthesized (TiC-TiB)/Ti composites by powder metallurgy and hot extrusion. Mater. 

& Design 95 (2016) 127-32. 

[43] B. Chen, S. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi, K. Kondoh. Load transfer 

strengthening in carbon nanotubes reinforced metal matrix composites via in situ tensile 



30 

tests. Compo. Sci. Technol. 113 (2015) 1-8. 

[44] A. Slipenyuk, V. Kuprin, Yu. Milman, V. Goncharuk, J. Eckert. Properties of P/M processed 

particle reinforced metal matrix composites specified by reinforcement concentration and 

matrix-to-reinforcement particle size ratio. Acta Mater. 54 (2006) 157-166. 

[45] Z. Zhang, D.L. Chen. Consideration of Orowan strengthening effect in particulate-

reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scr. 

Mater. 54 (2006) 1321-1326. 

[46] Lloyd D J. Particle reinforced aluminium and magnesium matrix composites. Metal. Rev.  

39(1)(1994) 1-23. 

[47] M. Geni, M. Kikuchi. Damage analysis of aluminum matrix composite considering non-

uniform distribution of SiC particles. Mechanics & Engineering 46(9)(2002) 3125-3133. 

[48] X. Zhang, S.F. Li, B. Pan, D. Pan, S.Y. Zhou, S.H. Yang, L. Jia, K. Kondoh. A novel 

strengthening effect of in-situ nano Al2O3w on CNTs reinforced aluminum matrix 

nanocomposites and the matched strengthening mechanisms. J. Alloy. Compd. 764 (2018) 

279-288. 

[49] Z.W. Cui, J.J. Liu, C.C. Wang, D. Liang. The synergy of carbon nanotubes and alumina 

particles in copper matrix composites. Powder Metall. Technol. 32(5) (2014) 346-351. 

[50] J. Hashim, L. Looney, M.S.J. Hashmi. The wettability of SiC particles by molten 

aluminium alloy. J. Mater. Process Technol. 119 (2001) 324. 

[51] K. Landry, N. Eustathopoulos. Dynamics of wetting in reactive metal/ceramic system: 

linear spreading. Acta Mater. 44(10)(1996) 3923-3932. 

[52] T. Young. An essay on the cohesion of fluids. Philosophical Transactions of the Royal 

Society of London 95 (1805) 65-87. 



31 

[53] B.J. Keene. Review of data for the surface tension of pure metals. Int. Mater. Rev. 38 

(1993) 157. 

[54] Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma. Tensile strength and electrical conductivity of 

carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy 

combined with friction stir processing. J. Mater. Sci. Technol. 30(7) (2014) 649-655. 

[55] D.H. Nam, S.I. Cha, B.K. Lim, H.M. Park, D.S. Han, S.H. Hong. Synergistic strengthening 

by load transfer mechanism and grain refinement of CNT/Al–Cu composites. Carbon 50 

(2012) 2417-2423. 

[56] R. George, K.T. Kashyap, R. Rahul, S. Yamdagni. Strengthening in carbon 

nanotube/aluminium (CNT/Al) composites. Scr. Mater. 53 (2005) 1159-1163.  

[57] W. Zhou, T. Yamaguchi, K. Kikuchi, N. Nomura, A. Kawasaki, Effectively enhanced load 

transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix 

composites. Acta Mater. 125 (2017) 369-376. 

[58] B. Chen, J. Shen, X. Ye, L. Jia, S. Li, K. Kondon. Length effect of carbon nanotubes on the 

strengthening mechanisms in metal matrix composites. Acta Mater. 140 (2017) 317-325. 


