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ABSTRACT 
_____________________________________________________ 
 

Determining the appropriate methodologies for the early detection of breast cancer is 

still an open research problem in the scientific community. Breast cancer continues to 

be a significant problem in the contemporary world. After 40 years of age, people tend 

to be more able to developing cancer, and nearly 25% of cancers are detected in women 

between the age of 40–49 years (Health Quality Ontario, 2007). Early detection and 

treatment are currently the only proven means to reduce breast cancer’s related 

mortality rates.  

Computer-aided detection is suggested as an adjunct to screening mammogram to 

decrease perception-based errors. Medical image processing tools were demonstrated to 

be effective methods for helping radiologists identify suspicious tissues in different 

medical imaging modalities such as Mammograms, Magnetic Resonance Imaging 

(MRI), and ultrasound. Since there are several types of abnormalities in the breast, they 

require special focus for detection; however, even trained specialists are frequently 

unable to detect them. 

Moreover, medical experts might make mistakes, as they are only human; they may be 

over-worked or may make common errors, which can result in even bigger issues (or 

translate into death) for the patient. Hence, to lessen the burden on those physicians who 

face these problems, as well as higher workloads, it is imperative to facilitate the 

diagnostic process and to also train sufficient numbers of residents to interpret 

mammograms, (MRI), or other imaging modalities in the future.  

MRI-based imaging provides far superior clarity and resolution when compared to other 

imaging modalities. The clear and precise information offered by MR imaging serves as 

the basis for correctly detecting cancers, while also identifying their specific type. 

Various imaging modalities (including MRI) provide outputs that do not give clear 

information or that do not clarify hidden information associated with breast cancer; in 

fact, it is often not possible for people to detect these unclear outputs. A specialist may 
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find it difficult to correctly predict the cancer type, which could lead to the wrong 

diagnosis. This prediction can be improved by computer-aided technologies, which also 

minimizes human intervention. In this study, we tried provide an automatic detection 

breast cancer detection system using samples of MRI breast images. 

One of the fundamental issues in the design of a detection system is to determine the 

efficient features that should be used together to improve the accuracy of said system. 

Depending on the type of feature (bad to best) that is used in system design, the 

detection scheme can provide classification accuracy results (0 to 100%). The use of a 

good classifier is also necessary to deal with non-linear classification.  

This research work proposes pre-processing methods for MR images, as well as novel 

methods to detect cancer in those images. This work also proposed new methods to 

retrieve discriminative features from suspicious MR images, and also utilizes the neural 

network classifiers on them to create an automatic decision making system. An 

extensive test is conducted on the classifier to assess its ability to provide false-positive 

and false-negative readings, and also evaluated its accuracy rates.  

The proposed research starts with a detailed study to understand the suspicious patterns 

observed in MR images. In order to overcome some of the bottlenecks in the existing 

methods, this study tries to improve the suspicious MRI pattern detection by devising 

novel techniques (novel features). In this investigation, this study further offers an 

exploration of the current theoretical approaches to segmentation, and then aim to assess 

the impact of a watershed transform algorithm on magnetic resonance (MR) image 

quality in the early detection of breast cancer to confirm the efficiency of this auto 

segmentation method. Moreover, five features are tested to classify the tumours. 

Further, ANN-based classifiers are used on these features to improve detection and to 

generate correct cancer classifications. This study further incorporates the support 

vector machine (SVM) classifier and test correct classification ability of proposed 

system. Different kernels of SVM are tested to find out the best results. SVM 

outperforms the ANN classifier in terms of accuracy by 98.52%. This study 

successfully classifies the type of a tumour with high accuracy using MRI of breast 
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images. MRI data for this study is collected from King Abdullah medical city (KAMC) 

(http://www.kamc.med.sa/index.php/en/). 
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                                     CHAPTER 1 
________________________________________________________ 

INTRODUCTION 
 

1.1	INTRODUCTION		

Computers are very efficient and helpful in carrying out mundane tasks and in processing 

medical data into useful information; its potential as a powerful technology can be further 

exploited to assist radiologists in making more accurate diagnoses (Moein, 2014; Taylor, 

2008). The utilization of computers in decision making can be employed in many different 

forms. The vast and abundant accumulated wealth of information available within each image 

can be made available to radiologists to detect abnormalities and to ultimately arrive at a 

more consistent decision (Graber et al., 2002; Jordanov et al., 2015). 

Although much attention has been paid to technical quality assurance to guarantee optimal 

image quality in most breast screening methods, such as mammograms and ultrasounds, 

many improvements can be made to enhance the quality of image interpretation, which seems 

to be the weakest link in the process. Thus, there is a need to develop tools or algorithms that 

assist radiologists in making quick and accurate decisions. To increase detection and 

diagnostic accuracy, and to save on the need for manual labour, computer-aided 

methodologies (algorithms) have been developed. These computer-aided algorithms can 

make diagnoses in a more quantitative, algebraic fashion, although it cannot be denied that 

most radiological decision making is highly subjective. Such methodologies or algorithms 

were also developed to help radiologists evaluate medical images and to detect abnormalities 

in the breast at an early stage. In general, these methodologies are procedures that employ 

computers to assist doctors in interpreting medical images. This is an interdisciplinary 

method that combines the technology of digital image processing with radiological image 

processing. Computer-aided algorithms combine image processing techniques and the 

knowledge of expert radiologists to improve the accuracy of abnormality detection. In 

particular, these methodologies, which are used for the automated detection (Woods et al., 

2002) or classification (Fraser et al., 2014) of abnormalities in the breast, can be very useful 

in controlling the development of breast cancer, and they can also provide doctors with a 

second perspective, which is characterized by very good consistency and repeatability. 
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The existence of electronic health records (EHRs) has encouraged researchers to adopt the 

idea of an electronic healthcare system, where the components of the legacy healthcare 

systems come together and electronically share and transfer patient information across a 

nationwide public infrastructure. 

 

		1.2	AIMS	AND	OBJECTIVES	

 
Novel techniques are proposed in this work to analyze suspicious tissue patterns in the early 

detection of breast cancer. The developed techniques are expected to help radiologists 

evaluate breast images and to detect breast cancer more accurately. Such systems are used in 

conjunction with human evaluations of a given diagnosis. These systems not only improve 

image quality, but they also help to increase image contrast, automatically determine lesion 

location, greatly reduce the human efforts required to make a diagnosis, and improve the 

accuracy of detection and diagnosis. The computer-aided algorithms for pre-processing help 

to separate suspicious regions, which may contain abnormalities, from the background 

parenchyma. In other words, such pre-processing methodologies partition the images 

acquired from magnetic resonance imaging (MRI) into several nonintersecting regions, and 

they also extract regions of interest (ROIs) and suspicious tissue candidates from these 

images. Overall, the proposed method for breast cancer detection uses image processing 

methods like image de-noising , image enhancement, image segmentation, classification, etc., 

to detect breast cancer in its early stages, as these methods assist radiologists in detecting 

abnormalities; they also improve the accuracy of interpretation.  

The main aim of this study is to develop a system that can provide segmentation and 

classification of breast tumours with a high degree of accuracy. In order to achieve the same, 

following objectives are designed for this study:  

1. To search for novel and optimal breast cancer detection features. 

2. To combine these novel features with the pre-existing features from the literature in 

order to develop better feature data. 

3. To develop a MRI-based automated breast cancer classifier.  

4. To analyze a developed automated method to enhance classification accuracy. 

5. To minimize the false-positive and false-negative rate during classification. 
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1.3	RESEARCH	SCOPE	

In recent years, bioinformatics has become a notable field, since it enables data analysis of an 

organism to diagnose various diseases, such as cancer. Cancer is a dreadful disease that is 

found in many living beings. Cancer studies constitute one of the most challenging areas in 

research; it is the second-leading cause of death worldwide (Boyle, 1997). At present, one of 

the most important causes of cancer-related deaths among middle-aged women is breast 

cancer. MRI is a commonly used imaging modality that is currently employed by radiologists 

in the early detection and diagnosis of cancer through images of the breast. Digital MRI has 

turned out to be the most effective technique for premature breast cancer detection, although 

fewer research initiatives have attempted the development of automated tumour detection and 

classification methods using MRI samples. 

Digital MRI captures magnetic resonance (MR) images of the breast and accumulates all 

image files in a computer. MR images require noise removal, contrast enhancement, and 

other pre-processing methods to achieve better feature extraction and accurate breast cancer 

identification. Processing these MR images requires high computational capabilities. Hence, 

this research aims to develop effective breast cancer detection and classification methods 

using MRI data. 

1.4	PROBLEM	SPECIFICATION	

Making a correct breast tumour diagnosis is a rather difficult task and requires special efforts. 

The early diagnosis of breast cancer provides clinicians with the chance to use the most 

appropriate treatments, thus resulting in better chances of survival. The World Health 

Organization’s International Agency for Research on Cancer Working Group confirmed that 

early cancer detection and treatment are considered to be the most promising approaches to 

reduce breast cancer mortality (World Health Organization, 2007, Senkus et al., 2015). 

Moreover, the auto-detection of breast cancer is still an open and challenging research issue. 

MRI-based cancer detection is still in its very early stages, and much less research has been 

carried out in this domain for the automated classification of breast cancer. This study is 

carried out to provide a fast, yet powerful, breast cancer detection technique that can provide 

an effective solution to promote accurate tumour detection, while ensuring low false 

detection rates using MRI datasets. 

Image processing methods are applied to identify the tumour area in MR image samples. The 

proposed feature-extraction methods are also compared with earlier proposed feature-
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extraction methods (total tumour area, angular smoothness of the corners, and the counter-

clockwise rotation to clockwise rotation ratio) for classification accuracy Then, a 

hybridization of these features is applied and tested with a well-known classifier known as 

the artificial neural network (ANN) to improve the classification’s performance even further. 

The result of ANN is validated against the k-fold cross-validation test, false-positive test, and 

false-negative test. Figure 1.1 shows a sample of the MRI data for (a) a benign and (b) a 

malignant tumour. It is quite evident from the figure that benign tumour is not that dense as 

the malignant tumour. That is the biggest visble difference between them and can serve the 

basis for the development of automatic detection system.  

(a) (b) 

FIGURE 1.1: SAMPLE MRI OF (A) A BENIGN AND (B) A MALIGNANT TUMOUR. 

1.5	Thesis	ORGANIZATION	

The outline of this Thesis	is provided below. 

 

Chapter 1 provides an introduction to the research area, and it also details the aim of this 

study. This chapter also provides the scope of this research and an overview of subsequent 

chapters. 

 

Chapter 2 through lights on the breast cancer, various tumour types, and different diagnostic 

methods and classification approach. It also features a definition of the research problem and 

offers an overview of the proposed approach for this research. 

 

Chapter 3 deals with the literature review of breast cancer detection techniques, especially 
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mammography and MRI-based approaches. It reviews the methods currently used to identify 

breast cancer in its early stages, and it also discusses the different feature and classification 

approaches used during auto-detection. 

 

Chapter 4 describes the methodologies that are currently used, as well as the methods 

explored in this study when analyzing MRI images in the early detection of breast cancer. 

 

Chapter 5 provides an overview of the basic theories related to ANN and SVM. 

 

Chapter 6 elaborates the automatic segmentation method proposed in this study to determine 

the ROI, so that feature extraction can be applied to that region. 

 

Chapter 7 discusses the effective feature extraction and pre-processing methodologies. Then, 

a discussion is offered about the various classification approaches that employ the threshold 

method, ANN and SVM. Further, this chapter also features a classification analysis using k-

fold cross-validation. 

 

Chapter 8 concludes this Thesis	by presenting experimental findings, as well as by providing 

the scope for future initiatives to enhance the work presented here.  
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CHAPTER 2 

___________________________________________________ 

BREAST CANCER AND DETECTION METHODS 
 

2.1 BREAST	CANCER		

Cancer develops when cells in a specific part of the body grow out of control. Cancer cells 

divide and grow indefinitely. Instead of dying, they outlive normal cells and they continue to 

form new abnormal cells. These cells usually form a tumour, which is nothing but the 

abnormal growth of tissue. There are two forms of tumours: malignant tumours and benign 

tumours. Malignant tumours are the most dangerous type of a tumour, which comprises 

cancer cells that invade the neighbouring tissues. Conversely, benign tumours grow locally 

and they are of a greater size; moreover, they do not invade neighbing tissues, they do not 

return following surgical removal, and they are not typically life threatening (Schwartz et al., 

2013; Mehrabi et al., 2015). 

Breast cancer is a malignant tumour that developed from cells of the breast. Breast cancers 

are life-threatening malignancies that develop in one or both breasts, and they represent the 

most common form of cancer among women aged 15–54 years (Mehrabi et al., 2015; Rodby 

et al., 2016). 

 

2.2			TISSUE	AND	CELLULAR	DIAGNOSIS	OF	BREAST	CANCER	

 

Tissue- and cell-based diagnoses are the most famous methods for breast cancer detection 

among medical professionals. This approach uses the Mammotome breast biopsy system 

(Burbank et al., 1996; Parker et al., 2001; Nakano et al., 2007; Pan et al., 2014; Denison and 

Lester, 2016), which was approved by the U.S. Food and Drug Administration (FDA) in 

1996. An improved (handheld) version of the same device became available on the market in 

1999. The basic principle employed in this method is as follows. 

A large needle is used and inserted into the suspicious region of the human body (the breast, 

in the case of breast cancer) based on the findings of X-ray, ultrasound, MRI, or other similar 
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imaging tools (Pan et al., 2014; Denison and Lester, 2016). Then, the Mammotome is applied 

on the region to remove/vacate the suspicious tissue cells from the area. Additional tissues 

from a nearby area are also collected by rotating the device within the body. The patient 

remains still during the entire procedure, and either lies in the supine position (when the 

handheld device is used) or on the stomach (when the non-handheld device is used). 

The removed tissues (specimens) are examined by a medical specialist to confirm or refute 

the presence of breast cancer via microscopic testing (Nakano et al., 2007).  

									2.2.1	 The	study	of	normal	and	abnormal	cells	

Cancerous or tumour cells are modified normal cells. This modification involves the loss of 

more specialized functions associated with differentiation, and they also include increased 

growth functions, as well as the resulting invasion and metastasis formation. The more rapid 

the growth, the more primitive the cell in terms of both its structure and specialized work and 

reproductive functions; in fact, the former function depends on the activity of the cytoplasm, 

while the latter depends on that of the nucleus. Cancer cells are changed in character, so they 

spend most of their energies on growth and little on function. Thus, cancer cells more closely 

resemble the biology of other cancer cells than normal cells. As cancer cells are mainly 

disorder of cellular reproduction, so an examination of nucleus can help us to recognize it.  

The nucleus of the cancer cell is likely to be large in relation to the cytoplasm, although this 

relative difference is sometimes due to shrinkage of the cytoplasm rather than to an increase 

in the size of the nucleus. The nucleus is hyper-chromatic, owing to the increased content of 

nucleoprotein, which stains intensely with hematoxylin and basic aniline dyes due to the 

coarsening chromatin network. The nucleolus is large in proportion to the size of the nucleus, 

which is an important feature that may be more apparent in frozen sections of the unfixed 

tissue or in wet films. 

The presence of numerous mitotic figures is suggestive of neoplasia, although they are also 

seen in granulation tissue and in other rapidly regenerating cells, so these figures are not 

proof of malignancy. It is important to note that the more rapid the growth, the more 

numerous the mitotic processes. The nucleus may be represented by a dark mass of 

chromatin, or the chromatin may be collected as a bar across the centre of the cell in the 

metaphase or monster stage (the typical appearance), or in two separate masses, one at each 

pole, in the anaphase or disaster stage. In highly malignant tumours, multicentric division and 
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other forms of typical mitosis may sometimes be seen. The chromosomes in a neoplastic cell 

vary in number, but in none of the malignant tumours examined has their number been 

normal (same as healthy cell). 

As is evident, cellular diagnosis relies on an invasive method, limiting its usefulness. It will 

be much better if non-invasive methods can be developed for the detection of breast cancer; 

as such, this task is attempted in this work.  

2.3				BREAST	CANCER	RISK	FACTORS	

Breast cancer continues to be a significant public health problem around the world. 

According to a study, women of the ages between of 40–49 years find more prone to breast 

cancer and approximately 25% of all breast cancer deaths occur in women of this age range 

(Health Quality Ontario, 2007). According to the estimation of the American Cancer Society, 

in 1996, approximately 184,300 women were diagnosed with breast cancer and 44,300 of 

them had died (Parker et al., 1996). An estimate from 2009 revealed that 192,370 new cases 

of invasive breast cancer were diagnosed, while about 40,610 women died in the United 

States. According to Ferlay et al. (2010), there are approximately 100.000 new cases of breast 

cancer worldwide each year; it is the second leading cause of cancer deaths in women. 

Breast cancer can either be non-invasive (confined to the site of origin) or invasive (where it 

spreads beyond the site of origin) in nature. Non-invasive breast cancers include ductal 

carcinoma in situ (DCIS), which is also known as intraductal carcinoma, and lobular 

carcinoma in situ (LCIS). DCIS consists of cancer cells that present in the lining of the duct. 

DCIS is a non-invasive, early-stage cancer; however, if left untreated, it may sometimes 

progress to an invasive, infiltrating ductal breast cancer. Also non-invasive, LCIS is 

associated with an increased risk of invasive cancer development in both breasts (Sauter et 

al., 1997). 

Although breast cancer has a very high incidence and death rate, its cause is still unknown, 

and there is no effective way to prevent its occurrence. Researchers have tried to trace both 

the environmental and genetic causes that lead to this disease, but so far, there is insufficient 

evidence to support the theories that implicate alcohol, unhealthy food, genetic mutations, 

pollution, and others in its development. Since breast cancer is a progressive disease that 

evolves during the various stages of cellular growth, the time at which breast cancer is 

detected is crucial. 
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The earlier breast cancer is detected, the higher the chance of survival (Goldhirsch et al., 

2005; Rack et al., 2014). Determining the most appropriate methodologies for the early 

detection of breast cancer still remains an open problem in the research community, as the 

existing methods have a high miss rate and low specificity. Early detection and treatment are 

currently the only means proven to reduce breast cancer-related mortality rates. 

 

2.4				LIMITATIONS	OF	THE	CURRENT	DETECTION	METHODS	

The detection of breast cancer is highly critical for making a proper diagnosis. According to 

the Independent UK Panel on Breast Cancer Screening (2012), the majority of methods used 

for breast cancer detection require human intervention, and that is why they are prone to 

error. Even experienced radiologists frequently fail to predict cancer types, so there is a need 

for an automated cancer detection system (ACDS). Moreover, X-ray-/ultrasound-based 

detection methods produce very poor results due to the poor visibility (low resolution) of the 

output image (Bleyer and Welch, 2012; Kelly, 2010). This limits automated detection and it 

also affects expert-based detection. 

To satisfy the need for a large population for breast cancer detection, there is a growing 

demand for the low costs associated with automated and invasive methods, which require 

minimal human intervention and can provide accurate detection results with a minimum level 

of false-positive/negative diagnoses (Lee at al., 2010). The existing methods are costly and 

prone to errors (Hass et al., 2013; Lee at al., 2010). There are various features of breast 

cancer images that can be used to predict tumour class, and different researchers have 

proposed various means (imaging modalities) to do so. MRI has been proven to be very 

useful to get efficient features as compared to other modalities (Salem et al., 2013; Litjens et 

al., 2014).  

Different features provide complementary information about the targeted region, which helps 

in the improvement of the classification accuracy.  Due to that, there is a need to find out 

various features and optimal combinational methodology for superior performance. 

Furthermore, breast cancer detection should be automated, particularly for early-stage 

cancers, using the information retrieved from efficient features vectors. MRI is a highly 

effective technique for an early detection of breast cancer (Salem et al., 2013; Litjens et al., 

2014) and the use of additional features can improve its performance even further. 
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	2.5				A	BRIEF	ANATOMY	OF	THE	BREAST	

Obtaining an understanding of the anatomy of the breast is highly necessary to better 

understand the early detection of breast tumours, which is of primary importance in this 

investigation. The breast is composed of three basic structures: the skin, subcutaneous fat, 

and parenchyma fat. The interior of the female breast contains mostly fatty and fibrous 

connective tissues. It is divided into about 20 sections known as lobes, which are further 

subdivided into lobules. These are structures that contain milk-producing glands.  

The ductal system is a branching system that extends from the alveoli to the end of the 

nipple; the ducts start branching as they extend closer to the nipple (within 16 mm) and can 

often follow a convoluted route. There are, on average, nine to 10 ducts that open onto the 

nipple, but this is individual and can range in number from four to 19. The diameter of the 

lactiferous ducts varies between individual women and can range from 1.09–5.89 mm. Upon 

milk ejection, the ducts shorten and widen, and their diameter expands as the breast milk 

flows towards the end of the nipple; they do not store milk. Milk ejection is essential when 

infants are breastfeeding, as only a minimal volume of milk is available to the infant before 

milk ejection occurs. 

The areola is a pigmented circle of skin that surrounds the nipple. During pregnancy, the 

areola enlarges and becomes darker in pigmentation, which is associated with serum levels of 

prolactin and placental lactogen. The Montgomery’s tubercles also called Montgomery’s 

follicles, which are small sebaceous glands that open onto the areola, also become more 

prominent during pregnancy to provide lubrication and antimicrobial protection. Some 

tubercles can also produce tiny droplets of breast milk. 

The nipple or papilla mamma is a conical elevation located in the centre of the areola and 

comprises a number of openings from the lactiferous ducts. The nipple tissue is composed of 

smooth muscle, which causes the nipple to become erect when it is stimulated and helps the 

newborn infant to locate the breast. It is, however, the least important part of the female 

breast during breastfeeding, and it simply provides a structure through which the ductal 

system and breast milk pass. The structure of the nipple is pertinent when establishing 

breastfeeding because good attachment and effective emptying of the breast are dependent on 

the infant taking a sufficiently large portion of breast tissue into its mouth. However, only a 

small proportion of this tissue includes the nipple. 
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Each mature female breast comprises an average of nine lobes, but this number can range 

between four and 19; the lobes are separated from each other by various amounts of fat. Each 

lobe consists of several lobules. 

Each alveolus has a small duct that joins with others to form a single, much bigger lactiferous 

duct for each lobe. These lactiferous ducts extend towards, and individually open out, onto 

the surface of the nipple and are visible as distinct, albeit minuscule, orifices. It is for this 

reason that a blockage or inflammation of one lactiferous duct, as in cases of mastitis, will 

only affect one segment of the breast. Some of the breast lobes can also extend towards the 

underarm (known as the axillary tail or axillary tail of Spence); this tail can sometimes 

become tender, even painful, during menstruation and when lactation begins. 

 

Normally, breast cancer first appears in the two functional elements: the lobules and ducts. 

Early forms of breast cancer are called in situ cancer. In situ cancer occurs when the 

cancerous cells have not yet spread beyond the initially affected area. DCIS is cancer that 

occurs in a woman’s ducts and is more common than LCIS, which is cancer that is found in 

the lobes of the breast (Harris et al., 1992). The terminal ductal lobular unit (TDLU), which 

includes the inner branches of the lactiferous ducts, is the basic histopathology unit of the 

breast. The TDLU is important physiologically, as it is the site of milk production, and it is 

also the site where most breast lesions develop. An understanding of this anatomic structure, 

which is shown in Figure 2.1, is important when correlating it with mammographic and 

pathologic findings. 

 

 

FIGURE 2.1: BREAST ANATOMY  
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2.6			STAGES	OF	BREAST	CANCER		

The different stages of breast cancer (Sölétormos et al., 2004) are briefly outlined in Table 

2.1. Stage zero (0) describes cancer cells that are noninvasive, but which pose a long-term 

risk of becoming invasive. Stage one (I) describes tumours not more than 2 centimetres in 

diameter, and which have not yet spread beyond the breast. In stage two (II), the tumour is 

about 2 centimetres in diameter, but it has spread to the lymph nodes under the arm; 

conversely, the tumour may be about 5 centimetres in diameter, but it has not yet spread to 

the lymph nodes under the arm. Stage three (III) cancers are more than 5 centimetres across 

and they have spread to the lymph nodes or other tissues near the breast. Stage four (IV) 

cancers are known as metastasized cancers, and they have spread to other parts of the body. 

The seriousness of the diseases increases with each stage, as the survival rates decrease 

(McPherson et al., 2002). 
 
Table 2.1: The different stages of breast cancer, indicated by the size and location of a 

patient’s cancer, as reported by physicians (Harris et al., 2005) 

Breast cancer is the commonest of all cancers and it is the second most common cause of 

cancer deaths in women, next to lung cancer (Jemal et al., 2007). It usually occurs during the 

involution period, i.e. in the years before menopause, and it rarely occurs before menopause. 

Moreover, this cancer is also rare before the age of 35 years. There is a higher incidence in 

nulliparous women, and the disease bears no relation to repeated suckling. Pregnancy, indeed, 

appears to have a protective influence. According to an estimate, 1 out of 90 female patients 

is likely to develop breast cancer at some time during her adult life in the USA and in 

Western countries (Jemal et al., 2007).   

 

 

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged version of 
the thesis can be viewed at the Lanchester Library, Coventry University. 
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In summary, what is breast cancer?  

1. Human breast cancer is a clonal disease that involves a single transformed cell, and where 

the end result includes a series of somatic (acquired) or germline mutations that are able to 

express their full malignant potential; 

2. It is a malignant proliferation of the epithelial cells that line the ducts or lobules of the 

breast; and 

3. It is a hormone-dependent disease. 

 

2.7			BREAST	ABNORMALITIES		

Breast cancer is accompanied by a number of symptoms. The various abnormalities that may 

be seen in the breast include various masses, microcalcifications (MCs), architectural 

distortions, prominent lactiferous ducts, skin dimpling, or nipple thickening. 

 

						2.7.1				Masses	

A breast mass is a localized swelling or lump in the breast that is described in terms of its 

size, shape, location, and margin characteristics. Masses are formed once the breast tissues 

thicken; the size of masses range from 3–30 mm, as shown in Figure 2.2. A benign mass will 

normally be associated with the presence of circular or oval shapes, and it will have well-

defined margins. These circumscribed masses are compact and roughly elliptical. 

Circumscribed margins in benign breast masses will be well defined and sharply demarcated, 

and there will be an abrupt transition between the lesion and the surrounding tissue. Benign 

masses will also have a fatty halo surrounding the margin, and these masses are of medium to 

a low density (de Paredes, 1994). Figure 2.2 shows the different shapes of various masses: (a) 

an oval mass, (b) a lobular mass, (c) a circumscribed mass, and (d) a spiculated mass. 
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(a)                                                   (b) 

                                                                              

                                                                          (c)                                                 (d) 

FIGURE 2.2: MAMMOGRAPHIC IMAGES OF (A) AN OVAL MASS, (B) A 
LOBULAR MASS, (C) A CIRCUMSCRIBED MASS, AND (D) A SPICULATED 

MASS. 
 

Spiculated masses are more likely to represent a sign of a malignant process. The margin 

refers to the border of a given mass, and it should be examined carefully, as it is one of the 

most important criteria when determining whether a mass is benign or malignant. Malignant 

lesions generally have a more irregular shape than benign lesions. Spiculated lesions have a 

central tumour mass that is surrounded by a radiating pattern of linear spicules and ill-defined 

margins, which appear to be scattered. The centre of the lesion will be of medium to high 

density when compared to the surrounding tissues, and fine tendrils surround the tumour 

mass (de Paredes, 1994). Figure 2.3 shows the different types of masses. 
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                                                     (a)                                                   (b) 

 

 

 

 

 

       (c)                                                      (d) 

FIGURE 2.3: MAMMOGRAPHIC IMAGES OF (A) AN IRREGULAR MASS, (B) A 
MASS WITH MICRO-LOBULATED BOUNDARIES, (C) A MASS WITH 

OBSCURED BOUNDARIES, AND (D) A HIGH-DENSITY MASS. 
 

					2.7.2						Microcalcifications	

MCs are tiny calcium deposits that range from 50 microns to several hundred microns in 

diameter, which usually appear in clusters. Calcifications represent an important sign of 

breast cancer. There are two types of calcifications: MCs and macrocalcifications. 

Macrocalcifications are scattered calcium deposits that are usually associated with benign 

conditions, and they rarely require a biopsy. MCs are isolated and appear in clusters, which 

are found embedded in a mass. Individual MCs typically range in size from 0.1–1.0 mm, with 

an average diameter of about 0.5 mm. A cluster is typically defined to be at least three MCs 

within a 1 cm2 region (Boccignone et al., 2000). 

 

Malignant calcifications may occur with or without the presence of a tumour or mass; they 

are typically grouped or clustered, and they vary in size and shape. Due to their high 

attenuation properties, MCs appear as white (or high-intensity) spots. MCs represent an early 

sign of breast cancer; however, only those regions in which these MCs appear as clusters 
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within a radius of 1 cm are MCs considered suspicious. The morphologic appearance of MCs, 

as illustrated in Figure 2.4, has been emphasized in the last decades. An analysis of MCs is 

normally based on morphological features, size, distribution, location, variability, and 

stability. 

 

 

 

 

 

 

 

                                                      (a)                                        (b) 

FIGURE 2.4: MICROCALCIFICATIONS IN MAMMOGRAPHIC IMAGES. 
 

					2.7.3	 Architectural	Distortions	
Architectural distortions (ADs) are a very important finding in the early detection of breast 

cancer. ADs are the third most common mammographic finding of breast cancer. As stated 

by Kopans (2007), “Breast cancer does not always produce a mammographically visible 

mass, but it frequently disrupts the normal tissues in which it develops. This distortion of 

architecture may be the only visible evidence of the malignant process. The probability of 

malignancy increases as a lesion becomes more irregular in shape. On the contrary, benign 

lesions are not architecturally distorted but have round, oval, or lobulated shape. Since the 

margins are not irregular in most benign lesions, benign masses appear encapsulated”. BI-

RADS (Breast imaging reporting and data system, USA) further defined AD as: “The normal 

architecture (of the breast) is distorted with no definite mass visible. This includes 

spiculations radiating from a point and focal retraction or distortion at the edge of the 

parenchyma. Architectural distortion can also be an associated finding.” (Liberman and 

Menell, 2002). 

The breast contains several piecewise linear structures such as ligaments, ducts, and blood 

vessels, which cause directionally-oriented textures in mammogram images. The presence of 

ADs changes the normal oriented texture of the breast. ADs appear as spiculations, 

retractions, and distortions. Figure 2.5 shows the appearance of an AD in a mammogram. It is 

difficult for radiologists to detect ADs due to the fact that their manifestations are typically 

subtle. 
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FIGURE 2.5: ARCHITECTURAL DISTORTION IN A MAMMOGRAPHIC IMAGE. 

						2.7.4	 Bilateral	Asymmetry	

In bilateral asymmetry, the left and right breasts differ from each other in terms of their 

overall appearance in the corresponding mammographic images, as shown in Figure 2.6. The 

definition of asymmetry indicates the presence of a greater volume or density of breast tissue 

without a distinct mass; there may also be more prominent ducts in one breast when 

compared to the corresponding area in the other breast. 

 

  

 

 

 

 

 

 

 

 

FIGURE 2.6: MAMMOGRAM SHOWING BILATERAL ASYMMETRY. 
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					2.7.5	 Other	Abnormalities		

Other less common signs of breast cancer include dilated lactiferous ducts and skin retraction. 

The lactiferous ducts may be dilated, and if these ducts are rather asymmetric, this 

appearance is considered to be indicative of ductal malignancy. Skin dimpling is an unusual 

change in the texture of the breast; in breast cancer, there may also be a change in the breast’s 

skin colour, or there might be changes in the shape of the nipple, as shown in Figure 2.7 

 

 

 

 

              (a)                           (b)                          (c) 

FIGURE 2.7: (A) SKIN DIMPLING, (B) A CHANGE IN SKIN COLOUR OR 
TEXTURE, AND (C) A CHANGE IN THE SHAPE OF THE NIPPLE. 

	

In some cases of breast cancer, there may not be any noticeable symptoms. In fact, half of the 

women who get breast cancer will not experience any obvious symptoms, and they may 

discover their breast cancer only after undergoing a medical examination. Therefore, it is 

important for women to have periodic screenings for breast cancer. Breast cancer screening is 

vital to detecting breast cancer. The most common screening methods are mammography and 

sonography. There are several other breast-screening modalities, which will be discussed in 

the next section. 

	2.8				RISK	FACTORS	

As a matter of fact, diseases are seldom caused by a single factor (Lim et al., 2010). 

Certainly, the presence of the diphtheria bacillus or the tubercle bacillus in the body is not 

enough to produce diphtheria or tuberculosis. Three types of agents have been incriminated in 

the pathogenesis of breast carcinoma (Lawrence et al., 2014): hormonal stimulation, milk 

factors, and secretion retention. 

Hormonal stimulation: The development and growth of the breast are under the influence of 

the ovary, the adrenal gland, and the pituitary gland (Vorherr, 2012). This is true also of 

mammary carcinoma. Indeed, no other tumour exhibits such a wide range of endocrine 

influences. Four hormones are principally involved: (1) oestrogen, (2) progesterone, (3) 

pituitary lactogenic hormone, and (4) pituitary–mammotrophic or mammogentic hormone 

(prolactin). 
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The endocrine organs involved in the production of this hormonal tetrad are, of course, the 

ovary, adrenal gland, and anterior pituitary gland. Some idea about the number of hormones 

being produced may be gained from measuring their excretion in the urine. When we say that 

mammary carcinoma is extremely susceptible to endocrine influence, it is necessarily 

responsible for the original induction of tumour development. Moreover, not all cancers of 

the breast are hormone dependent. Only 50% belong to this group although some clinicians 

give a figure as high as 60 per cent (Hadfield, 1958, Jozwik and Carroll, 2012)); moreover, 

only 40 per cent are markedly dependent. The remaining cancers have the gloomy and 

mysterious attribute of ''autonomy'', so it is often regarded as the essential biological 

characteristic of all malignant tumours. Unfortunately, the histology of a tumour gives no 

indication of its dependence. It is now recognized, however, that the enzyme content of the 

cancer cells may give us some leads in this respect. A histochemical study of breast tumours 

showed abundant esterase, lipase, and succinic dehydrogenase in well-differentiated 

adenocarcinomas, while lower levels were found in scirrhous carcinomas and none in 

medullary carcinomas. There is histochemical evidence that in oestrogen-sensitive tissues, 

oestrogen acts as a co-factor for transhydrogenase, thus releasing more energy for metabolic 

activities. 

Both clinical and experimental observations support the concept of endocrine influence on 

breast cancer (Lawrence et al., 2014). The highest incidence of cancer is found between the 

ages of 40 and 49 years (Health Quality Ontario, 2007) when the influence of oestrogen is 

especially strong; women with delayed menopause appear to be excessively prone to 

developing the disease and the incidence is low in women who have had an ovariectomy. 

Furthermore, these tumours are 100 times more common in female than in male breast tissues 

(Jemal et al., 2008). If the ovaries are removed in young mice with a high mammary cancer 

strain, the danger of tumour development will be completely averted. The repeated injection 

of estrogen into mice will produce mammary cancer in a high percentage of cases, including 

in males of males of a non-susceptible strain (Chughtai, 1964). None of this, of course, is 

proof that human breast cancer is induced by hormonal stimulation, nor has cancer been 

produced in the higher mammals (those more closely related to humans) by the use of 

oestrogens (Cavalieri and Rogan, 2014). 

It is of interest to note that in a series of 207 cases of cancer of the breast, in all but a few 

cases, there was hyperplasia of pituitary amphophils and basophils, the adrenal cortex, and 

the ovarian stroma, combined with thyroid atrophy with evidence of continuous oestrogen 



	

20	

stimulation of the epithelium of the breasts (Sommers et al., 1989). In these cases, the breasts 

and ovaries appeared to act as target organs. In sum, three ages are important factors in breast 

cancer development: 

• Age at menarche: early menarche increases the risk of breast cancer by 50%–60%. 

• Age at full-term pregnancy: late age (>35 years) increases the risk of breast cancer 

development. 

• Age at menopause: late menopause increases the risks of breast cancer development 

by 35%. 

Due to hormonal imbalances and increases in oestrogen, hypertrophy of the male breast is 

found in adolescence or in later life; this is called gynecomastia (Vorherr, 2012). It may occur 

as complications of a rare feminizing tumour of the adrenal glands, the pituitary gland, or 

testes. It may also arise from a tumour associated with diffuse liver disease, such as cirrhosis, 

as the liver is the chief organ responsible for the inactivation of estrogenic disease. 

Milk Factors: The importance of heredity in the aetiology of cancer is well recognized, but 

Bittner (Bittner, 1941) has shown that in mouse mammary cancer, some extra chromosomal 

influences may be transmitted in the mother's milk (Tiede and Kang, 2011). If the young of a 

high breast-tumour stock are suckled by mothers of a low breast-tumour stock, the incidence 

of breast cancer is greatly reduced. Bittner has succeeded in extracting the cancer-producing 

factor in the breasts of animals with highly spontaneous carcinoma of the breast. When this 

factor was given to animals with a normal incidence of this tumour, the incidence rose from 1 

per cent to 67 per cent. It seems certain that the carcinogenic factor is a filterable virus. It is 

rather startling to learn that the factor may be transmitted by both the male and female mouse. 

Wood and Darling (Wood and Darling, 1943) report a family in which a number of instances 

of bilateral mammary carcinoma occurred in the course of four generations. In the third 

generation, three sisters developed breast cancer. Cancer occurred only in those women who 

had been nursed by their mothers, a fact suggesting the operation of a factor similar to the 

''milk influence'' demonstrated by Bittner in mice. It is obvious that it would be most 

desirable to understand the extent to which Bittner's work on mouse models can be applied to 

the human female; however, the difficulties associated with this approach are also obvious. It 

is possible that a virus in the mother's milk may be the source and origin of the entire 

complex process that kindles the neoplastic fire in later life when conditioning factors (such 
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as hormonal imbalance or irritation in the ducts) prepare the stage for the final act (Yang and 

Jacobsen, 2008). 

Breast drainage may be interfered with as the result of anomalies of the duct. The breast of 

the typical spinster has an underdeveloped, small, hard, fibrosed nipple, and we have already 

seen that cancer is commoner in those who have never borne children. According to one 

study (MacMahon and Feinleib, 1960), only 8.5 per cent of patients with cancer of the breast 

gives a normal nursing history. Bagg (Bagg, 1936) has shown that in a strain of mice with a 

low incidence of breast cancer, ligation of the ducts to the nipples on one side of the body 

halfway through pregnancy frequently produced carcinoma. By means of very rapid breeding 

without accompanying suckling, he also induced a high proportion of cancer cases. Of note, 

the animal with the most overworked mammary gland in the world – namely, the cow – never 

develops mammary cancer. Infiltrating carcinoma may originate de novo from normal breast 

tissue. In many cases, however, there is a preliminary epithelial hyperplasia followed by 

neoplasia within the ducts before infiltration occurs (Tiede and Kang, 2011). This may affect 

many groups of cells, so that a tumour may be of multicentric origin (Muir,1941).	

Due to hormonal imbalances and increases in oestrogen, hypertrophy of the male breast is 

found in adolescence or in later life; this is called gynecomastia (Vorherr, 2012). It may occur 

as complications of a rare feminizing tumour of the adrenal glands, the pituitary, or testes. It 

may also arise from a tumour associated with diffuse liver disease, such as cirrhosis, as the 

liver is the chief organ responsible for the inactivation of estrogenic disease. 

						2.8.1	 Spread	

Cancer of the breast derives its evil power from its ability to invade the lymphatics, which 

enables it to spread even in its earliest stage (Lawrence et al., 2014). It is true that some of its 

forms, such as the comedo and medullary varieties, do not exhibit this tendency, but they are 

hopelessly outnumbered by the infiltrating scirrhous form. Spread may be accomplished by 

infiltration, by the lymphatics, and by the blood. 

					2.8.2	 Infiltration	

Infiltration is the means through which malignant cells spread throughout the breast. They 

infiltrate the tissue spaces between the fat cells and connective tissue bundles, as can be best 

seen in the scirrhous form of cancer. It tends to involve the skin and penetrates the pectoral 

muscles and even the chest wall. A tumour increases in size and invades other portions of the 
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breast. Adenocarcinoma and duct carcinoma show a comparatively slight tendency towards 

infiltration (Lawrence et al., 2014). Microscopic sections of the entire thickness of the breast 

show that the pectoral muscle is involved in over one-half the cases of scirrhous carcinoma at 

the time of operation, although no gross evidence of involvement may be apparent. 

The lymphatic system propagates cancer spread by carrying the tumour cells over a distance. 

There are two ways in which this spread may occur (Lee et al., 2010). The cells may grow 

along the lymphatic system by a process originally described and named by Sampson 

Handley (Handley, 1931): lymphatic permeation. Conversely, they may be carried by the 

lymph stream in the form of tumour emboli. It is probable that embolism is a much more 

important method than permeation, although, for a long time, it was thought that permeation 

was the chief method of spread. The tumour cells reach the axillary lymph nodes early in the 

disease, especially in the scirrhous form of carcinoma. 

Another method of spread is achieved through the blood (Yang and Jacobsen, 2008). When 

the bloodstream is invaded, the tumour cells are carried far and wide. It is via this route that 

skeletal metastasis occurs, although the initial spread may be accomplished via the lymphatic 

system. In order of frequency, the lumbar vertebrae, femur, thoracic vertebrae, rib, and skull 

are affected, and these deposits are generally osteolytic. Metastases may commonly occur in 

the liver, lung, and brain and occasionally in the adrenal glands and ovaries; however, they 

have also been described in most body sites. 

	2.9				SIGNS	AND	SYMPTOMS	

The breast cancer like any other disease produces some signs and symptoms on the human 

body, which makes it easy to recognize in the earlier/ developing stage. As already mentioned 

that an earlier recognition makes the breast cancer easy curable. The general sings of breast 

cancer is as follows:  

• Breast pain. 

• Firm to a hard mass. 

• Skin/nipple retraction due to pull of a scar. 

• Discharge from the nipple. 

• Erosion/ulceration of the nipple in Paget’s disease due to skin involvement. 
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• Enlargement. 

• Redness. 

• Generalized hardness. 

• Shrinking of the breast. 

• Skin tethering. 

• Itching of the nipple. 

The signs and symptoms of metastasis vary according to the part involved. These main signs 

and symptoms include: 

• Weight loss. 

• Bone pain. 

• Back pain. 

 

2.10				BREAST	IMAGING	MODALITIES		
 

Early detection is the most successful method for dealing with breast cancer. Detection is the 

ability to find abnormalities and to determine where a “significant” case will prove to be 

malignant. Proper detection techniques will help to segregate benign cases from malignant 

ones. At present, the detection of breast cancer is achieved through breast self-examination 

(BSE), clinical evaluation, physical examination, and other screening modalities. Breast 

cancer screening is a professional medical examination that is performed to check a woman’s 

breasts for abnormalities, such as tumours and cysts, and to identify and locate any 

malignancies. Breast cancer screening is highly recommended, as it has been proven to 

significantly reduce cancer-associated fatalities. There are several breast screening modalities 

such as mammograms, ultrasonography, MRI, etc. 
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					2.10.1	 Advantages	and	disadvantages	of	using	imaging	modalities	

Table 2.2 shows the advantages and disadvantages associated with using various imaging 

modalities for breast cancer detection.  
Table 2.2: Advantages and disadvantages of pre-screening 

Advantage Disadvantage 

1. Avoids expensive and toxic treatment for 
advanced cancer 

1. Cost of additional cases 

2. Extra years of productivity 2. Morbidity of test 
3. Reassurance, if negative 3. Over diagnosis – e.g., DCIS (Wells et al., 

2013) 
4. Life years gained since more curable 
cancers are detected early on 

4. Anxiety in positive cases and false 
reassurance of in false-negative cases 

 

					2.10.2	 Mammography	

Mammography is a periodical low-dose X-ray technique that is used to examine the breast; it 

is performed on women with or without complaints associated with breast cancer. An X-ray 

beam is passed through the tissue to record variations in the amounts of radiation that are 

absorbed by the tissues. However, different amounts of radiation are absorbed by different 

tissues, making it possible to distinguish between features and details about the examined 

tissues. 

During the process of screening mammography, each breast is compressed onto a relatively 

flat surface, and an X-ray source on one side of the breast emits radiation through the breast. 

On the other side of the breast, the radiation is recorded on film or by an electronic device. A 

projection of the breast can be made from different angles. The two most common 

projections retrieved from mammographic screenings are cranio–caudal (CC) and medio–

lateral oblique (MLO). In CC, each breast is examined from an overhead view, whereas in 

MLO, the breast is viewed from the side, as shown in Figure 2.8. 
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                                      (a)                                                                   (b) 

FIGURE 2.8: (A) MEDIO–-LATERAL OBLIQUE (M LO) VIEW; (B) CRANIO–
CAUDAL (CC) VIEW. 

	

The main advantage of the MLO projection is that nearly the entire breast is visible, often 

including the lymph nodes. Part of the pectoral muscle will be shown in the upper part of the 

image. The CC view is taken from above, which yields an image that sometimes does not 

show the area closest to the chest wall. The standard practice of taking two views of each 

breast has been shown to be more sensitive and effective in detecting the signs of cancer. The 

main objective of screening mammography is to detect breast cancer when it is too small to 

be palpated by the physician or by the patient herself by means of BSE. 

 

The most important signs of breast cancer that can be seen on a mammogram are focal 

masses, MCs, architectural distortions, and asymmetric breast tissue. Full-digital 

mammography is gaining importance when compared to conventional film-screen 

mammography due to the fact that digital acquisition, storage, and display processes may be 

conducted separately and are individually optimized. 

 

						2.10.3	 Breast	Ultrasound	
 

An ultrasound is an imaging technique that sends high-frequency soundwaves through the 

tissues and converts them into images. The ultrasound examination places a sound-emitting 

probe on the breast to conduct the test without involving any radiation. In a standard 

ultrasound system, there are three basic types of data available for analysis: radiofrequency 

(RF) signals, envelope-detected signals, and B-mode images. A transmit/receive ultrasound 

transducer receives multiple analogue RF signals, which are converted into digital RF signals, 
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and beam forms into a single RF signal. The RF signal is then filtered and envelope detection 

is performed to yield an envelope-detected signal. Finally, the envelope-detected signal 

undergoes log compression, and proprietary post-processing is frequently applied to provide a 

greyscale representation. The resulting signals are then interpolated and rasterized to give a 

B-mode or display image (Noble et al., 2010). 

 

Ultrasound is the best way to determine if the abnormality in the breast is solid (such as a 

benign fibroadenoma or cancer) or fluid-filled (such as a benign cyst) (Heywang et al., 1984). 

Wild and Neal (Sickles et al., 1983) were the first to propose the use of ultrasound imaging 

during a breast examination. Consequently, ultrasonography is more effective for women 

younger than 35 years of age. It is superior to mammography in its ability to detect local 

abnormalities in the dense breasts of adolescent women. From the literature, it is clear that 

the denser the breast parenchyma, the higher the detection accuracy of malignant tumours 

using ultrasound. Breast ultrasound has become an adjunct to mammography, which helps to 

differentiate benign from malignant lesions. It plays an increasingly important role in the 

evaluation of breast lesions due to the fact that it is safe (as it does not use X-rays or other 

types of potentially harmful radiation), portable, requires no ionizing radiation, and it is cost 

effective. Figure 2.9 shows an ultrasound image of a breast featuring a mass. 
 

 
FIGURE 2.9: ULTRASOUND IMAGE SHOWING THE EXISTENCE OF A MASS. 

	

The ultrasound image itself has some limitations, including its low resolution, low contrast, 

speckle noise, and blurry edges between various organs, so it is more difficult for a 

radiologist to read and interpret these images. In addition, ultrasound diagnosis is heavily 
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dependent on a doctor’s personal experience. Mammography and ultrasonography are 

currently the most sensitive noninvasive modalities for detecting any breast cancers that have 

not yet spread to the lymph nodes, and these types of cancers thus have good prognoses. 

A panel report issued by the Institute of Medicine and the National Research Council of 

National Academics (USA) says that while mammography is useful, it is not necessarily 

enough, and health practitioners need to investigate other complementary screening methods, 

such as ultrasound. The report also states that mammography depicts about three to four 

cancers per 1,000 women; however, in women with dense breasts, ultrasound depicts another 

three cancers per 1,000 women (Kolb et al., 2002). Mammography has its limitations in 

cancer detection in the dense breast tissues of young patients. Most cancers arise in dense 

tissues, so lesion detection for women in this higher risk category is particularly challenging. 

The breast tissue of younger women tends to be dense and full of milk glands, making cancer 

detection with mammography problematic. The cancers found on ultrasound are almost all 

small, yet invasive, cancers. 

						2.10.4	 Magnetic	Resonance	Imaging	(MRI)		

 

MRI is the most promising breast cancer screening modality. In particular, dynamic contrast-

enhanced (DCE) MRI shows high sensitivity in the characterization of breast cancer, whereas 

the specificity of the DCE-MRI is relatively low; it is also more expensive and requires the 

injection of a contrast agent (Hasebroock et al., 2009). MRI is able to differentiate between 

cancerous and noncancerous tissues due to its ability to detect the minute differences between 

the cells, and it can detect tumours missed by other modalities (Choe et al., 2005). 

FIGURE 2.10: ORIGINAL SLICE OF AN MR IMAGE 
	

Some materials have been removed from this thesis due to Third 
Party Copyright. The unabridged version of the thesis can be 
viewed at the Lanchester Library, Coventry University. 
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MRI is increasingly being used in clinical settings as an adjunct to X-ray mammography and 

ultrasound. Of these imaging modalities, MRI has the highest sensitivity to invasive cancers 

and to multifocal disease. MRI is the most reliable method for assessing tumour size and 

extent when compared to the gold standard, histopathology. It also shows great promise for 

the improved screening of younger women (with denser, more radio-opaque breasts), and it 

holds much potential to detect cancers in women at high risk. At present, breast MRI has two 

major shortcomings: First, although its sensitivity is high, its specificity is relatively poor. 

Second, the method involves acquiring several high-resolution image volumes before, during, 

and after the injection of a contrast agent. A slice of an MR image can be seen in Figure 2.10. 

Given the large volume of data, the radiologist’s ability to interpret the image becomes both 

complex and time consuming. 

MRI is the most efficient approach for the early identification of breast tumours (Kriege et 

al., 2004; Theilmann et al., 2004; Barker et al., 2009; Benson et al., 2009; Van et al., 2015; 

Valerio et al., 2015). Breast cancer detection using MRI mainly utilizes the principle of 

nuclear magnetic resonance (NMR), which states that “Certain atomic nuclei can absorb and 

emit radio frequency energy when placed in an external magnetic field” (Slichter, 2013; Dale 

et al., 2015).  

 

                                

                                                          (a)                                 (b) 

FIGURE 2.11: AN EXAMPLE OF A DETECTED (A) BENIGN AND (B) A 
MALIGNANT TUMOUR USING MRI. 

 
MRI is used to scan the breast via an external magnetic field in order to find potential tumour 

cells. An experienced radiologist subsequently analyzes the MRI images to classify a tumour 

as benign or malignant. Studies have shown that even for experienced radiologists, it is hard 

to make clear distinctions between tumours (Beale and Pryke, 2006, Timp et al., 2010). 

Figure 2.11 shows samples of MRI images taken from benign and malignant tumours. 

 

MRI can detect lumps as small as 0.5 cm, while mammograms detect 1.1 cm lumps and 

Some materials have been removed from this thesis due to 
Third Party Copyright. The unabridged version of the thesis 
can be viewed at the Lanchester Library, Coventry 
University. 



	

29	

regular BSE detects lumps of about 2.1 cm. Women who are untrained in BSE have a lump 

that is, on average, about 3.6 cm upon detection. Table 2.2 shows the size of the tumours 

found by different search methods (Floyd et al, 2007, www.imaginis.com).  

 

MRI is reported to have a sensitivity of 70%–90%. This means that the false-negative rate is 

between 10% and 30%. In other words, MRI can miss over one quarter of all tumours (Serres 

et al., 2012) when interpreted by human specialists. False negatives occur when the MRI is 

interpreted as negative when cancer is present. False negatives occur most often with dense 

breasts, which make the masses difficult to distinguish. Cancers are easier to detect in fatty 

breasts that are less dense (Boyd et al., 2007). 

The advantages of MRI are: 

• Elimination of process or artifacts 

• Contrast enhancement 

• Ability to perform invasive procedures more rapidly 

• Potentially better resolution of the breast tissue for women younger than 

50 years 

• Reduced examination time for patients 

• Increased examinations 

• Immediate availability of images 

 

								2.10.5	 Other	Imaging	Modalities	

 

Breast cancer screening is commonly based on X-ray mammography, as it is cost effective 

and requires a very short acquisition time that provides a high throughput. Mammography, 

however, has a high false-negative rate and is not effective in dense breast tissue. This has 

Some materials have been removed from this thesis due to Third Party Copyright. The unabridged 
version of the thesis can be viewed at the Lanchester Library, Coventry University. 
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motivated the exploration of alternative imaging modalities including computed tomography 

(CT) (Einstein et al., 2007; Ueda et al., 2008), single photon emission CT (SPECT) (Strauss 

et al., 1982; Pandit-Taskar et al., 2010), and positron emission tomography (PET) (Schelling 

et al., 2000; Ponto et al., 2015). 

 

Regardless of the recent advances in the early identification and surgical treatment of breast 

cancer, the mortality rates associated with this cancer have changed very little over the past 

decades, as the occult dissemination of cancer cells can occur at the early stages of 

carcinogenesis (Mathers et al., 2015). In this way, the mysterious dispersal of tumour cells in 

patients with operable malignancy can prompt the development of metastasis, yet it is 

typically missed by regular tumour arranging. Only 66% of these patients really have this 

ideal guess, while the remaining third develops the metastatic illness (Yang et al., 2013). This 

signifies that there is still a need to develop such methods/ tools that can detect the cancer in 

earlier stages with less effort and time.  

		2.11				SUMMARY		

When examining the previously known facts about breast cancer and its associated screening 

modalities, it becomes clear that doctors who are performing biopsies on patients may 

welcome the idea of receiving additional guidance and visualization during this process. 

Diagnosticians that hold the training and experience required to interpret mammographic or 

ultrasound images are scarce. Therefore, there is an emphasis on training new radiologists to 

interpret these images. The situation would be more crucial if mass screening were adopted 

as a national policy. A detailed study of the tissue patterns formed in the breast, as well as 

their spatial relationships, is an area currently under consideration by research teams. The 

precise localization of breast tissue patterns has sparked the formulation of techniques that 

detect suspicious breast tissue patterns, which would aid radiologists in their diagnoses, while 

also providing estimations of the deviations of patient data with reference to normal data 
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CHAPTER 3 

________________________________________________________ 

PROBLEM FORMULATION 
 
 

3.1	 INTRODUCTION	

 

This chapter discusses the state of the art related to the proposed work – i.e., the methods 

used for the early detection of breast cancer. This chapter describes the works on the 

detection of breast cancer along with the pre-processing and segmentation methods. It also 

provides details about the classification algorithms which sheds light on formulating the 

research problem. This chapter highlights the limitations of existing work, which shows the 

path to carry out research by considering the limitations in the existing methods. 

 
Performing accurate tissue segmentation using MR images is an important step in 

quantitative brain image analysis when detecting epilepsy. However, the accuracy of many 

segmentation algorithms is limited due to the presence of noise and intensity irregularity in 

brain MR images. Medical image segmentation has a huge impact on digital image 

processing, owing to its spatial resolution enhancement and image sharpening. It has been 

employed to derive helpful information from the medical image data which, in turn, provides 

the most precise and reliable method for diagnosis. This procedure is a critical challenge on 

account of the existence of inhomogeneities in image intensity. Eliminating spatial intensity 

irregularities from MR images is a difficult task since the inhomogeneities could vary with 

different MRI acquisition parameters, both from one patient to another and from slice to slice. 

The conventional method currently employed in hospitals is based on the manual 

segmentation of the medical image under consideration. This again relies on the physician’s 

perceptive capabilities, as he or she will extract the required region from the image. However, 

this process is rendered difficult due to minute variations and the high degree of resemblance 

between the actual and affected biological regions in the image. 

 

The insufficient number of radiologists and the huge volume of MR images to be analyzed 

result in intensive labour, and it is highly uneconomical. It also depends on the expertise of 
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the technician analysing the images (Beale and Pryke, 2006). The estimates also show that 

between 10% and 30% of tumours escape the eyes of radiologists during routine screenings. 

During the image acquisition stage, there are chances that the medical image might be 

tampered with due to issues that occur during this stage. Hence, the original image may not 

be useful for examination. Image segmentation can be defined as the partition or 

segmentation of a digital image into the same region types, with the important goal of 

simplifying the image under consideration into something that can be easily analysed 

visually. Image segmentation is a highly significant process in the whole field of medical 

image analysis. 

 

There are various methods available to segment an image into subregions, so that 

homogeneity is maintained in each region. Due to their complexity and inaccuracy, not every 

technique is suitable for the examination of a medical image. Also, there are no benchmarked 

image segmentation techniques that can yield satisfying results. Developing an accurate 

segmentation method is an item of research. MR image segmentation is a highly demanding 

issue given its complexity. The segmentation of brain MR images is an extremely important 

step and it has gained much attention among many researchers over the past decade. This 

chapter provides a detailed account of a few of the image de-noising  techniques used, as well 

as of the image segmentation approaches that employ clustering methods, optimized 

clustering techniques, and random optimized clustering approaches. This chapter offers a 

review of the various segmentation methods, and it also discusses their drawbacks in a 

comparison-based analysis. 

 

In addition, the methods used for tumour classification are also discussed. MRI provides 

high-quality images over mammograms, thus providing more detailed radiology information, 

as described by various researchers (Saslow et al., 2009; Mann et al. 2015; Billing et al., 

2015), and it is currently one of the widely accepted imaging methods used for routine breast 

cancer screening. The techniques used in computer-aided detection (CAD) systems have a 

major impact on each system’s performance. The challenge with breast cancer detection is 

that, although many techniques have been proposed thus far, recent studies show that the 

performance of commercial CAD systems still needs to be improved. The development of 

new algorithms for CAD systems for breast cancer detection is very important. The aim of 

this research is to develop an efficient system for breast cancer detection. As such, the idea of 
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a proposed novel segmentation algorithm – which may be more accurate, effective, and rapid, 

and which will use MR images – will also be discussed. 

3.2	 PRE-PROCESSING	OF	MR	IMAGES	

 

The image being tested, as obtained by the acquisition device, is vulnerable to damage by the 

environment. Image restoration attempts have been made to minimize the effects of these 

degradations with the help of a filter (Aldroubi et al., 1996; Rabbani et al., 2009). Hence, a 

basic issue in image processing is the enhancement of image quality by noise removal. A 

large variety of techniques devoted to carrying out this task is available. All approaches 

depend on the type of noise present in the images (Malladi and Sethian, 1996). Image pre-

processing techniques are useful for improving image quality before an image is processed in 

a given application. This utilizes a small neighbourhood of a pixel in an input image to obtain 

a new brightness value in the output image. These pre-processing methods are also referred to 

as filtration and resolution enhancement. The primary medical image quality parameters are 

noise and resolution. The important aim of this section is to improve image quality by de-

noising and enhancing its resolution. It is necessary to preserve the edges and contour 

information of each medical image. To do so, effective de-noising and improved 

enhancement techniques are necessary as most of the imaging techniques get disturbed by 

noise. Image de-noising techniques, their associated illustrations, and their corresponding 

works are represented in Figure 3.1. (Buades et al., 2005, Mohan et al., 2014). 

 

 
 

FIGURE 3.1: PRE-PROCESSING USING FILTERING APPROACHES. 
 

Some materials have been removed from this thesis due to Third Party Copyright. 
The unabridged version of the thesis can be viewed at the Lanchester Library, 
Coventry University. 
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The de-noising of MR images is a significant issue that needs to be resolved. It has been 

under discussion recently due to its importance for many clinical and research purposes. One 

technique that has found extensive application in MRI pre-processing is the Gaussian filter 

(Jones et al., 2005; Kalavathi and Sowdeeswari, 2016). Even though it is able to reduce some 

image noise (particularly in homogeneous areas), this technique also eliminates high-

frequency signal components, producing blurred edges in the images. Hence, this filter has 

generally been used for regularization purposes, such as in voxel-based morphometry (VBM) 

(Ashburner and Friston, 2000), to reduce anatomical irregularities. Many edge-preserving 

techniques (Garnica et al., 2000) were proposed to overcome the observed blurring effects. 

Still, this filter requires a great deal of time to remove noise; a few significant details would 

also be reduced in the de-noising  process. Some of these algorithms were threshold-based 

and Hough transformation-based, as these algorithms are used in instances when the edges 

are ragged; as such, these approaches tend not to include the extreme edges of the pectoral 

muscle.  

Other transform methods that have been employed when de-noising  images are principal 

component analysis (PCA) (Eyal et al., 2009) and discrete cosine transforms (DCT) (Stark et 

al., 2010). Most of the transform-domain filters have evolved from variations of the transform 

threshold-inverse transform principle. Based on this principle, local transform approaches 

(i.e., a sliding window with or without overlapping) have yielded very good results recently 

(Guleryuz, 2003; Guleryuz, 2007; Yaroslavsky et al., 2000). In Guleryuz’s (2007) technique 

for Gaussian noise reduction, the image noise is eliminated by making use of overcomplete 

linear transforms and thresholding. Actually, Guleryuz employed a classical sliding-window 

DCT thresholding approach, as in Yaroslavsky et al. (2000), but the adaptive combination of 

overlapping estimations was applied for the reduction of the Gibbs effects. 

Other recently introduced approaches make use of learned image patch dictionaries (Aharon 

et al., 2006; Elad and Aharon, 2006; Mairal et al., 2008) in the place of DCT when de-noising  

images. All of these approaches have emerged from the fact that an image can be represented 

as the linear combination of a set of images, with fewer non-null coefficients. This 

characteristic, referred to as sparseness, is the heart of the JPEG and JPEG2000 compression 

standards. For instance, anisotropic diffusion filters (Gerig et al., 1992) are capable of 

removing noise by making use of gradient information without damaging important image 

structures. 

Even though many algorithms have been innovated to de-noise images, the issue of noise 
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image suppression has remained an unresolved challenge, since noise removal brings in 

artifacts and blurs the images. A few of the more popular de-noising  filters for MRI are non-

local means, anisotropic diffusion, bilateral filtering, and the total variation filter. In this 

section, these four filtering methods will be discussed in terms of how they reduce artifacts 

and noise in MR images. 

Kaur and Mittal (2014) examined an MRI tumour detection technique where de-noising  was 

performed with a 3*3 mean filter. In this technique, a de-noising  filter was applied to all 

images to eliminate white Gaussian noise. A two-dimensional (2D)-mean filter was utilized 

to de-noise the image. Here, the elements were summated and then divided by their number; 

the output is referred to as the average or means output. The 2D window or mask that was 

selected for the filtering process was 3*3 in size. The choice of window size only determined 

element selection. Image de-noising  was performed using a mean filter rather than a median 

filter, as it smoothes the greyscale image data with more accuracy, conducts spatial filtering 

on each unique pixel, and then chooses the average value (and not just the median value) of 

the window elements. However, the only drawback is that this approach enables 

autocorrelations. This may also result in misguided visual impressions of importance, as the 

smoothness of the resulting curve may often be taken as an indication that few visible 

features are important, even if they are just normal noise. 

Hence, the non-local means (NLM) filter, a novel technique proposed by Buades et al. 

(2005), has emerged as a very easy and effective means of limiting noise with minimal 

deterioration of the actual structures in the image. This method is performed in accordance 

with the original redundancy of patterns within the images. The NLM filter has been 

employed to de-noise MR images, and it has yielded better results in comparison with other 

available methods (Coupé et al., 2008; Manjón et al., 2010; Wiest-Daesllé et al., 2008). 

De-noising techniques using NLM (Perona and Malik, 1990) were employed to raise the MRI 

SNR by decreasing the variations between pixels in the image with near similarity indices 

(Nowak, 1999). The reliability of the evaluation of pixel similarity is improved by comparing 

small image regions with a centre at each pixel, instead of performing pixel-by-pixel 

comparisons. The performance obtained by the realisation of NLM is good for images 

degraded by both Gaussian and Rician noise. However, the computational complexity is 

huge, since a large number of elementary operations are necessary to de-noise each pixel. 

Zhang et al. (2014) examined a Rician NLM (RNLM) filter that employs combined patch and 
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pixel (CPP) similarity, where only those pixels that simultaneously share pixel and 

neighbouring similarities will be assigned higher weights in the average. To conclude, the 

enumerated results indicated that the RNLM-CPP algorithm can maintain small high-contrast 

particle details, which are clinically related, but generally blurred by the actual RNLM 

algorithm. 

Hu et al. (2012) presented the integration of DCT into the NLM filter to address the 

limitations of the latter, which resulted in a new filter. In this new filter, image patches are 

transformed from the time domain to the frequency domain during the de-noising  process, 

thus making use of DCT; then, lower-dimensional frequency coefficients of the subspace of 

DCT are obtained by a Zig-zag scan. As a result, similarity weights are calculated in this 

subspace with being hard to noise instead of the full space. Hence, the accuracy of similarity 

weights is enhanced, and more of the same kinds of pixels can be found in the search 

window. Lastly, taking the characteristics of Rician noise into consideration in the MR 

image, the unbiased correction operation is carried out to eliminate the biased deviation. The 

proposed filter has been compared with many methods introduced recently, and it was shown 

that the proposed filter outperforms the other methods with regard to both vision and 

complexity. 

Hwuang et al. (2013) evaluated the anisotropic smoothing regularizer (AnSR), which uses 

edge detection and de-noising  within a Demons framework to regularize the deformation 

field at each iteration of the registration in a more aggressive manner in homogeneously-

oriented displaced regions. It simultaneously regularizes the images in a less aggressive 

manner in areas comprised of non-homogeneous local deformation and tissue interfaces. 

Conversely, the traditional Gaussian smoothing regularizer (GaSR) performs uniformly 

averaging over the entire deformation field, without considering transitions across tissue 

boundaries and local displacements in the deformation field. In this work, AnSR is applied 

within the Demons algorithm, and it performs pairwise registration on 2D synthetic brain MR 

images, with and without noise, after inducing a deformation that simulates shrinking of the 

target region anticipated from laser-induced interstitial thermal therapy (LITT). The Demons, 

in conjunction with AnSR, are employed to register clinical T1-weighted MR images for one 

epilepsy and one glioblastoma (GBM) patient pre- and post-LITT. 

Tristán-Vega et al. (2012) introduced a method that heavily accelerates the computation of 

patch distances in NLM, considering only the differences between important features, as 
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related to the pixels to be weighed. In comparison to other related works, the technique has a 

number of key benefits that are tested over the usual MRI datasets: first, the calculation 

maintains the statistical characterization of patches in the original NLM, thus retaining its 

optimality properties. However, this approach is chiefly oriented to MRI, which is implicitly 

non-textured. 

Gopinath (2011) innovated a graph-based MRI image segmentation approach where pre-

processing is conducted by making use of anisotropic filtering. An anisotropic filter helps to 

smooth the regions of an image without blurring the edges. For a normalized MR image of 

the prostate, the intensity values and its standard deviation values are replaced in the 

diffusion equation; the diffusion equation smoothes within a region rather than across 

boundaries. This equation will not result in any inter-regional blurring, as is frequently 

caused by Gaussian smoothing. An anisotropic diffusion filter maintains the edges of an 

image, but it eliminates small features and produces a mask effect in various regions of the 

denoised images in a uniform manner. These de-noising  methods substantially eliminate 

noise; however, one setback is that they produce blurred images and add artifacts. 

Deepika (2014) introduced a segmentation method for noisy MR images using an anisotropic 

diffusion filter for brain tumours. The anisotropic diffusion filter performs better than other 

filtering techniques when de-noising  medical images. Furthermore, de-noising  performance 

can be enhanced by modifying some of the parameters of a given filtering technique. Gallea 

et al. (2008) assessed a method with the purpose of achieving noise removal in MRI. 

Implementation of an improved version of Perona and Malik's anisotropic diffusion filter was 

realized. In this schema, the modified diffusion equation of the filter is useful when 

considering the edge’s direction. This permits the filter to blur uniform areas while preserving 

the edges. Palma et al. (2014) provided a quantitative analysis that describes the limitations of 

ADF, and it also offers a new framework on the basis of both the strongest edges and on the 

planar regions of the image to determine the optimal parameter settings. 

Furthermore, Tabik et al. (2006) studied the parallel implementation of the anisotropic 

nonlinear diffusion (AND) algorithm for 3D image filtering. AND is a highly capable noise-

reduction technique in the domain of computer vision. This method is performed in 

accordance with a partial differential equation (PDE) that is tightly mated with a massive set 

of eigen systems. De-noising  large (3D) images in biomedicine and structural cellular 

biology using the AND filter involves a huge computational burden. As a consequence, a 
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suitable parallel realization of AND is the best technique for reducing its runtime. Greenberg 

et al. (2006) suggested improving the structure-adaptive anisotropic filtering approach on the 

basis of the non-linear structure tensor (NLST) analysis technique. Based on the anisotropic 

measurements of image structures, a novel kernel construction approach is developed, which 

fine tunes the filter shape into image characteristics. Through the accurately estimated 

orientation of the image structures, the filtering process is carried out by properly aligning the 

filter kernels. Nevertheless, the conventional anisotropic diffusion filter has many drawbacks, 

such as its sensitivity to noise. 

McPhee et al. (2011) presented the use of a bilateral filter with the aim of performing high-

pass filtering of magnetic resonance phase images, as its implementation is easy. A bilateral 

filter weighs a pixel’s vicinity based on spatial distance and similarities in intensity. Bhonsle 

et al. (2012) demonstrated the implementation of bilateral filtering in medical image de-

noising . Its conceptualization and execution are simple, but the performance of a bilateral 

filter relies on its specific parameters. Hence, to yield optimal results, the parameter must be 

estimated. Bilateral filtering is applied to medical images that are degraded by additive white 

Gaussian noise with different variance values. The filter acts as a spatial Gaussian filter in 

areas that share the same pixel values, but it limits artifacts at boundaries between areas that 

are characterized by pixel values with huge differences, such as on the brain’s surface. 

Ryan and Laidlaw, (2014) studied and assessed a bilateral filter in the smoothing of diffuse 

MRI fibre orientations while preserving anatomical boundaries and supporting multiple fibres 

per voxel. In this technique, the distances and local estimators of weighted collections of 

multi-fibre models are defined, and it was shown that these estimators serve as a foundation 

for an effective bilateral filtering algorithm for orientation data. This method has significant 

applications in diffusion MR tractography, brain connectivity mapping, and cardiac 

modelling. 

Wang and Zhou (2006) studied a de-noising algorithm for medical images that used a 

combination of the total variation minimization technique and the wavelet scheme. The 

scheme offers good noise removal in really noisy medical images, while still preserving 

object sharpness. This scheme allows radiologists to employ an efficient automatic stopping 

time criterion. 

Varghees et al. (2012) suggested an automatic, adaptive image de-noising approach to 

eliminate Rician noise from MR images. The suggested technique is performed in accordance 
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with the discretized total variation (TV) minimization model and the local noise estimation 

scheme. The regularization parameter of the TV-based de-noising technique is in alignment 

with the standard deviation of noise in an MR image. The performance of the presented 

technique is assessed using brain MR images affected by Rician noise, and it features a 

standard deviation in the range of 2–30. The quality of the denoised image is validated by 

both subjective visualization tests and objective quality metrics. The experimental results 

reveal that the proposed method yields substantial improvements in maintaining the edges, 

while simultaneously reducing the Rician noise from an MR image. The adaptive TV filtering 

technique demonstrates reasonably better performance when compared to the other available 

methods, such as the non-local filter, bilateral filter, and multiscale linear minimum mean 

square–error estimation (LMMSE) approaches. 

Garg and Kaur (2013) developed a technique that combines both the interpolate median filter 

(IMF) and the anisotropic diffusion total variation FCM (ADTVFCM) to improve the 

segmentation accuracy of brain MR images, as this method is required to ensure that medical 

images are noiseless. This enables radiologists to correctly detect brain disorders or injuries 

to make accurate diagnoses. Hence, this presented technique is expected to provide better 

segmentation results when compared to the previously described methods. This filter is 

affected by the staircasing effect, which results in gradual contrast variations in homogeneous 

objects, particularly near curved edges and corners. The popularly adopted TV filter is not 

optimal for MR images with spatially altering noise levels or artifacts. This method selects 

reliable edges, and in the initial step itself, it studies the noise/artifact distribution from the 

noisy image. Then, the spatially variant parameters are defined based on this estimation, thus 

making it an adaptive method. 

The proposed technique also aligns its significant parameter via a data-driven approach 

without the need for user inputs, thus making it automatic. Liu et al. (2014) introduced a de-

noising method on the basis of the assumptions of a spatially changing Rician noise map. A 

two-step wavelet-domain estimation technique was designed to extract the noise map. Many 

experiments have been carried out on both artificial and real MR datasets to compare the 

proposed model with a few highly standardized de-noising techniques. 

To overcome the aforementioned issues associated with the previously described de-noising 

techniques, an optimized total variation filter (OTVF) method is introduced. This technique 

boosts the actual MR images in two steps, which comprises de-noising and edge 

enhancement. Many of the de-noising solutions focus primarily on noise reduction, and they 
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further neglect edge information. Few techniques employ different algorithms for each of 

these two steps. This work presents a single process that performs these two operations 

simultaneously while making use of a combination of image pre-processing techniques. A 

regularization parameter known as lambda, which is a positive value that specifies the fidelity 

weights, controls the amount of de-noising that occurs. The smoothing and optimization of 

fidelity weights are performed using particle swarm optimization (PSO), as it restores a 

regularization parameter that ranges from 0–1. 

    
Image pre-processing is a significant and challenging area in the CAD systems. In medical 

image processing, and particularly in MRI segmentation tasks, pre-processing of an image is 

highly necessary so that segmentation algorithms can perform correctly. The accuracy of 

segmentation is increased by the proper detection and segmentation of the tissue. Accurate 

tissue segmentation can take place only if an image is pre-processed, as based on image size 

and quality. Many methods of noise removal are proposed by the different researchers in past 

(as discussed in above sections). From the above discussion, one can easily see that none of 

the methods are suitable for all sorts of analysis/ cases. The best method is dependent on 

many factors like, sample data type, accuracy needed, time available for processing etc. For 

example: evolutionary algorithm based methods provide better accuracy but take more time. 

So, we have to use the method based on our requirement and application.  

3.3	 SEGMENTATION	ALGORITHMS	FOR	MR	IMAGES	

 
Medical imaging is the methodology or process that is used to create images of the human 

body for the purposes of clinical or medical science; this is routine and essential practice in 

the field of medicine. Medical imaging techniques can also be utilized when planning or even 

performing surgery (Taylor et al., 2008). Medical image segmentation is the procedure of 

partitioning a medical image into several segments. The aim of segmentation is the 

simplification and/or modification of the way in which an image is represented so that it takes 

on a form that gives more meaning and is easy to analyze (Sonka et al., 2014). Image 

segmentation is generally used to locate objects and edges (lines, curves, etc.) in images. In a 

more precise manner, image segmentation is the process of assigning a label to each pixel in 

an image, where pixels with similar labels share a few visual features. The computation of 

medical image segmentation is done at multiple scales in the scale space and, at times, it is 

moved from coarse to refined scales. MR image segmentation is quite a challenging task and 

it requires careful mathematical operations to determine the desired region that may be 
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helpful in further analyses and feature extraction of the MR image. The correct segmentation 

approach is necessary if the aim is to obtain correct features from the image; this is why it 

serves as a highly essential part of an automated classification system (Lienhart et al., 2002). 

Much research has investigated MRI segmentation. 

 

For instance, Sharma and Gulista (2011) introduced a segmentation process for MR images 

of the human brain by making use of a K means algorithm and a canny edge detection 

algorithm. The K-means clustering algorithm yielded a segmented MR image with the same 

intensity regions. K-means clustering performs the segmentation of all the three matters of 

the brain (i.e., grey matter [GM], white matter [WM], and cerebrospinal fluid [CSF]). Also, 

the edge detection algorithm is realized by creating the boundaries of the different regions of 

the MR image on the basis of scale and threshold values applied during segmentation. 

 
Somasundaram and Genish (2013) demonstrated a boundary-detection method for the 

segmentation of the hippocampus (the subcortical structure in the medial temporal lobe) from 

MR images of inhomogeneous intensity without affecting their boundary and structure. The 

images were preprocessed by making use of a noise filter and morphology-based tasks. An 

optimal intensity threshold was calculated employing the K-means clustering method. 

Validation of the technique was performed on axial MR images of the human brain, and it 

was found to perform well and featured heterogeneous intensity. 

 
Neha and Sahu (2014) introduced enhanced (ACO) Ant Colony Optimaization for tumour 

segmentation. Ant-based clustering is a clustering algorithm that copies the behaviour of 

ants. In this algorithm, an ant’s direction and its inclination to move to the next site are 

considered when calculating the probability with which the next site is selected by the ant. 

Moreover, when computing the probability of the ant's next location, a balance is created 

between the act of the ant’s direction and the amount of pheromone distribution. In this way, 

the algorithm finds its application for the segmentation of brain images and in the diagnosis 

of tumours. 

 

Meena and Raja (2013) demonstrated the automatic localization of epileptic seizures in the 

brain, employed from nuclear medicine imaging techniques such as positron emission 

tomography (PET). This paper focuses on examining functional images to automatically 
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localize epileptic seizures in the brain while making use of a symmetry-based clustering 

technique. This technique proposes a fully automatic symmetry-based brain abnormality 

detection scheme for PET sequences. 

 

Zanaty and Afifi (2013) introduced a novel modified (FCM) Fuzzy C-Mean algorithm that 

can boost medical image segmentation. The proposed algorithm is implemented by 

modifying the objective function of the traditional FCM algorithm with an adjustable 

penalty. This penalty is implemented in accordance with a specific data shape and size that is 

employed to generate fuzzy terms. Complications associated with the new algorithm are 

eliminated by making use of the initial seed information, and by applying this information 

into the objective function rather than the entire dataset. The proposed algorithm finds its 

application in MRI datasets. In comparison with the other available approaches, the proposed 

technique can be used to accomplish the most accurate results. 

 

Tamijeselvy et al. (2013a) presented a technique that includes an enhanced classification 

approach for diagnosing epilepsy. The method comprises the following phases: pre-

processing the 2D MR brain image utilizing the threshold interval method (TIM) and the min 

max (MM); normalized segmentation of the brain image employing the multiscale 

segmentation technique to obtain segments of the corpus callosum; and multiscale 

segmentation, which aims to be better at segmenting curvatures in less time and with 91% 

accuracy, according to entropy-shaped features (such as the corpus callosum’s bend angle 

and Genu thickness). The intelligent quotient (IQ) is extracted from the segmented corpus 

callosum to diagnose epilepsy by employing CBR and genetic classification. The optimized 

performance of CBR classification reduces the false-positive rate. Furthermore, the CBR 

classification model features 96.7% prediction accuracy, while the optimized classification 

technique has 97.3% prediction accuracy. 

 

FCM is a widely known clustering technique that has been extensively employed in medical 

image segmentation. Though, many researchers have designed multiple clustering 

algorithms, not one of them is perfect. The FCM algorithm operates without any previous 

information. Reducing the complex nature of the algorithm is achieved by making use of an 

initial seed rather than the whole dataset. The FCM technique also contains an automated 
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penalty on the basis of data shape and size, which are used to generate fuzzy terms. The 

results obtained from the tests prove that when the FCM algorithm is applied to actual MR 

images, it results in lesser noise (Madhukumar and Santhiyakumari, 2015). The superior 

nature of the FCM algorithm is demonstrated when comparing its performance with the K 

means, SOM, and hierarchical clustering (Madhukumar and Santhiyakumari, 2015). 

Additionally, these experiments also yielded quantitative results. The segmentation accuracy 

of the FCM method was evident when it was compared to the other available methods in the 

literature. Based on a quantitative assessment and visual investigations, it was concluded that 

the FCM algorithm provides reliable and accurate segmentation. Lastly, it should also be 

noted that even though the FCM algorithm can outperform K-means and other popular 

algorithms, it is expensive from a computational standpoint, and this may reduce its 

applications in large volumes of MR images (Madhukumar and Santhiyakumari, 2015). 

 

Ghassabeh et al. (2007) proposed a novel technique for the effective computation of two 

parameters including neighbouring pixel intensities and positions. The GA Genetic 

Algorithm optimization method is employed and the capacity of GA in obtaining optimal 

values for these parameters is established. Simulation results that make use of noisy MR 

images proved the efficiency of the proposed method, particularly with respect to the 

computation of unidentified parameters and when showcasing its robustness towards the 

noise. 

 

Selvy et al. (2013) studied the combination of the (PSO) Particle Swarm Optimization 

method with the best clustering techniques that are currently available to obtain a globally 

optimal solution. The extraction of centroids is performed in a random manner in clustering 

schemes. In the proposed method, centroids were selected on the basis of the p_best and 

g_best value, which offer a globally optimal solution. The sensitivity and specificity of the 

PSO technique have fewer false positives when compared with conventional clustering 

techniques. 

 

Soesanti et al. (2011) improvised an optimized fuzzy logic technique for segmentation of 

MR images of the brain. This technique is based on a modified FCM clustering algorithm. 

The FCM algorithm incorporates spatial information into the membership function, which is 
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then used for clustering, whereas the traditional FCM algorithm does not make complete use 

of the spatial information in the image. The benefits of the algorithm are lower sensitivity to 

noise in comparison to other techniques, and it provides the regions with more homogeneity 

than those of other techniques. The originality of this research lies in the fact that the 

techniques are employed on normal MR images of the brain and of a tumour, while the area 

of a tumour is analyzed from the segmented images. 

 

Tamijeselvy et al. (2013b) introduced an ACO and PSO technique featuring the clustering 

algorithm. The performance of these algorithms was compared, and it was found that 

FCMPSO performs better than the FCM and FCMACO algorithm. The PSO and ACO are 

Swarm intelligence methods that find their implementation in clustering to obtain 

approximated solutions for optimization issues within a reasonable amount of computation 

time. The function of the PSO and ACO algorithms rests in the fact that these algorithms 

search for optimized solutions according to the movement of the swarm. 

  

Abinaya and Pandiselvi (2014) presented a possessing system that occurred in three phases. 

In the first phase, pre-processing was conducted to remove film artifacts and unnecessary 

skull regions in brain MR images. In the second phase, the enhancement was carried to 

remove noise in the brain MR image. In the third phase, the PSO was realized to segment 

various tissues, such as WM, GM, and CSF in brain MR images. Segmented brain MR 

images help radiologists better inspect brain abnormalities and tumours. The algorithm was 

tested with the MR images of the brain obtained from 50 real patients. 

 

Anitha et al. (2012) showed that white matter lesions (WMLs) are small portions of dead 

cells that are seen in various parts of the brain. Generally, it is hard for medical experts to 

accuerately quantify WMLs due to the reduced contrast between WM and GM. The goal of 

their paper was to automatically detect WMLs, which are frequently observed in the brains 

of older adults. The WML detection process comprises the following stages: 1) image pre-

processing; and 2) clustering (FCM, GPC, GFCM). The system was tested using a database 

of 208 MR images. It was found that GFCM produces a high sensitivity of 90%, specificity 

of 94%, and overall accuracy of 95% over FCM and GPC (Kavitha et al., 2013). The 

experimental results show that GFCM can better localize large lesions and it provides lower 
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false-positive rates in comparison with FCM and GPC, which conquer the largest loads of 

WML but only in the upper ventral horns of the brain. 

 

Fuzzy clustering algorithms have some weaknesses. The primary weakness is that it tends to 

be trapped in local optima and it is vulnerable to initiation sensitivity. As such, a new 

technique was presented to solve the initialization issues associated with FCM by making 

use of a Firefly Algorithm (FA) to determine the optimal initial cluster centres for the FCM 

(Nayak et al., 2014, Alsmadi, 2014). Thus, all applications that were relevant to fuzzy 

clustering (such as image segmentation) were improved. FA has a few drawbacks, including 

that it gets trapped into many local optimums. FA performs local searches as well, and it is 

sometimes not able to remove them since the firefly parameters are constant and they do not 

vary with time. Hence, the behaviour of the attraction coefficient and randomization 

coefficient in the firefly can be adjusted to determine the global search mobility for which 

random-based metaheuristic optimization methods are introduced. Random-based optimized 

clustering techniques, such as chaotic and levy Flights, are realized in FA to locate the global 

cluster centres as the beginning cluster value of FCM (Nayak et al., 2014, Alsmadi, 2014). 

 

Chen et al. (2009) demonstrated a chaos–ant colony algorithm on the basis of an ant colony 

algorithm, making use of the gridding method and merging it with chaos theory. ACO is a 

brand new random optimization algorithm that uses artificial ants ejecting pheromones along 

the way, as portrayed by positive feedback, distributed computation, and a parallel 

algorithm. It is highly robust, and when using this method, it is easier to obtain a 

combination with other techniques in optimization. Slower convergence and easier trapping 

in local optimum are the few shortcomings, though it finds wide application in optimization 

issues. In the chaos-ant colony algorithm, some max-min ant system idea is helpful for 

limiting the pheromone strewn in the path. Enhancements are made during initialization and 

updating of the pheromone. 

 

Min-Yuan and Kuo-Yu (2009) introduced the K-means with chaos genetic algorithm 

(KCGA) to lower the amount of computation required, as well as to improve the estimation 

accuracy of nonlinear optimizations, in which the initial population is developed by chaos 

mapping and then fine-tuned by competition. Within every iteration of this technique, along 
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with the development of GA, the K means clustering algorithm is employed to accomplish 

faster convergence; this results in the rapid generation of the population as well. The 

important aim of the paper is to demonstrate how improvements of the GA optimizer can be 

achieved by incorporating a hybridization strategy. 

 

Ebrahimzadeh and Jampour (2013) generated pseudo-random numbers using the Lorenz 

chaotic system for operators of GA to avoid local convergence. In recent times, rapidly 

developing optimization algorithms have made use of GA to improve upon the results of 

optimization issues. Many GA procedures are based on ‘Random’ basic or evolutionary 

algorithms, although the main defects in the GA are local convergence and high tolerance in 

the results, which have happened due to being random. 

 

Liu (2014) decided to focus on the use of PSO for cluster analysis. Clustering analysis is a 

widely known technique in the data-mining domain. It is mostly utilized to automatically 

find those classes or groups of unlabelled datasets. In standard PSO, the non-oscillatory route 

can be quick to cause a particle to stagnate, and it may also lead to premature convergence 

on suboptimal solutions that do not even guarantee provision of a locally optimal solution. In 

Liu’s report, the Lévy mechanism was presented for the PSO algorithm and it was employed 

in the datasets. The results revealed that the new PSO model, named LPSO, was successful 

at enhancing data clustering. 

 

Image de-noising and segmentation are the two most highly challenging areas in MR image 

segmentation of the cerebral tissues. The presence of noise not only deteriorates the visual 

quality but it also largely affects the accuracy of segmentation, which is significant for 

medical diagnostic procedures. Although conventional linear noise reduction techniques 

have been available for quite a long time, it was also found that MR images of the brain are 

chiefly degraded by Additive White Gaussian Noise Channel (AWGN). Without the de-

noising, the image details are eroded which, in turn, leads to a reduction in the quality of the 

image and thus results in improper segmentation. In this chapter, the classification of 

important image segmentation algorithms is studied. Despite several years of research, there 

is no universally approved MR image segmentation algorithm. It can thus be deduced that 

segmentation of MR images of the brain is challenging in image processing and computer 
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vision. In this chapter, segmentation approaches utilizing clustering and optimization 

techniques are discussed. However, global optimization still remains a highly demanding 

issue in medical applications. The work reviewed thus far showed that there is a good 

research going on in the development of random-based optimized clustering techniques but 

the time complexity of these techniques is a big drawback, which makes it inadequate for 

practical/ real time use.  
 

3.4	 SUMMARY	
 
This chapter offered an overview of all of the currently available methods for MR image pre-

processing, MR image segmentation methods (as based on clustering), and classification 

methods (as based on ANN and SVM). While many reports have aimed to improve de-

noising and segmentation results, many techniques have been proposed by making use of 

various procedures. The underlying merits and demerits of each one of the existing 

techniques have also been discussed. Since a detailed and systematic analysis of the 

available techniques was made, it will help guide the present research work. This is also 

essential when attempting to overcome the limitations of the existing techniques, as it will 

thus improve the accuracy of the segmentation and classification approaches used here, 

particularly with respect to cancer detection. 

From the current state of the art, it is clear that even though several methodologies have been 

proposed to detect abnormalities in the breast at various stages, there are some limitations in 
the existing work. This study summarized these limitations as follows: the current systems 

(discussed in this chapter) provide low accuracy (85%–90%), the system suffers from high 
false-positive and false-negative rates, and the use of fewer features can lead to the wrong 

classification.  
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CHAPTER 4 

______________________________________________________ 

ARTIFICIAL NEURAL NETWORK AND SUPPORT VECTOR 
MACHINES 

 
4.1	 INTRODUCTION	

The main objective of this chapter is to provide an overview of the basic theories of ANN and 

SVM classifiers. In addition, this chapter also outlines the application of these two classifiers 

in different cases in the literature.  

4.2	 BACKGROUND	OF	ANN		

Cluster analysis is used to group objects that have similar properties. The K-means algorithm 

is a well-known partitioning technique used to obtain clusters. The K-means algorithm 

primarily uses the Euclidean distance measure to group objects. The algorithm is not that 

efficient when the sample observations belong to a statistical population. This problem can be 

sorted out by defining a statistical distance measure, such as Mahalanobis distance, Fisher–

Behrens distance, and so on. The statistical distance measures used by the K-means algorithm 

do improve the results to some extent. In the case of overlapping populations, traditional 

clustering techniques do not produce good results. These problems have been taken into 

account in this research work, and an attempt was made to improve the existing clustering 

techniques using the various learning principles suggested by ANN. 

ANN learning algorithms are also currently being used for classification purposes. ANNs do 

not make any assumptions regarding the distribution of the population from which the sample 

units are drawn. In the present study, an ANN based classification technique was used for 

MRI data classification. The proposed technique works similar to the K-means algorithm, 

with some modifications. The neighbourhood concept of ANN is incorporated in the 

algorithm. The initial centres (weights) have to be chosen when initiating the algorithm, and 

it may be selected in different ways. Generally, initial weights are randomly chosen. The 

proposed algorithm is an iterative algorithm. A brief review of ANN and ANN-based 

classification methods is given in the next sections. 
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4.3	 ANN-BASED	CLASSIFICATION	TECHNIQUES		

A large number of ANN learning algorithms have been proposed for classification purposes. 

Pal et al. (1993) have proposed a generalization of the learning vector quantization (LVQ) 

method for clustering. Jain and Mao (1992) have further performed elaborate work in the 

projection and extraction of multivariate data. They proposed a number of networks and 

learning algorithms that provide new tools for feature extraction and data projection. Vesanto 

and Alhoniemi (2000) have also described two efficient training methods for  Self 

Organization map (SOM) and a new procedure for clustering. These networks include a 

network for Sammon's nonlinear projection (SAMANN), a linear discriminant analysis 

(LDA) network, a nonlinear discriminant analysis (NDA) network, and a network for 

nonlinear projection (NP-SOM) based on Kohonen's SOM. 

Gallinari et al. (1988; 1991) have studied the relationships between discriminant analysis and 

multilayer perceptrons used for classification purposes. Furthermore, Osman and Fahmy 

(1994) have expanded the available theoretical framework that establishes a link between 

discriminant analysis and the adaptive feed-forward layered linear output networks used as 

mean-square classifiers. A description of ANN in relation to cluster analysis is discussed 

below. 

4.4	 ANN	AND	CLUSTER	ANALYSIS		

The input layer consists of p input nodes, through which the sample input vectors are 

presented. The second set of m nodes associated with m clusters is termed the output layer. 

The nodes in both the input and output layers are connected. Each connection has a weight, 

denoted by wji, which is the strength of the connection from input node i to output node j. 

This setup is termed as a Multi -layer network in ANN (Figure 4.1). 
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FIGURE 4.1: MULTI-LAYER ANN STRUCTURE  
 

During cluster analysis, the objective is to find the weights (W), so that the sample units are 

assigned to the nodes to which they already belong, either in successive cycles or iterations 

based on some criterion. Generally, the initial weights are chosen at random or by some other 

method. Sample units are presented one after the other and are assigned to output nodes on 

the basis of a specified criterion. This is called a cycle. The weights are updated and again, 

the cycle is repeated until either the weights converge, or until a specified number of cycles 

has been completed. Since each node j is associated with a weight vector, W, similar to the 

discriminant coefficient, they are used to classify an input vector to a node that corresponds 

to a group or cluster. 

4.5	 ANN-BASED	STATISTICAL	CLUSTER	ANALYSIS		

A clustering algorithm that works perfectly on one type of datum may completely fail on 

other types of' data. In spite of numerous research efforts, data clustering, as a general 

principle that will work in all situations, remains a difficult – and essentially unsolved – 

problem. If the clusters in a set are compact and isolated in the sense that the between-cluster 

variation is much larger than the within-cluster variation, then any clustering method will be 

able to detect the clusters, irrespective of the cluster shape. Otherwise, the choice of distance 

measures can make a substantial difference in the clustering results. It has been found that 

most clusters in real datasets are not well isolated, as there may be overlapping clusters. 
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Partitioning techniques with Euclidean distance have the undesirable property where large 

clusters are split under some circumstances. Sometimes, this approach produces unusually 

large or small clusters. A Euclidean distance-based clustering algorithm favours clusters of 

equal size. 

In cases where the clusters are of variable size, this method yields drastic results. In such 

situations, normalization of the data cannot solve the problem. It is easy to find examples of 

datasets in real-life applications that do not have well-separated clusters. The well-known 

Fisher–Iris data that consist of 150 four-dimensional patterns from three classes (Iris setosa, 

Iris versicolor, Iris virginica) do not have well-separated classes. It was found that the first 

species was well separated, while the other two species had overlapping features. As such, 

the data may sometimes be split into only two well-separated clusters using the existing 

clustering techniques. The traditional K-means partitioning technique may also fail to 

produce well-defined clusters in cases of overlapping populations; thus, an alternative 

approach should be taken into account. 

One way to solve this problem is to introduce statistical distance measures, such as the 

Mahalanobis distance measure, in the clustering criterion. This statistical measure has a 

variance–covariance term, which takes care of' the variations within the cluster that arise due 

to the variables under consideration. However, the variance–covariance matrix may 

sometimes become singular if the cluster size is less than the dimension of the dataset. Mao 

and Jain (1996) have suggested using the regularized Mahalanobis distance measurement to 

solve the singularity problem by adding a small value along the diagonal of variance–

covariance matrix. The K-means algorithm with statistical distance also does not have 

satisfactory results. Subsequently, one can opt for an ANN technique. ANN learning 

algorithms can be used as tools for clustering objects. 

The unsupervised learning of ANNs has dealt with classification problems. Kohonen's SOM I 

(Kohonen, 1998) is often used to cluster the input dataset. In SOM, neighbouring cells in the 

network topology compete in terms of their activities by means of mutual lateral interactions 

and they adaptively develop into specific detectors of different input values. The SOM has 

the special property of effectively creating spatially organized "internal representations of 

various features of input values and their abstractions". SOM is a two-layered network that 

can organize a topological map from a random starting point. The resulting map shows the 

natural relationships among the patterns that are given to the network. The network combines 
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an input layer with a competitive layer of processing units and is trained by unsupervised 

learning. SOM uses the topological neighbourhood. Each node in the output layer has a set of 

nodes surrounding it, which are all taken as neighbours. The nodes in the input layer are 

connected to the nodes in the output layer with a 2D weight vector. The weight values 

correspond to the physical locations within the space occupied by the input sample units. 

Thus, the neighbouring units in the physical space may occupy unrelated locations in weight 

space. During training, a 2D point is selected at random to serve as the input vector. The 

weight vector of all units within the neighbourhood changes slightly towards the input value. 

As the training continues with different input points, the size of the neighbourhood decreases 

gradually until it encompasses only a single unit. Upon completion of the training, the weight 

vector for each unit will be approximately equal to the physical coordinates of the unit. In 

SOM, the neighbourhood is selected from a set of nodes surrounding the assigned node. 

This results in a large number of nodes in the output layer. The drawbacks of the K-means 

algorithm and the self-organizing feature map algorithm have been kept in mind and an 

attempt is made to resolve them by proposing an ANN-based clustering technique, by 

combining features of both algorithms. 

A good ANN-based clustering algorithm makes use of statistical distance measures, such as 

the Mahalanobis distance and Fisher–Behrens distance measures. To calculate the distances 

between input and output nodes, the variance–covariance matrix also participates in the 

assignment of sample units to the nodes. The winning node is the node that has a minimum 

distance with an input vector X. A neighbourhood of a point X is a set of nodes that are at a 

distance less than or equal to a pre-specified value. 

In the present discussion, the neighbourhood of a point X in p-dimension is defined in terms 

of the maximum distance of the input vector X with all output nodes. The neighbourhood of 

X is the set of nodes that fall inside the sphere, and whose radius declines with increasing 

numbers of iterations or cycles. The radius of a neighbourhood can be calculated with each 

iteration t (Kohonen, 1998).  

The neighbourhood can also be defined in many other ways, depending on the requirement. 

The logic behind using the aforementioned definition of a neighbourhood is as follows. All of 

the sample units are fixed in the p-dimensional sample space. In order to cluster these points, 

certain numbers of seed points (that represent clusters) are initially assumed amongst the 

sample units. Since the sample points are fixed, one can only move these reference points in 
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the sample space. These reference points are the nodes that have been associated with the 

weight vectors. In conventional clustering algorithms, only the reference point that is closest 

to the input vector X is updated or recalculated. However, we propose including even other 

nodes that are in the neighbourhood of X to obtain an updated, but smaller, learning 

coefficient P. A higher learning parameter ‘an’ is used with the winning node – that is, the 

node that is closest to X in the sample space. By using this concept, more than one reference 

point in the space is adjusted, but with different levels of accuracy, thereby providing an 

opportunity for other reference points to get trained. 

	

4.6					ANN	ARCHITECTURE	

Figure 4.2 shows the different types of ANN architecture: (a) recurrent architecture and (b) 

feed-forward architecture. 

 
(a)                                                                 (b) 

FIGURE 4.2: RECURRENT NETWORK (A) AND FEED-FORWARD NETWORK 
(B) 

	

When there is no connection between the output and input/hidden layer in the backward 

direction, then this connection provides a feed-forward ANN (FFANN). It consists of three 

layers: 1) an input layer, 2) a hidden layer, and 3) an output layer. The hidden layers are 

mainly employed to deal with signal processing (input signals). The input layer is used to 

feed the input signals, while the output layer is used to provide the required number of 

outputs. Though, FF-MLP (Multi-layer perceptron) can have more than one hidden layer. 
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Conversely, the recurrent network provides feedback from the forward layers to the 

backward layers. This network involves more weights, as there are more connections in this 

model when compared with FFANN.  

4.7	 NEURAL	NETWORK	LEARNING	

Different learning rules (Jain et al., 1996) were suggested by different researchers to train 

the ANN. In a broad sense, the learning of the ANN configuration can be divided into 

three classes: 

						4.7.1				Supervised	Learning	

In this learning model, the desired set of outputs is provided along with the training 

dataset. This learning approach is useful when it has a sample training set and it wants 

the network to work according to that sample.  

								4.7.2					Unsupervised	Learning	

In this learning approach, a desired set of outputs is not provided alongside the training 

dataset. This learning method is useful when the system/user does not have a training 

data set with known outputs. In this method, ANN is allowed to establish its own rules. 

								4.7.3						Semi-supervised	Learning		

In this learning approach, only the direction of the output is provided; the actual output is 

not provided during training. Based on directional feedback, the ANN learns to adjust the 

various weights. 

4.8	 BACK-PROPAGATION	LEARNING	

In 1986, Rumelhart et al. (1986) proposed a popular error back-propagation learning algorithm. 

Since then, much work has been carried out in this area. The back-propagation algorithm 

(Haque et al., 2002; Devi et al., 2012) works on the principle of the gradient descent 

minimization rule. This is a supervised method of learning. The input and output dataset is 

provided to the ANN. The gradient is calculated with respect to the error in the desired and 

actual output, and then the ANN updates its weights according to this error gradient.  

The complete training involves three main steps:  
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1. Inputting the training samples using an input layer; 

2. Calculating the errors of the output layers; and 

3. Adjusting the weights of the ANN to minimize that error. 

Equation 4.1 shows the weight updation in the back-propagation algorithm. Here, ‘e’ 

represents the average of all the squared errors, 𝒘𝒊𝒋 represents new weights, 𝒘𝒊𝒋 𝒏− 𝟏  

represents old weights, and η and α are the learning rate and momentum, respectively. The 

entire training session is an iterative process, and ‘n’ represents the current iteration number. 

A good choice for learning rate and momentum significantly affect the training process. 

𝒘𝒊𝒋 = −𝛈 ∗ 𝜹𝒆
𝜹𝒘𝒊𝒋

+ 𝜶 ∗𝒘𝒊𝒋 𝒏− 𝟏        (4.1) 

Back-propagation in ANN (Haque et al., 2002; Devi et al., 2012) is a typical strategy that is 

used to prepare simulated neural systems; this approach is utilized in conjunction with an 

improvement technique, such as an angle plummet. The calculation rehashes a two-stage 

cycle involving engendering and weight refresh. At the point when an information vector is 

presented to the system, it is proliferated forward through the system, layer by layer, until it 

achieves the yielding layer. The yield of the system is then contrasted with the coveted yield, 

utilizing a misfortune work, and a blunder esteem is computed for each of the neurons in the 

yielding layer. The mistaken qualities are then proliferated in reverse, beginning from the 

yield, until every neuron has a related blunder esteem, which generally speaks to its 

commitment to the first yield.  

Back-propagation utilizes these errors to determine the slope of the gradient work for the 

weights in the system. In the second stage, this slope is supplied to the streamlining strategy, 

which utilizes it to refresh the weights, while trying to limit the gradient work. 

4.9	 SUPPORT	VECTOR	MACHINES	FOR	PATTERN	CLASSIFICATION		

The goal of a pattern classification problem is to determine the class of an object using those 

features that separate the classes of given input data. This section provides a brief 

introduction to learning machines (different than ANN) known as support vector machines 

(SVMs) (Steve, 1998). This section restricts its discussion to two classes of binary 

classification problems.  
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SVMs are learning systems that use a hypothetical space of linear functions in a high-

dimensional feature space, which is trained with a learning algorithm that was adopted 

from optimization theory. This algorithm implements a learning bias derived from statistical 

learning theory. This learning strategy, first introduced by (Vapnik et al. 1995), is a principled 

and very powerful method that, in the few years since its introduction, has already outperformed 

most other systems in a wide variety of applications. Presently, SVM is among the most popular 

tools used for the different type of classification tasks (Geng et al., 2016, Zare et al., 2016, Zhang 

et al., 2017).  

Suppose there is a given training dataset {(xi, y;)},=1, 2,….m, where xi =(xj
p···, xi

n). Y in Rn 

denotes the input vector, and yi belongs to {–1, 1}, which is it’s the corresponding output 

class. The goal is to obtain a classifier that generalizes well on unseen data (i.e., it is able to 

predict well). 

 

FIGURE 4.3: SVM FOR A LINEARLY SEPARABLE PROBLEM 
	

In order to obtain a linear decision surface, or a hyperplane with a great potential for 

generalizability, one must first find the separating hyperplane with the maximal margin 

between the two classes of input data (i.e., the hyperplane that separates the two classes with 

the maximum distance to the closest points from each class of inputs; see Figure 4.4). This 

hyperplane is known as the optimal separating hyperplane. 

The equation of the optimal hyperplane will be taken as: 
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W·x+b = 0,          (4.2) 

where the weight vector w in Rn and the offset (or bias) b belongs to R are unknown. 

Then, determine the two hyperplanes that run parallel to the optimal hyperplane, and which 

are at equal distances from it, so that there are no input data points appearing between these 

parallel planes and other planes that are closest to the positive input dataset (and where the 

other is closest to the negative input dataset). Let us assume that the equation of these parallel 

planes will be: 

W • x + b = 1 and W • x + b = – 1.       (4.3) 

It can be verified that the margin is given whereby 11·11 is the norm. Then, the problem of 

maximizing the margin lies in finding the hyperplane that minimizes the ability to satisfy 

different constraints (as offered by the problem at hand) (Burges, 1998; Gunn, 1998; Cortes, 

1995). 

For the nonlinear support vector regression (SVR) model, the input data are mapped into a 

higher dimensional feature space via a kernel function K(-,-), and the linear support vector 

regression is performed in the feature space. Typically, let the input data be transformed into 

a higher dimensional feature space by the transformation ¢: Rn ~ RN, and let the support 

vector regression approximation function in the higher dimensional space be given by: 

F(x) = W • ¢(x) + b.         (4.4) 

Then, the SVR formulation can be written as a constrained optimization problem. 

 

4.10	 CLASSIFICATION	ALGORITHMS	
 
Tumour classification is the final and most important step in automated cancer detection. In 

order to identify tumour-affected images, an efficient classification approach is required. To 

achieve this, geometrical features are extracted from the Region Of Interest (ROIs) using the 

specific characteristics of the tumour-affected areas. 

 

Zheng and Qian (1996) proposed a computationally efficient mixed feature-based neural 

network (MFNN) to detect cancer in digitized mammograms. The MFNN employs features 



	

58	

computed in both the spatial and spectral domain, and it uses spectral entropy as a decision 

parameter. Back propagation with Kalman filtering (KF) was employed during network 

training to evaluate different features and related error analyses. 

 

Furthermore, Dhawan et al. (1996) utilized two classes of corresponding gray-level picture 

structure highlights to group hard-to-analyze cases. The primary class of components 

included second-level histograms for the global surface and wavelet decay-based elements, 

which speak to the neighbourhood surface of the zone of intrigue. The second classification 

of components told about the arrangement of the main histogram levels. It was based on the 

measurements of the fragmented locales, size of elements and the separation of elements in 

the divided area. Different components in every classification were connected with the breast 

examination after effects of hard-to-analyze cases to determine the arrangement of elements 

that speak to the entire dark-level picture structure data. The component determination was 

performed utilizing a multivariate group investigation and the genetic algorithm (GA)-based 

hunt strategy. The chosen components were utilized to arrange for the use of a back-

proliferation neural system and measurable parametric classifiers. A back-propagation ANN 

was utilized for classification purposes.  

 

Hadjiiski et al. (1999) outlined a classifier that consolidated both an unsupervised and a 

regulated model. The unsupervised model depended on an adaptive resonance theory (ART2) 

organizational system, which grouped the masses into various separate classes. The classes 

were partitioned into two types: one containing a threatening tumour and the other containing 

a blend of dangerous and benevolent lesions. The threatening classes were grouped by ART2. 

The blended classes contributed to an administered linear discriminant classifier (LDA). 

Using this approach, some dangerous masses were isolated and characterized by ART2, while 

the less recognizable, amiable, and harmful masses were ordered by LDA. 

 

Lo et al. (2002) managed a multiple circular path convolution neural network (MCPCNN) 

that was specificially engineered to examine tumours and tumour-like structures. To begin, 

each presumed tumour range was partitioned into segments. The characterized mass elements 

for every area were figured freely. These area elements were utilized on the info layer and 

they were facilitated by convolution parts of various sizes that proliferate signs to the second 

layer in the neural system frameworks. The convolution portions were prepared as required 

by displaying the preparation cases to the neural system. 
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The method provided by Zheng and Chan (1996 and 2001) was selected given that the 

algorithm provided a high level of sensitivity of 97.3%. The authors had adopted an artificial 

intelligence algorithm, which was a combination of techniques like fractal analysis, the multi-

resolution Markov random field (MMRF) technique, and the binary decision tree. During 

fractal analysis, the blanket method was used to determine the roughness value of the surface, 

while MMRF was used for segmentation. This segmentation process was initialized using a 

clustering algorithm called the dogs-and-rabbits algorithm, which was an extension of the K-

means clustering algorithm. The major difference between the K-means clustering algorithm 

and the dogs-and-rabbits algorithm was that the cluster centres were moved towards the data 

points in the latter case. Here, the concepts of cliques and neighbourhood systems were used. 

 

El Naqa et al. (2002) further demonstrated that tumours can be identified by applying a 

successive enhancement learning (SEL) procedure, where support vector machine (SVM) 

training was adjusted iteratively by reincorporating misclassified samples. 

 

Next, Campanini et al. (2004) presented a SVM-based featureless approach for tumour 

detection in digital mammograms. Instead of extracting features from ROIs, the authors used 

a multi-resolution, over-complete wavelet representation to codify the image with redundant 

information. Two SVM classifiers were used in this approach. First classifier was used to find 

a tumour and the second classifier was used to reduce the number of false positives. 

 

Zhang et al. (2004) further proposed a system where a neural–genetic algorithm was used for 

feature selection, and where a neural network was used for classification. It also combined 

the computer-extracted statistical features from the mammogram with human-extracted 

features to classify different types of small-sized breast abnormalities. 

 

Kinoshita et al. (2007) proposed an unsupervised learning approach in light of Kohonen’s 

self-organizing map (SOM). The SOM was prepared to utilize visual elements that were 

identified with bosom thickness designs. An arrangement of elements was processed for 

every mammogram, which incorporated shape elements, surface elements, minute 

components, rakish projections, and morphological elements that were obtained from 

sectioned fibroglandular tissues. 
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The method developed by Dominguez and Nandi (2008) was selected as another approach, as 

it increased the SNR of the lesions being detected and it eliminated false-positive findings. 

They had proposed an algorithm to enhance mammograms with the objective of improving 

the segmentation of distinct structures of mammogram images. The enhancement algorithm 

used wavelet decomposition and reconstruction, morphological operations, and local scaling. 

After enhancement, region segmentation was performed and a set of features was computed 

from each of the segmented regions. A ranking system was used for classification purposes. 

 

Islam et al. (2009) displayed a calculation known as the adaptive merging and growing 

algorithm (AMGA) when outlining ANNs. This calculation unifies and includes shrouded 

neurons during the preparation phase of ANNs. The union operation presented in AMGA was 

a sort of a blended mode operation, which prunes two neurons and ultimately includes one 

neuron. This versatile system consolidates or includes concealed neurons based on the 

learning capacity of shrouded neurons or on the preparation of ANNs. Keeping in mind the 

end goal of decreasing the measure of retraining subsequent to adjusting ANN models, 

AMGA prunes concealed neurons by consolidating associated shrouded neurons and includes 

shrouded neurons by part existing shrouded neurons. 

 

Shukla et al. (2010) presented a method to detect breast cancer using soft computing tools 

like ANNs and neuro fuzzy systems. The feed-forward neural network was trained using 

three ANN algorithms: the back-propagation neural network (BPN), the radial basis function 

(RBF), and the adaptive neuro fuzzy inference system (ANFIS). The performance was 

compared by metrics such as accuracy of diagnosis, training time, the number of neurons, and 

the number of epochs. 

 

Timp et al. (2010) subsequently presented an automated mass detection method to identify 

temporal changes in mammographic masses between two consecutive screening rounds. Two 

types of temporal features – difference features and similarity features – were designed to 

realize the interval change analysis. An SVM was employed as a classifier to detect the 

temporal changes in mammographic masses. Classification performance was evaluated with 

and without the use of temporal features. BPN, RBF, and SVM classifiers were used in this 

research due to their robustness and widely applicable characteristics. 

 



	

61	

 In the literature review provided in this thesis, the methods that have explored various 

challenges associated with breast cancer detection in mammograms are reviewed. In the 

following section, three existing techniques that were used in the first three proposed 

approaches with modifications are discussed. 

 

The method presented by Cascio et al. (2012) was selected for approach 1 since this method 

provides a segmented output without the loss of meaningful information. In this method, the 

ROI was obtained via segmentation by means of contour searching. In the classification step, 

feature extraction plays a fundamental role. Once the features were computed for each ROI, 

they were used as inputs in a supervised neural network. The output neuron provided the 

probability with which the ROI was pathological (or not). The authors obtained a sensitivity 

of 82%. 

 

Some very recent applications of ANN and SVM in breast cancer classification have been 

reported elsewhere (e.g., Lam et al., 2014; Dheeba et al., 2014; Senapati et al., 2013; 

Bhardwaj et al., 2015; Zheng et al., 2014; Hu et al., 2013). In all of these cases, the results 

were quite good.  

 

4.11	 SUMMARY	

ANN- and SVM-based clustering techniques are discussed in this chapter. This chapter 

explained the use of the self-organizing principle of ANN by first discussing the K-means 

algorithm. Statistical distance measures were used in the algorithm. The concept of the 

neighbourhood of an input vector X is introduced and used in the training phase. In ANN, the 

neighbourhood is defined for the nodes. In the present study, the neighbourhood of a point X 

is defined in terms of the maximum distance of input vector X with the output nodes. 

Generally, in traditional clustering algorithms, the reference point (node) alone, which is 

closest to the input vector X, is recalculated. By using the neighbourhood concept, more than 

one reference point in the space that falls within the neighbourhood of X is adjusted, thereby 

giving other reference points the opportunity to get trained. The initial weights can be chosen 

in different ways. The formation of clusters is dependent on the initial weights, as well as on 

the two gain terms, a and p. In the same way, this chapter also explained the theory of SVM 

and its related principles, along with its application in tumour classification. 
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CHAPTER 5 

________________________________________________________ 

METHODOLOGY 

5.1	 INTRODUCTION 
 
MRI is currently the most sensitive non-invasive method for detecting breast cancer; this 

modality has its own limitations, and its performance is dependent on the use of optimal 

feature selection for detection purposes. Few features extraction may not be sufficient enough 

to detect the abnormalities of breast cancer in its early stages. The integration of different 

features has been widely used to generate more diagnostic and clinical values in medical 

imaging. Since the early detection of cancer is likely a major factor that contributes to the 

reduction in mortality rates for certain cancers, image-guided and -targeted minimally 

invasive therapy has the promise to improve outcomes and reduce collateral effects. This 

thesis includes algorithms that were developed to perform pre-processing, segmentation, 

feature extraction, and classification. To classify tumours as benign or malignant, ANN and 

SVM classifiers were used and compared against each other. Figure 5.1 shows the flow 

diagram of a proposed methodology of the proposed breast cancer detection system.  

 
FIGURE 5.1: FLOW DIAGRAM SHOWING THE OVERALL METHODOLOGY OF 

ANALYSIS AND CLASSIFICATION OF BREAST CANCER FROM MRI 
IMAGES 
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5.2	 DATASET,	SOURCE,	AND	SOFTWARE	

 

					5.2.1						Dataset	

The MR images of 56 patients are used in this study, patients were obtained from the medical 

imaging department via the picture archives of King Abdullah Medical City (KAMC), Saudi 

Arabia. 26 images were classified as featuring “malignant” tumours, and rest featured 

“benign” tumours (as classified by the medical specialist).  All the images were used for 

image segmentation testing. The same MRI machine with the same sequence parameters was 

used to examine all of the patients. The images were obtained under well-controlled 

conditions by an experienced technician to ensure geometrically aligned orientations.  

As the middle age women are more prone to breast cancers so data set is also collected from 

the patients of similar age range (25–45 years). Single MR image is taken from each patient. 

The MR image was saved in .png (lossless format) format of the size 352×352, bit depth of 

24 bit with 96 dpi of resolution.  

 

			5.2.2					Source	

The data used in this study were collected from the King Abdullah Medical City. A brief 

overview of King Abdullah Medical City is given below; then, details of the dataset that was 

used are provided.  

 

The mammoth King Abdullah Medical City (KAMC) is the third referral master medical city 

in the nation of Saudi Arabia, following King Fahad Medical City and the King Fahad 

Specialist Hospital in Dammam.  

 

The KAMC region is 800,000 square meters. It was developed by the National Project for 

Comprehensive Health Care, which aimed to provide health services under the guidance of 

excellent restorative administrations, which will satisfy the desires and aspirations of the 

authority. KAMC was established to meet each and every need of its inhabitants. The 

convenience limit of the five-storey building is 1,500 beds, of which 500 beds have been 
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dispensed to the pro-referral healing centre. The doctor's facility covers almost all medical 

specializations.  

The medical complex has computerized operating rooms that are intended to be utilized by 

specialists, surgical inhabitants, anaesthetists, operating room attendants, and other surgical 

staff. This surgery bundle coordinates booking, clinics, and patient information to provide an 

assortment of organization and clinical reports. Aside from this, the expert referral clinic 

incorporates 500 beds for gynaecology, obstetrics, and paediatrics. 

					5.2.3					Software	and	System	

MATLAB 2014a is used for all simulations. A computer system with an Intel i7 processing 

unit and 4 GB of RAM was utilized in this study.  
 

5.3 AUTOMATIC	BREAST	CANCER	DETECTION	SYSTEM	(ABCDS)	
 
Breast cancer assessment with the assistance of MR images is a rather common clinical 
practice in the investigation and prediction of tumours, particularly among clinical experts. 
Pathologists perform a review of MR images under good lighting. The experts’ level of 
experience directly affects the precision of their assessments. Changes in pathologists’ 
opinions of the same MR image have been seen in clinical practice. In this broad facility, a 
pathologist conventionally handles 100 assessment cases at a time; each case includes nearly 
2,000 MRI screens. In this way, assessments are a grim and time-consuming process. A 
computer-based assessment system can aid pathologists by providing second reviews, 
reducing their workload, and offering these assessments to cases that required a more detailed 
view, allowing clinicians to focus on analysis and prediction. The structure of a proposed 
automatic breast cancer detection system (ABCDS) is explained in this section. 

The proposed ABCDS framework for MR image examination is shown in Figure 5.2. The 
primary step is image acquisition, and this is trailed by the image pre-processing step. Inside 
the image preparation stage, the ROI is initially segmented and followed by analysis of the 
nuclei, and by classification of the phase of the disease. The last step involves evaluating and 
offering recognizable proof. These methodologies are discussed in the following section. 
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FIGURE 5.2: BLOCK DIAGRAM OF AN ACD SYSTEM’S STEPS 

				5.3.1			Image	Acquisition	

There has been tremendous growth in image acquisition methods. Ensuring that a clear 
picture with good resolution is obtained is always the preferred choice for any image-
processing operation. MR images typically provide superior picture quality when compared 
with other methods, such as X-ray and ultrasound. An MR image captured from different 
angles can be clubbed together to generate a higher-resolution image. Such an image may be 
sent electronically so that a pathologist can "see" a portion of the scan without going 
anywhere.  

Enhanced picture quality determines the accuracy of the radiologist’s decision. Good bit 
resolution and spatial quality are the keys to obtaining better classification results. MRI of the 
breast in question utilizes a magnetic field; MRI features a good-quality detector and a 
computer to generate the inside view of the breast without making any types of cuts to the 
body. It is a very useful technique to screen those women at high risk for breast cancer, and it 
can also be used to assess the degree of malignancy or to further assess irregularities seen in 
the captured image. 
 

				5.3.2					Image	Pre-processing	and	Segmentation	

There are various parameters that can affect the quality of any captured image, and this is 
why there is a need to preprocess an image to make it suitable for any automatic decision-
making approach. Instrumental twist, environmental conditions, different filters, and uneven 
illumination are some of the parameters that can affect the final decision. A pre-processing 
step ensures that all of the images inputted into the classifier are of similar quality, which 
ensures that better decisions can be produced by the classifier.  

Filtering is generally used to reduce image noise and to uproot variables (different protests 
not held inside the ROI) from the background. Noise in the input image can be reduced 
utilizing morphological operations. Standard morphological operations are centred on the 
form and structure of an object (the structural components). The structural components can be 
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changed by applying mathematical morphological operations. The form and size of the 
structural components are situated as indicated by the segmentation or filtering undertaken.  

A median filter is applied to the MRI image to ensure uniformity of the image. In addition, 
image rotation and alignment are also applied based on the average value of each row and 
pixel, so that only useful areas are processed for feature extraction. In the initial stages, the 
watershed segmentation divides the image into meaningful regions in a way that describes the 
structures in the MR image, such as large, continuous, bright and dark patches of similar 
intensity. The main focus of the smoothing operation is to make the image suitable for feature 
extraction.  

Carrying out the precise, rapid, and reproducible delineation of breast lesions can be difficult, 

as the lesions may have complex topological structures and heterogeneous intensity 

distributions. The early detection of malignant breast tumours can be facilitated by the MRI 

scan, in combination with an appropriate automatic segmentation algorithm, which may 

enhance this imaging technique. Image segmentation is a procedure that partitions a picture 

into its constituent areas or items. Handling powerful picture division procedures for 

complex pictures is a standout option for the most troublesome cases. The reason for this is 

that segmentation divides the MR image into smaller portions of useful and non-useful 

regions. The main objective of this study is thus to develop a mechanism to automatically 

segment and facilitate the early detection of breast cancer based on the application of the 

watershed transform to MR images. The algorithm is divided into three major segments: pre-

processing, watershed, and post-processing. The different segments are computed and the 

final image is cleared of all noise. The final modified image is generated after the final image 

is superimposed on the original MR image. This algorithm successfully resulted in the 

automatic segmentation of the MRI images, and it proved to be a beneficial tool for the early 

detection of breast cancer. This study showed that the results that were obtained 

automatically were in conformance with those obtained via manual detection, and they were 

also highly accurate. Image segmentation aims at labelling the tissue type and the ROI for 

further feature extraction. The objective of this work is to provide an automated tool that can 

help locate the tumour tissues in an MR image. There are multiple techniques available that 

can be leveraged to detect and identify various tumour tissues, but there are a few 

disadvantages associated with the available methods in the literature. Hence, a robust 

technique that can segment and de-noise MR images was developed by employing an 

efficient segmentation technique that can detect tumour tissues with accuracy. An automatic 
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watershed segmentation algorithm was developed using MR images so that it can aid in the 

early detection and classification of breast cancer. 

 

					5.3.3					Feature	Extraction 

Feature extraction is the more critical part of this automated detection system, as optimal 

feature extraction will ensure that the tumour type is accurately classified. The cancer cells 

are identified by image processing methods from the MRI data, and then feature extraction 

algorithms are applied on those data. Different features are calculated using various 

analytical operations, and those features include: total tumour area, a triangular area of the 

radial mapping of a tumour, triangular area of the uniform distribution of the radial mapping 

of a tumour, angular smoothness of the corners, and the counter-clockwise rotation to 

clockwise rotation ratio. These methods have been applied to 52 MRI sample data, of which 

26 cases were benign and the rest were malignant. The results of these analyses show the 

correlation between the mathematical classification methods and those experts who classify 

cancers based on their experiences. Thus, these methods will provide supporting evidence 

when making a cancer diagnosis. 

 

					5.3.4				Classification	

In this process, different classification methods were developed to identify malignant and 

benign cancer cells. ANN and SVM were employed on the dataset adopted herein to provide 

the classification. The classifier’s ability to correctly classify cases was also tested against 

the k-fold cross validation test. This test was done to ensure that the classifiers are robust 

enough and not data or sequence dependent. ANN utilized the back-propagation error 

method during the training phase, and the SVM was also tested against various types of 

kernels. 

5.4	 SUMMARY	

The overall discussion included the precise description of the different methodologies 

involved in understanding and detecting breast cancer in its early stages, as well as to classify 

different abnormalities of the breast. The feature-fusion methods that were involved in 

integrating the information that was extracted from the different approaches were also 
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discussed. 

The methodology discussed herein proposed pre-processing and segmentation methods to 
extract the ROI. The feature-extraction procedure serves as the basis for classification. 
Overall, this chapter provided a detailed description of the techniques involved in the 
detection of breast cancer. Along with that, an analysis of the past research was also 
presented while addressing how further research should be conducted in this area. Such 
research initiatives have been undertaken by us, as presented in this thesis. 
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CHAPTER 6 

________________________________________________________ 

AUTOMATIC SEGMENTATION 
 

 

6.1	 INTRODUCTION		

This chapter discusses the Automatic segmentation algorithm developed in the proposed 
work, which comprises processes such as pre-processing, segmentation using clustering 
techniques, feature extraction, and classification techniques for tumour categorization.  

Accurate tissue segmentation from MR image is an important step in the detection of breast 
cancer tumours. However, the accuracy of many segmentation algorithms is limited due to 
the presence of noise and intensity irregularities in MR images. Medical image segmentation 
has a huge impact on digital image processing, owing to its ability to enhance spatial 
resolution and image sharpening. It has been employed to derive helpful information from 
medical imaging data which, in turn, provides the most precise and reliable method for 
diagnosis. This procedure is a critical challenge given the existence of inhomogeneities in 
image intensities. The elimination of spatial intensity irregularities from MR images is a 
difficult task to achieve since these inhomogeneities could vary with different MRI 
acquisition parameters, as well as from one patient to another and from slice to slice. 
Conventional methods used in hospitals are based on the manual segmentation of the medical 
image under consideration. This again relies on the physician’s ability to perceive and extract 
the required region from the image. This is made difficult given the minute variations and the 
strong resemblance between the actual and affected biological regions in the image. 

The insufficient number of radiologists and the huge volume of MR images to be analyzed 
result in intensive labour; this approach is also highly uneconomical. This method depends 
on the expertise of the technician analyzing the images. Furthermore, the estimates also show 
that 10%–30% of tumours escape the eyes of the radiologists during routine screening 
(Taylor et al., 2008). There is a chance that the medical images might be tampered with due 
to issues that occur during the acquisition stage. Image segmentation can be defined as the 
partition or segmentation of a digital image into the same type of regions, with the important 
goal of simplifying the image under consideration into something that can be comprehended 
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and easily viewed for the visual analysis. Image segmentation is a highly significant process 
in medical image analysis. 

Medical image segmentation plays a critical role in practical applications, such as in medical 
science. Medical images are important during object recognition when analyzing the human 
organs. 

Various image segmentation algorithms have been proposed to achieve efficient and precise 
results. Of these proposed algorithms, the watershed segmentation approach is known as a 
classic technique in the field of topography, and it is considered the most useful method in 
medical imaging. This method was originally proposed by Digabel and Lantuejoul, 1977, and 
it was based on morphological concepts. However, the original algorithm has undergone 
various modifications, thus leading to improvements in its application. The theory of 
watershed segmentation is primarily based on the topographic representation of image 
intensity. Watershed segmentation also constitutes of other principal image segmentation 
methods, such as discontinuity detection, thresholding, and region processing. Overall, the 
watershed segmentation method is highly efficient and more stable when compared with 
other segmentation algorithms. The objective of the watershed transformation is to identify 
the watershed lines on a topographic surface. 

The watershed algorithm is based on the geographic principles. A watershed is a land that 
separates various bodies of flowing water so that they ultimately converge at the same place. 
Since water tends to flow downhill, the borders of watersheds are elevated, serving as the 
boundary between land and water. Watersheds also serve as a barrier to protect the land from 
overflow. 

Since radiologists are prone to making false-positive diagnoses in breast cancer cases, 
numerous attempts have been made to try to reduce these errors by developing image 
processing algorithms. Since contrast MRI is known to create high-resolution images of the 
breast, tumours can be more easily detected. The purpose of the automatic segmentation 
process is to detect the ROIs within MR images. A watershed transform algorithm is a 
powerful tool through which to achieve image segmentation. This study aimed to develop an 
automatic watershed segmentation algorithm for MR images to enhance their clarity, to 
increase the early detection rates of breast cancer, and to ultimately improve the diagnostic 
accuracy and capabilities of MRI when detecting breast cancer lesions. 

 



	

71	

6.2	 METHODS	

To enable meaningful segmentation while processing, the MRI was subjected to median 
filtering. This was followed by image rotation to orient and identify the pectoral muscles. A 
Sobel filter was applied in the water-shedding section to approximate a gradient map of the 
image. Post-processing consisted of masking the original images and recombining them into 
a single image. Figure 6.1 shows the steps followed by the watershed algorithm. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

	
	

 
FIGURE 6.1: STEPS INVOLVED IN THE WATERSHED ALGORITHM: (A) PRE-

PROCESSING, (B) WATERSHED, AND POST-PROCESSING 
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Below are the details of the method: 

The method was separated into three major sections: pre-processing, watershed, and post-

processing. In the first step, a median filtering technique was applied to remove the noise. 

Then, the image was rotated and the pectoral muscles were identified. A Sobel filter was 

applied in the watershed section to approximate a gradient map of the image. The final phase 

consisted of masking the original images and recombining them into a single image. 
 

					6.3						Pre-processing	

					6.3.1					median	filter	

Pre-processing involves the application of a median filter to the image. This filter sets the 

intensity of each pixel, and that of its direct neighbours, as its average intensity. During the 

initial stages, the watershed segmentation approach divides the image into meaningful 

regions in a way that describes the various structures in the MR image, including large 

continuous bright and dark patches of similar intensity. Smoothing the image during the pre-

processing stage reduces the number of unusable regions. Figure 6.2 shows the original MRI  

in the right and post median filter in the left . 

  
FIGURE 6.2: THE ORIGINAL MRI AND POST MEDIAN FILTER. 

 

					6.3.2						Rotation	and	Alignment	

The algorithm determines the orientation of the image by summing up all the intensity values 

in a given row. It identifies the rows where the summations are above the threshold value and 

it proceeds to rotate the image if the row is located below the top 20% of the image. This is 

followed by the application of histogram equalization to improve the image contrast. 
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FIGURE 6.3: IMAGE ROTATION AND ALIGNMENT 
	

Image rotation may result in the change of map position (x0,y0) to (x2,y2) in the output image, 

and it may rotate the image by angle degree, which is given as: 

x2 =cos(θ)∗(x1 -x0)−sin(θ)∗(y1-y0)+x0      (6.1) 

y2=cos(θ)∗(x1-x0)+cos(θ)∗(y1-y0)+y0       (6.2) 

 

Where, (x0, y0) is central to the input image, (x1, y1) is the current pixel position, (x2, y2) is 

the new pixel position and θ is the rotation angle. 

 

				6.3.3					Identification	of	the	Pectorals	

The pectoral muscles are identified by determining the ROI, where the muscles are most 

likely to be found, such as the torso/breast border; the remaining portions left of the border 

are ignored. However, this approach appeared to be ineffective, as the pectoral muscles lie 

under the breast tissue. These remaining portions are then converted to a black-and-white 

image using a modified histogram-based threshold. This was followed by scanning the 

resulting image of the pectoral muscle to identify an area of minimum size and vertical 

orientation. 

 

6.4	 WATERSHED	ALGORITHM	

The Sobel filter was applied to the MRI, resulting in a gradient map of the image. In this 

gradient image, sharp changes in contrast, such as the edge between a dark and light region, 

appear as high-intensity points, while regions of monotonic intensity appear as dark patches. 

The gradient map is denoted by: 
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|𝐺| = 𝐺!! + 𝐺!!
         (6.3) 

Each pixel location consists of two components: Gx and Gy. Gx and Gy are the variables that 

correspond to the result from the row mask and column mask respectively. 

 

The watershed segmentation was applied to this gradient map. This algorithm poorly handles 

the monotone plateaus, resulting in their over-segmentation. However, these areas are 

monotonic, as they appear as a single dark patch surrounded by a high-intensity edge at the 

boundaries with better segmentation. A list of the regions created by segmentation was stored 

and filtered to locate the specific regions that could contain tumours. 

 

This algorithm functions by marking any pixel below a certain threshold value in the original 

image as a potential background pixel. The pixels inside the largest connected region, where 

all pixels are below that value, are labelled as background pixels. The background regions are 

then removed from the list of breast regions. 

 

This was followed by the removal of skin segments, as they tend to appear as extremely 

bright spots on the MR images. A distance map that defined the distance between each pixel 

in the breast, as well as the nearest background pixel, was generated to eliminate noise. The 

skin segments were also removed from the list of breast regions. 

 

Thus, the resulting breast MRI was only composed of the inner breast regions. However, 

most of these regions on the MR image were dark, while any abnormalities (such as 

cancerous regions) appeared to be exceptionally bright. Therefore, these segments were also 

eliminated from the list of breast regions to be scanned. This algorithm resulted in the 

removal of 90% of darkest regions from the total list of breast regions. The remaining regions 

were those that could contain a tumour. 
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Regions growing:	Based on the average intensity, the resulting segments were sorted and 

combined in order of highest to lowest intensity. First, the index of the region was converted 

to set the seed point. Using this seed point, the region-growing approach was applied to the 

segments to construct a new region. The regions are combined only when the grown region 

and new region are contained within each other. This process was applied multiple times to 

achieve ideal region growing, which formally defined the growth of additional regions, such 

as:	

𝑅 = 𝑅!!
!!!           (6.4) 

Segmentation must be complete; that is, each pixel must be incorporated in a given region. 

𝑅! is a connected region, i= 1, 2,..., n       (6.5) 

The points in a region must be connected in some predefined sense. 

𝑅! 𝑅! =  Ø                              for i=1,2,...,n.     (6.6) 

The regions must be disjointed. 

P(R)=TRUE  for i=1,2,...,n.       (6.7) 

Numerous properties must be satisfied by the pixels in a segmented region. In this case, P(Ri) 

is true, if all pixels in Ri have the same intensity. 

P(RiRj)=FALSE for any adjacent region Ri and Rj     (6.8) 

Region Ri and Rj are different in the sense that predicate P 

Ri P(Ri) is a logical predicate defined over the points in the set and is Ø the null set.  

 

6.5	 POST-PROCESSING	
 

After computing the different segments, some minimal areas (0.1% of the image size) were 

identified as noise and subsequently eliminated. A translucent mask was created from the 

resulting segments and superimposed over the MR image. Similarly, a different translucent 

colour mask was used to highlight the previously identified pectoral muscle in a separate 

image. At this point, the image was recombined with the previously cropped regions from the 

pre-processing stage and rotated back to its original orientation. The resulting image, 

including both the tumour ROI and the identified pectoral muscle, was displayed. 
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6.6	 IMPLEMENTATION	AND	RESULTS	

MATLAB 2014a was used for the implementation of this system; this program was run on an 
Intel i7 CPU with 4 GB of RAM. The automatic segmentation algorithm is successfully used 
to segregate the suspicious area from the total MR image. A representative case featuring 
each algorithm step is shown in Figure 6.4, where the sub- images show (1) the original MR 
image; (2) after the application of median filtering; (3) pectoral muscle identification; (4) 
application of the watershed algorithm and region-growing approach; and (5) the final results 
after masking the original image .  The proposed method of segmentation introduced in this 
research was applied to all 55 patients to test the segmentation method and compering with 
(55 image that outlined by an expert). 

 

 

 
 
 

 

FIGURE 6.4: STEPWISE IMAGE PROCESSING USING THE WATERSHED 
ALGORITHM  

 

Figure 6.5 shows the manual outline of a tumour where the outline covers the enclosed area. 

The software results clearly highlighted the entire area. The pixels in both the doctor-

identified image and in the software output were compared. The accuracy of the differences 

between the two cases is calculated as: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  = (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑝𝑖𝑥𝑒𝑙𝑠 /𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠) × 100      (6.9) 
 

On an average, 97.52% of the region was contained within the outlined results, and there 

were some very mild cases where the software-detected regions fell slightly outside the 

detected region, as seen in the second set of results in Figure 6.5. 
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FIGURE 6.4: THE RESULTING IMAGES AFTER COMPARING THE SOFTWARE 
FIGURE 6.5: RESULTS AND MANUALLY PERFORMED RESULTS 

	
	

The expert-identified and software-generated tumour areas are shown in Figure 6.5. A 

numerical comparison of the same is also provided in Table 6.1. Table 6.1 further provides 

the average results for all 55 MR images, to ensure that more detailed comparisons can be 

made.  

Table 6.1: Comparison of computer-identified and expert-identified tumour areas 
MRI Image Software-generated area (pix2) Expert-identified area (pix2) 

MRI Sample-1 82.9 83.1 

MRI Sample-2 129 128.02 

MRI Sample-3 76 77.01 

MRI Sample-4 148.1 148.8 

MRI Sample-5 111.2 110.8 

Average of all 55 samples 3,451.45 3,524.48 

 
 

6.7	 DISCUSSION	

This chapter described a novel method for the auto segmentation of areas corresponding to 

cancerous lesions in MR images of the breast. The areas suspected to represent cancerous 

lesions in the images were highlighted to facilitate further analysis to determine whether the 

detected lesions were indeed cancerous. 
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The analysis of MRI images, owing to their complexity, involves multiple steps that range 

from pre-processing to post-processing. Very limited automated algorithms are currently 

available for image segmentation, and they are based on the specific region under 

investigation and the type of imaging technique used. The automated algorithm described in 

this study involves a three-step process; it includes initial pre-processing, followed by the use 

of the watershed transform method for image segmentation, and a post-processing step. Pre-

processing is an essential step where the Sobel technique for edge detection was used in 

conjunction with other pre-processing aids. This was followed by the use of the watershed 

transform technique for image segmentation. Then, the highlighted areas in the image are 

subjected to further analysis to determine whether they were cancerous or non-cancerous. 

The watershed algorithm was previously tested on standard digital images of mammograms, 

and it was found to be effective. Several studies hitherto have focused on testing various 

algorithms, including watershed algorithms, to enhance the sensitivity of mammography or 

other imaging techniques; however, very few studies have incorporated automated 

algorithms. This study is unique in that the proposed automated algorithm was used to 

process MR images for the evaluation of breast cancer, and this approach was tested against 

the manual isolation of a tumour’s location from MR images. The results showed the 

considerable similarity between the results obtained by both the automated and manual 

processing approaches. 

 

This study confirmed the previously reported findings, insofar as the watershed transform 

method can be used with foreground markers to segment MR images. The algorithm 

described in this study was capable of successfully executing the automatic segmentation of 

the MR images obtained in cases of suspected breast cancer. Furthermore, the automatic 

watershed segmentation technique was successful in identifying breast cancer lesions in the 

MRI images of all 52 patients evaluated. The tumour regions identified by the automated 

algorithm and those identified by manual processing of the MR images were compared by an 

independent expert, and they were found to be largely consistent; in fact, 97.52% of the 

tumour areas defined by the former method overlapped with the areas defined by the expert. 

In the remaining cases, the tumour areas defined by the software extended slightly beyond 

those identified by the manual analysis. Thus, our findings show that processing using the 

automated algorithm may be almost as effective as the manual processing of the MR images. 
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This is consistent with the findings of previous studies, which have shown that automatic 

image processing is accurate and at least as effective as manual analysis.  

 

This study has a few limitations, which include the small sample size and the lack of more 

accurate techniques to confirm tumour margins. These drawbacks may be overcome by 

further investigating more large-scale populations comprising patients with different types of 

breast cancer. Furthermore, more accurate methods for tumour delineation should also be 

employed, possibly in conjunction with the combined use of multiple imaging modalities. 

 

6.8	 SUMMARY	

Satisfactory results were obtained when applying the watershed algorithm in the 

segmentation of MRI scans. Our results indicate that the method described in this study may 

facilitate the early detection of breast cancer. The results obtained by employing the 

automatic algorithm were found to be in close agreement with those obtained by manual 

detection. The findings appear to be promising and justify the development of future studies, 

which will aim to develop and compare more accurate techniques to help further refine and 

enhance the accuracy of this current approach. 
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CHAPTER 7 

_______________________________________________________ 

CLASSIFICATION OF MR IMAGES 

 

7.1	 INTRODUCTION		

 

MRI is a highly effective imaging modality when used in the early detection of breast cancer. 

Once an MRI scan is performed, an expert searches for signs of abnormalities; however, MR 

images are complex in appearance, and the signs of early disease are often small or subtle. 

This is the main reason why many missed diagnoses occur, as these errors are primarily 

attributable to human factors. To improve the accuracy of interpretation, or to help locate 

possible abnormalities, a variety of computer systems have been proposed. Some of the 

important signs of breast cancer that a specialist normally looks for are the size of a tumour, 

tumour complexity, and other recognizable features. MRI was repeatedly shown to be very 

useful in the timely detection of cancer, as it provides a clear picture of a tumour; however, 

even experts frequently fail to classify tumours as benign or malignant. As such, there is a 

need for an auto-classification method, which can help medical experts. Ensuring that the 

correct classification is made depends on efficient feature vector selection. This chapter first 

proposes two novel feature-extraction methods (radial mapping and uniform distribution of 

radial mapping), which can be used for breast cancer detection with the help of MRI. Both 

feature-extraction methods are applied to all MRI sample data, which comprise 26 cases of 

benign cancers and 26 cases of malignant cancers. The mathematical results (cancer type) of 

these feature-extraction methods are subsequently correlated with the opinions 

(classification) of medical experts. Thus, these features are used to classify breast cancer 

types. ANN is also employed to classify the tumours, particularly given its excellent non-

linear classification ability. Furthermore, a five-fold cross-validation method is used to check 

the robustness of a classification scheme. The false-positive and false-negative rates of the 

classifier are also checked, and it turns out that these are quite low. 
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Correctly diagnosing a tumour is a rather difficult task that requires special effort. The early 

diagnosis of breast cancer provides patients with the chance to receive better treatment, thus 

enhancing their chance of survival. The World Health Organization’s International Agency 

for Research on Cancer Working Group confirmed that the early detection and treatment of 

breast cancer are considered to be the most promising approaches to reduce mortality rates. 

There are currently four common ways to diagnosis breast cancer: BSE, clinical examination 

(CE), radiowave-based examination (RWBE), and MRI examination (MRIE).  

 

MRIE is the most efficient approach when attempting to perform the early identification of a 

breast tumour. Breast cancer detection using an MRI scan primarily utilizes the principles of 

NMR, which states that “Certain atomic nuclei can absorb and emit radio frequency energy 

when placed in an external magnetic field”. MRI scans the breast using an external magnetic 

field, which identifies potential tumour cells. Thereafter, an experienced radiologist analyzes 

the resulting MR images in order to classify a tumour as either benign or malignant. Several 

studies have shown that even for experienced radiologists, it is difficult to make clear 

distinctions between tumour types. Figure 7.1 shows MR image samples taken from both a 

benign and malignant tumour. 

 

 
                                            (a)                                                                 (b) 
 
FIGURE 7.1: SAMPLE MRI OF (A) A BENIGN AND (B) A MALIGNANT TUMOUR. 
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							7.2							Feature	Extraction	

Correct feature selection is the most important part for improved classification.  In this study, 

two new and better features are proposed. Along with that, three other features (that have 

been used in old literature) are also extracted. The five features extracted in this study are: 

1. Total tumour area 

2. Angular smoothness of the corners 

3. Counter-clockwise rotation versus clockwise rotation ratio  

4. Radial mapping of a tumour 

5. Uniform distribution of radial mapping of a tumour 

 

The last two feature extraction methods are novel and provide better insight of the tumour 

type and improve the classification accuracy.  

 

									7.2.1					Total	Tumour	Area	

The total area covered by a tumour is one of the factors that can be used to classify tumour 

type. To calculate the tumour area, a reference point, such as the centre of gravity (CG), 

needs to be chosen. The CG position is calculated by equation 7.1 and 7.2: 

 

CG! =
!!!

!!!
!

          (7.1) 

 CG! =
!!!

!!!
!

        (7.2) 

 

 

 

 

 

 

 

 

 

FIGURE 7.2: EXAMPLE OF HOW TO CALCULATE THE TUMOUR AREA WITH 
THE HELP OF TRIANGLES 

 
This feature is calculated by adding small areas formed by three points as three points form a 

CG	

Counter-clockwise	
rotation;	negative	area	

Clockwise	rotation,	
Positive	area	

	

Tumor	

i	i+1	

i	
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triangle as shown in Figure 7.3. The three points are selected as any two consecutive points 

(where tumour changes its direction) on the borders of the segmented region and the 

reference point (CG). The areas of these triangles are assigned a positive sign if the two 

consecutive points are turned around the CG in a clockwise direction; otherwise, they are 

assigned a negative sign. These small triangular areas are summed to calculate the total 

tumour area. The area of each triangle (with corner names A, B, and C) is calculated, as 

shown in equation 7.3  

 

Area = !! !!!!! !!! !!!!! !!! !!!!!
!

       (7.3) 

 

 
FIGURE 7.3: REFERENCE FIGURE FOR EQUATION 7.2 

 

The complete feature calculation involves two steps, which are as follows:  

First step: Calculation of the centre of gravity of the tumours and then selection of two 

consecutive points (where tumour changes its direction) on the contour.   

Second step: Calculation of the each triangular area (CG and two points in the contour) with 

respective signs (positive/ negative) and addition of them to obtain a single value (feature).  

7.2.2	Angular	Smoothness	of	the	Corners	

The angular smoothness of the corners is derived from the angular deviation of the corners, as 

shown in Figure 7.4. For each of the three consecutive points, A, B, and C, the angular 

deviation is calculated by equations 7.4–7.6: 

𝑑! =  𝑋! − 𝑋!;𝑌! − 𝑌!; 0         (7.4) 

x	

y	
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d! =  X! − X!;Y! − Y!; 0         (7.5) 

Angular Dev = cos!! !"#(!!,!!)
!"#$ !! ∗!"#$(!!)

      (7.6) 

 

 

 
 

 

 

 

 

FIGURE 7.4 SAMPLE CALCULATION APPROACH TO DETERMINE THE 
ANGULAR DEVIATION OF THE CORNERS 

 

Figure 7.5-A shows separated a cancer tumour from MR image, where Figure 7.5-B shows 

the plot of angular deviations with respect to each point, along with the associated variance. 

For a smooth shape (such as a perfect circle), the variance of this value will be zero (as all the 

deviation angles are the same); however, for shapes with many broken lines with different 

directions (clockwise or counter-clockwise), the variance will be a larger number.  

 

	

FIGURE 7.5: VARIANCE OF THE ANGULAR DEVIATION OF THE CORNERS 
 

This feature basically provides two aspects of the tumour. It gives the idea about the tumour’s 

shape and it also provides the variance value of the same.  
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					7.2.3						Counter-clockwise	rotation	vs.	clockwise	rotation	

The summation of the deviation angles (Figure 6.6) of all of the corners of a closed shape is 

360 degrees (the clockwise rotations are regarded as positive, while the counter-clockwise 

rotations are regarded as negative). However, if we sum the clockwise rotations and counter-

clockwise rotations separately, the ratio between these two values will represent the 

harshness or irregularity of the shape. For example, in the case of a circle, this ratio will be 

zero, while irregular shapes will yield some numerical value. To determine the direction of 

rotation, equation 7.7 is used (d1 and d2 are calculated by equations 7.4 and 7.5): 

 

d! = cross d!;d!   if Z!" < 0     𝐶𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒                   
if Z!" > 0    𝐶𝑜𝑢𝑛𝑡𝑒𝑟 − 𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒      (7.7) 

 

            
 

FIGURE 7.6: SAMPLE METHOD TO CALCULATE THE DIRECTION OF 
ROTATION 

 
This feature calculates and provides all associated angles with Counter-clockwise rotation 

and clockwise rotations of the tumour area.  

 

				7.2.4							Radial	Mapping	of	the	Tumour	

This novel feature present that some tumours have sharp angles at the corners, while the 

others have shallow and smooth corners. The shape of a tumour is first separated with the 

help of different image-processing methods (automatic segmentation). Figure 7.7A represent 

the plot of the shape of the tumour in respect to the Pixel number in the MRI photo – X and Y 
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coordinates where the corners of a tumour represented in points. 

To determine the tumour type with the help of radial mapping, the shape of a tumour was 

mapped to a radial coordinate, where the angular and radial position of each corner was 

calculated relative to the CG.  

 

	 
FIGURE 7.7 SEPARATED CANCER TUMOUR FROM THE MR IMAGE (A) AND 

RADIAL MAPPING OF A TUMOUR, AS BASED ON CALCULATING THE 
AREA OF A TRIANGLE (B) 

	
The following steps summaries the Radial Mapping feature and its calculation:  

Step one:  First of all, the radial mapping is needed to be done. To map the points along the 

radial map, calculate the angle (θ) between the centre and the two points on the contour of 

the tumour shape (the number of points depends on the tumour shape) with the help of 

following equations: 
 

R =  x− CG! ! + y− CG!
!
        (7.8) 

θ = atan2 y− CG!, x− CG!         (7.9) 
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Where R is the distance between the Centre of Gravity (CG) and each point (on the edges) 

 θ is the angle of the vector which connects CG to that point. 

In the equations 7.8 and 7.9, the angle changes between –π (radian) and +π (radian), and the 

associated distances are calculated in pixels.  

Step two: After mapping the tumour in the radial plane, the total area of the each triangle 

(which are created in step 1) is calculated to check the severity of cancer.	

	

7.2.5							Uniform	Distribution	of	Radial	Mapping	of	the	Tumour	

When the tumour corners are mapped to the radial coordinate, the point distribution does not 

remain uniform, and the distance between each corner point varies with mapping. To ensure 

that there is a uniform distribution, an interpolation method is used in this proposed approach. 

This interpolation uses the spline function to interpolate the points between –π and +π for 

different values of Δθ, as shown in Figure 7.8. The angles can easily be converted into 

degrees (-180 to 180 degree) also. For the sake of easy calculation and comparison, Δθ are 

used in terms of degree. The area of the triangles based on these uniformly distributed corner 

points (with different values of Δθ or different angular frequencies) behave as a function of 

Δθ, as shown in Figure 7.8. Figure 7.8, uses radian on the X-axis for the plot so that it can be 

compared with the earlier plots but it uses degree for the uniform distribution factor (Δθ) so 

that easy interpolation can be made possible.  
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FIGURE 7.8: UNIFORM DISTRIBUTION OF RADIAL MAPPING OF A TUMOUR 
WITH ΔΘ=15°/0.83 RAD (A) AND ΔΘ=5°/0.027 RAD (B) 

 
 

This feature has been tested with different values of Δθ (5°, 10°, 15°, 20°, 25°, and 30°). Table 

7.1 shows the extracted features from sample data of benign tumour using different value of 

Δθ.  

 
Table 7.1: Extracted features from sample data of benign tumour using different value 

of Δθ 

Sample Area 
(rad.pix) 
for Δθ=5° 

Area 
(rad.pix) 

for Δθ=10° 

Area 
(rad.pix) 

for Δθ=15° 

Area 
(rad.pix) 

for Δθ=20° 

Area 
(rad.pix) 

for Δθ=25° 

Area 
(rad.pix) 

for Δθ=30° 

Sample 1 1.60 2.02 2.98 4.27 4.68 7.76 

Sample 2 1.55 2.19 3.65 5.36 6.37 6.70 

Sample 3 1.46 2.01 2.75 3.92 4.14 3.42 

Sample 4 10.34 11.16 10.34 15.65 13.98 19.96 

Sample 5 1.48 4.18 6.04 7.04 8.78 10.74 
 

Main data 
Interpolated data 
Triangles 

A	

B	
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Table 7.2: Extracted features from sample data of malignant tumour using different 
value of Δθ 

Sample Area 
(rad.pix) 
for Δθ=5° 

Area 
(rad.pix) 

for Δθ=10° 

Area 
(rad.pix) 

for Δθ=15° 

Area 
(rad.pix) 

for Δθ=20° 

Area 
(rad.pix) 

for Δθ=25° 

Area 
(rad.pix) 

for Δθ=30° 

Sample 1  20.46 18.61   19.39 28.44 30.29 20.13 

Sample 2 11.39 17.16 15.95 16.52 17.09 26.92 

Sample 3 8.11 14.94 17.67 26.08   25.95 32.02 

Sample 4 18.25 21.25 22.41 17.54 27.08 23.66 

Sample 5 24.41 14.62 22.34 20.94 16.78 38.91 

These two tables presented above shows the extracted features for different values of Δθ, as 

well as for different datasets. For instance, one can clearly observe that the extracted features 

with Δθ =15° can itself be used to classify the type of tumour. For example: benign tumour 

generates a feature value somewhere between 2.75 to 10.34, whereas malignant tumour 

generates a feature value somewhere between 15.95 to 22.41. The use of other features along 

with this feature can make the prediction even better.  

 

7.3	 RESULTS	AND	DISCUSSIONS	

Both of the proposed feature-extraction methods (radial mapping and uniform radial 

mapping) are applied to the 56 MRI. Figure 7.10 shows the obtained features from the 

“Malignant classified” MRI sample and result of some value of Δθ, while Figure 7.11 shows 

the features from the “Benign Classification” with a different value of Δθ. 

 

        
(a)  Tumour shape after segmentation                  (b) Δθ=30°, Area = 38.75 rad.pix 
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(c)   Δθ = 20°, Area = 38.91 rad.pix                       (d) Δθ = 15°, Area = 20.92 rad.pix 

 

 

  
(e) Δθ = 10°, Area = 14.65 rad.pix 

FIGURE 7.10: OBTAINED FEATURES FROM A “MALIGNANT CLASSIFIED” 
MRI SAMPLE 

 

In the above Figure 7.10 (a), it shows the tumour shape after segmentation is performed and 

rest of the images Figure 7.10 (b) - Figure 7.10 (e) shows the uniform radial mapped output 

with different values of Δθ. The overall area (extracted feature) is also mentioned along with 

the every image.  

 

      
(a)  Tumour shape after segmentation                (b) Δθ =30°, Area = 9.20 rad.pix 

      
(c)   Δθ = 20°, Area = 6.10 rad.pix                       (d) Δθ = 5°, Area = 4.26 rad.pix 
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(e) Δθ =10°, Area = 2.70 rad.pix 

 

FIGURE 7.11: OBTAINED FEATURES FROM A “BENIGN CLASSIFIED” MRI 
SAMPLE 

 

In the above Figure 7.11 (a), it shows the tumour shape after segmentation is performed and 

rest of the images Figure 7.11 (b) - Figure 7.11 (e) shows the uniform radial mapped output 

with different values of Δθ. The overall area (extracted feature) is also mentioned along with 

the every image.  

In Benign case, the total area of the triangle turns out to be 9.20 rad.pix and 2.70 rad.pix for 

Δθ = 30° and Δθ = 10° respectively. This clearly indicates that the total area of triangle is 

much smaller in benign case as compared to malignant.  

  

In this study, total five features are calculate for each MRI image. Figure 7.12 shows the 

selected MRI image along with extracted features. 
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( a ) 

Tumour type: Benign 

Radial mapping area: 9.27 rad.pix 

Uniform radial mapping area (Δθ=15°)
 7.58 rad.pix 

Tumour area: 62 pix2 

Variance of deviation angles:  0.95 rad2 

Counter-clockwise to clockwise ratio:
 84.6%	

	

 

 

 

(b ) 

Tumour type: Benign 

Radial mapping area: 6.69 rad.pix 

Uniform radial mapping area (Δθ=15°)
 7.87 rad.pix 

Tumour area: 62 pix2 

Variance of deviation angles:  0.94 rad2 

Counter-clockwise to clockwise ratio:
 86.7%	

		(c)		

Tumour type: Malignant 

Radial mapping area: 32.58 rad.pix 

Uniform radial mapping area (Δθ=15°)
 25.92 rad.pix 

Tumour area: 618 pix2 

Variance of deviation angles:  0.84 rad2 

Counter-clockwise to clockwise ratio:
 100%	

				(d	)	

Tumour type: Malignant 

Radial mapping area: 16.6 rad.pix 

Uniform radial mapping area (Δθ=15°)
 14.48 rad.pix 

Tumour area: 314 pix2 

Variance of deviation angles:  0.83 rad2 

Counter-clockwise to clockwise ratio:
 93.9%	
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			(e	)	

Tumour type: Malignant 

Radial mapping area: 38.53 rad.pix 

Uniform radial mapping area (Δθ=15°)
 37.31 rad.pix 

Tumour area: 1225 pix2 

Variance of deviation angles:  0.75 rad2 

Counter-clockwise to clockwise ratio:
 97.1%	

	

FIGURE 7.12: SELECTED MRI SAMPLES AND THEIR CORRESPONDING 
EXTRACTED FEATURES 

 
 

All of the features shown in Figure 7.12 are extracted from the 56 MRI samples in order to 

determine the most efficient feature that can aid health care professionals as they classify 

various tumour types. Figure 7.12 (a) and (b) represents samples of the benign type tumour, 

whereas (c), (d) and (e) shows malignant cases. Table 7.3 shows the extracted features from 

the “Benign” tumour MRI samples and Table 7.3 shows the extracted features from the 

“Malignant” tumour MRI samples. 

 
Table 7.3: Extracted features from the “Benign” tumour MRI samples 

Sample Tumour 
Area 
(pix2) 

Radial 
Mapping 
Area 
(rad.pix) 

Uniform 
Radial 
Mapping 
Area 
(rad.pix) 

Variance of 
Deviation 
Angles (rad2) 

Counter-clockwise 
to Clockwise Ratio 
(%) 

1 62 9.27 7.58 0.95 84.60% 

2 62 6.69 7.87 0.94 86.70% 



	

94	

3 175 2.89 3.16 0.74 69.20% 

4 78 10.32 4.44 1.22 77.80% 

5 482 3 5.27 0.56 75.80% 

6 70 4.4 2.65 0.68 76.50% 

7 18.5 3.91 2.21 0.66 62% 

8 33 5.19 2.98 0.7 73.30% 

9 61 3.54 2.83 0.87 60% 

10 82.5 3.31 2.15 0.92 63.60% 

11 184 3.87 4.46 0.55 63.60% 

12 82.5 8.1 3.81 0.76 66.70% 

13 147.5 6.16 6.31 0.74 85.70% 

14 76 2.34 1.99 0.69 52.90% 

15 81 4.52 4 0.93 83.30% 

16 98.5 3.73 3.47 0.63 61.90% 

17 72 9.06 3.69 0.61 76.50% 

18 16 3.17 1.18 0.99 33.30% 

19 85.5 2.64 2.76 0.51 73.20% 

20 134 6.1 4.81 0.68 73.30% 

21 37 2.41 4.99 0.58 61.90% 

22 55.5 2.74 2.12 0.51 42.90% 

23 139 3.26 3.65 0.49 76.50% 

24 24 4.7 1.69 0.95 52.90% 

25 225.5 3.08 2.75 0.95 74.20% 

26 194 3.64 4.36 0.64 78.40% 

Average 106.76 4.69 3.73 0.74 68.72% 
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Table 7.4: Extracted features from the “Malignant” tumour MRI samples 
Sample Tumour 

Area 
(pix2) 

Radial 
Mapping 
Area 
(rad.pix) 

Uniform 
Radial 
Mapping 
Area 
(rad.pix) 

Variance of 
Deviation 
Angles (rad2) 

Counter-clockwise 
to Clockwise Ratio 
(%) 

1 618 32.58 25.92 0.84 100% 

2 314 16.6 14.48 0.83 93.90% 

3 1,225.5 38.53 37.31 0.75 97.10% 

4 1,040 29.47 17.76 0.75 94.10% 

5 945.5 35.96 22.34 0.7 96.40% 

6 2,708 35.88 34.82 0.69 100.00% 

7 1,409 42.65 33.14 0.81 91.90% 

8 1,792 9.09 17.67 0.61 95.20% 

9 623.5 23.48 22.41 0.78 91.20% 

10 768.5 4.01 12.64 0.76 92.70% 

11 1,666 12.99 15.94 0.64 92.20% 

12 595.5 24.46 19.39 0.7 100.00% 

13 3,504.5 18.28 28.39 0.68 97.90% 

14 4,690.5 70.63 80.99 0.69 97.40% 

15 6,041 54.44 73 0.73 99.00% 

16 3,938.5 11.76 29.71 0.67 97.30% 

17 7,535.5 49.88 62.35 0.53 97.90% 

18 9,982.5 40.14 73.92 0.52 97.10% 

19 599 11.78 10.34 0.8 94.70% 

20 1,451 15.86 24.65 0.77 93.70% 

21 2,519.5 23.81 34.74 0.71 97.70% 

22 1,304.5 35.9 36.85 0.66 93.20% 

23 275 14.1 8.75 0.6 92.90% 

24 595.5 24.46 19.39 0.7 100% 
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25 405 8.49 10.2 0.76 86.40% 

26 208 16.6 14.48 0.83 93.90% 

Average 2,182.90 26.99 30.06 0.71 95.53% 

 

Once all of the features were calculated, a simple threshold classification was applied to these 

features by first calculating the average of the “Benign” (Table 7.3) and “Malignant” (Table 

7.4) MRI samples, individually, and then calculating the average of these two averages 

(Table 7.5), which is known as the threshold value for classification. 

 
Table 7.5: Calculation of the threshold values for classification 

Sample Tumour 
Area 

Radial 
Mapping 
Area 

Uniform 
Radial 
Mapping 
Area 

Variance of 
Deviation 
Angles 

Counter-clockwise 
to Clockwise Ratio 

“Benign” 
Average 

106.76 4.69 3.73 0.74 68.72% 

“Malignant” 
Average 

2,182.90 26.99 30.06 0.71 95.53% 

Threshold 1,144.83 15.84 16.895 0.725 82.13% 

 

The following classification rules can be concluded from the findings in Table 7.5: 

• A tumour is “Malignant” if the total area covered by a tumour is >1,144.83 pix2; 

• A tumour is “Malignant” if the radial mapping area covered by a tumour is >15.84 

rad.pix; 

• A tumour is “Malignant” if the uniform radial mapping area covered by a tumour is 

>16.89 rad.pix; 

• A tumour is “Malignant” if the variance of deviation angles is <0.725; and 

• A tumour is “Malignant” if the counter-clockwise to clockwise ratio is >82.13%. 

 

The individual features are used to separate the “Malignant” and “Benign” classes of 56 MRI 

samples with the help of the aforementioned criteria. Table 7.6 details the percentage of 

correct classifications. 
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Table 7.6: Percentage of the correct classification of MRI samples with different 
features 

Feature Used Correct Classification, % 

Tumour Area 75.00% 

Radial Mapping Area 84.61% 

Uniform Radial Mapping Area 82.69% 

Variance of Deviation Angles 44.23% 

Counter-clockwise to Clockwise Ratio 88.46% 

 

From Table 7.6, it is quite clear that the “radial mapping” area and the “uniform radial 

mapping” area are better features when compared with “Tumour area”, as they provide more 

accurate classification. Classification accuracy can be further enhanced by combining the 

proposed feature-extraction methods with other features (tumour area, the variance of 

deviation angles, and the counter-clockwise to clockwise ratio).  

 

7.4	 CLASSIFICATION	SYSTEM		

Developing an approach that automates the detection of breast abnormalities is the need of 

the day. This not only helps radiologists to better understand the minute details of an 

irregularity, but it also aids in making rapid diagnoses. Speeding up the diagnostic process 

can enable radiologists to better serve larger patient populations within a specified time. The 

limitations of the diagnostic process traditionally followed by the radiologists can be properly 

addressed by introducing new computer-based algorithms. The existing methods have 

various limitations, such as non-optimal feature use, slow speeds, and poor accuracy rates. 

The use of multiple features helps us to retrieve the structural and functional features of the 

breast to detect the abnormal tissue patterns of breast cancer. ANN- and SVM-based 

classifiers have been designed, and they will be discussed in the next section. 

 

					7.4.1					ANN-based	Classification	

It is quite clear from the results (Table 7.5 and 7.6) of the simple threshold-based 

classification method that linear classifiers are not an optimal choice when analyzing our 

dataset, as it provides low accuracy. As such, an ANN-based classifier is implemented and 

used on this dataset instead. 
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Neural networks with 10 hidden layers nodes and 1,000 epochs (maximum) are used for this 

task. The hidden layers are fixed after multiple trails and cross validation to avoid over-

fitting. A back-propagation mechanism is used for training proposes, while the mean squared 

error is used to calculate errors in the neural network’s weight-updating process. Figure 7.13 

shows the architecture of the designed ANN.  

 

 
FIGURE 7.13: ANN ARCHITECTURE WITH A FIVE-FEATURE VECTOR 

 

As already mentioned, five features are calculated in this work. Among them, three old 

features (Tumour Area, Variance of Deviation Angles, Counter-clockwise to Clockwise 

Ratio) and two new features (Radial Mapping Area, Uniform Radial Mapping Area) are 

there. The ANN is trained with three (old features) and five features (old + new features), one 

by one, to highlight the advantage of the new feature vectors over the old feature vectors. 

Figure 7.13 illustrates the different parameter settings of the ANN employed here. 

 

 
FIGURE 7.14: ANN PARAMETERS 

 

Figure 7.15 shows the training, testing, and validation regression of the ANN when only three 

features are used. Figure 7.16 shows the training, testing, and validation regression of the 

ANN when only three features are used. The classification is enhanced when using a five-

feature-based classification approach. To better examine the classification results, a five-fold 

cross-validation was also used in this study; the results are provided in the next section.  



	

99	

 
FIGURE 7.15: REGRESSION PLOT OF THE ANN CLASSIFIER WITH THREE 

INPUTTED FEATURE VECTORS 

 
FIGURE 7.16: REGRESSION PLOT OF AN ANN CLASSIFIER WITH FIVE 

INPUTTED FEATURE VECTORS 
 

						7.4.2					K-fold	Cross-validation	

To avoid losing the generality of this approach, the performance of the ANN is tested on 

independent datasets generated using the training dataset itself. The results of the test are 
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shown in the tables. Although the results demonstrate a bit of variance with the different 

datasets, they are still within an acceptable range. It is quite evident from Tables 7.7 and 7.8 

that the five-feature-based classification approach performs better than the three-feature-

based classification method when employed on the same dataset. 

 
Table 7.7: The degree of accuracy of each run and the average accuracy (three 

features) 
Run Accuracy 

1 95.98 

2 96.30 

3 96.27 

Average 96.18 

 
Table 7.8: The degree of accuracy of each run and the average accuracy (five features) 

Run Accuracy 

1 97.87 

2 96.69 

3 97.70 

Average 97.42 

 

					7.4.3					False	positive	(FP),	False	Negative	(FN)	

The classifier is also tested against the false-positive and -negative results. A false positive is 

when a positive detection is made, even though there is no cancer; in other words, this is 

when “a malignant tumour” is detected, even though it is actually “a benign tumour”.  

A false negative is the opposite of a false positive; this is when a negative class is detected, 

even though cancer is actually present. Table 7.9 shows the false-positive rate and the false-

negative rate with multiple runs. 
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Table 7.9: The false-positive and false-negative rates 
Run 

False-positive Rate False-negative Rate 

1 0.06 0.04 

2 0.05 0.05 

3 0.06 0.05 

Average 0.056 0.046 

 

Mathematically, these parameters can be defined as: 

 

𝐹𝑃 =  !"#$% !!"#$#%& !"#$%&#
!"!#$ !"#$%$&' !"#$%&#

        (7.8) 

𝐹𝑁 =  !"#$% !"#$%&'" !"#$%&#
!"!#$ !"#$%&'" !"#$%&#

        (7.9) 

𝑇𝑃 =  !"##$!% !"##$%$&' !"#$%&#
!"!"# !"#$%$&' !"#$%&#

        (7.10) 

𝑇𝑁 =  !"##$!% !"#$%&'" !"#$%&#
!"!#$ !"#$%&'" !"#$%&#

        (7.11) 

 

7.4.4	Sensitivity	and	Specificity	

Sensitivity and specificity are two other parameters that show the robust and error-free nature 

of any system. These two parameters are defined as follows: 

Sensitivity refers to the test's ability to correctly detect patients who do have the condition 

under consideration. In our case, a classification test is used to identify the cancer type, while 

the sensitivity of the test is the proportion of people who test positive for the disease among 

those who have it. Mathematically, sensitivity is expressed as: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  !"
!"!!"

        (7.12) 

 

Specificity refers to the test's ability to correctly detect patients without a condition. The 

specificity of a test is the proportion of healthy patients who are known as not having the 

disease, and who will actually test negative for it. Mathematically, specificity is expressed as: 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  !"
!"!!"

        (7.13) 
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The performance of the proposed system is also tested against these parameters, and the same 

is shown in Table 7.10. 

 
Table 7.10: The sensitivity and specificity of the ANN classifier 

Run Sensitivity Specificity 

1 97.0260 97.1888 

2 96.2356 97.4582 

3 97.5564 96.2545 

Average 96.9393 96.9671 

 

 

7.5	 CLASSIFICATION	WITH	SVM	
 

To assess the possibility of improving classification, SVM was also tested on the dataset. K-

fold cross-validation was also applied on the SVM classifier. Different kernels were used 

during the classification stage to check the accuracy, FP, FN, sensitivity, and specificity to 

select the best kernel. Table 7.11 shows the accuracy of five-feature SVM classifiers using a 

multi-layer perceptron (mlp) kernel. Table 7.12 shows the FP and FN rates of the SVM 

classifier (mlp kernel). Table 7.13 shows the sensitivity and specificity of the SVM classifier 

(mlp kernel). 

 
Table 7.11: The accuracy of the SVM classifier (mlp kernel) with each run and the 

average accuracy 
Run Accuracy 

1 86.73 

2 86.53 

3 89.61 

Average 87.62 

 

 

 
Table 7.12: The false-positive and false-negative rate of the SVM classifier (mlp 

kernel) 
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Run FP FN 

1 0.52 0.86 

2 0.54 0.86 

3 0.36 0.72 

Average 0.47 0.81 

 
Table 7.13: The sensitivity and specificity of the SVM classifier (mlp kernel) 

Run Sensitivity Specificity 

1 84.07 89.60 

2 84.07 89.20 

3 86.66 92.80 

Average 84.93 90.53 

 

Table 7.14 shows the accuracies of the five-feature SVM classifier using the radial basis 

function (rbf) kernel. Table 7.15 shows the FP and FN rate of the SVM classifier (rbf kernel). 

Table 7.16 shows the sensitivity and specificity of the SVM classifier (rbf kernel). 

 
Table 7.14: The accuracy of the SVM classifier (rbf kernel) with each run and the 

average accuracy 
Run Accuracy 

1 96.15 

2 96.73 

3 96.53 

Average 96.47	

 
Table 7.15: The false-positive and false-negative rate of the SVM classifier (rbf kernel) 

Run FP FN 

1 0.38 0.02 

2 0.34 0 

3 0.36 0 

Average 0.36 0.006 

 
Table 7.16: the sensitivity and specificity of the SVM classifier (rbf kernel) 

Run Sensitivity Specificity 

1 99.62 92.40 



	

104	

2 100 93.20 

3 100 92.80 

Average 99.87 92.80 

 

Table 7.17 shows the accuracies of the five-feature SVM classifier using the linear kernel. 

Table 7.18 shows the FP and FN rate of the SVM classifier (linear kernel). Table 7.19 shows 

the sensitivity and specificity of the SVM classifier (linear kernel). 

 
Table 7.17: The accuracy of the SVM classifier (linear) with each run and the average 

accuracy 
Run Accuracy 

1 98.65 

2 98.65 

3 98.26 

Average 98.52 

 
Table 7.18: The false-positive and false-negative rate of the SVM classifier (linear) 

Run FP FN 

1 0 0.14 

2 0 0.14 

3 0 0.18 

Average 0 0.15 

 
Table 7.19: The sensitivity and specificity of the SVM classifier (linear) 

Run Sensitivity Specificity 

1 97.40 100 

2 97.40 100 

3 96.66 100 

Average 97.15 100 

 

Table 7.20 shows the accuracy rates of the five-feature SVM classifier using the quadratic 

kernel. Table 7.21 shows the FP and FN rates of the SVM classifier (quadratic kernel). Table 

7.22 shows the sensitivity and specificity of the SVM classifier (quadratic kernel). 

 

 



	

105	

Table 7.20: The accuracy of the SVM classifier (quadratic kernel) with each run and 
the average accuracy 

Run Accuracy 

1 96.53 

2 95.96 

3 96.73 

Average 96.40 

 
Table 7.21: The false-positive and false-negative rates of the SVM classifier (quadratic 

kernel) 
Run FP FN 

1 0.20 0.16 

2 0.20 0.22 

3 0.20 0.14 

Average 0.2 0.17 

 
Table 7.22: Showing the sensitivity and specificity of the SVM classifier (quadratic 

kernel) 
Run Sensitivity Specificity 

1 97.03 96.00 

2 95.92 96.00 

3 97.40 96.00 

Average 96.78 96.00 

 

Table 7.23 shows the accuracies of the five-feature SVM classifier using the polynomial 

order-3 (P-3) kernel. Table 7.24 shows the FP and FN rate of the SVM classifier (P-3 kernel). 

Table 7.25 shows the sensitivity and specificity of the SVM classifier (P-3 kernel). 

 
Table 7.23: The accuracy of the SVM classifier (P-3 kernel) with each run and the 

average accuracy 
Run Accuracy 

1 95.96 

2 95.76 

3 96.73 

Average 96.15 
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Table 7.24: The false-positive and false-negative rate of the SVM classifier (P-3 kernel) 
Run FP FN 

1 0.28 0.14 

2 0.30 0.14 

3 0.20 0.14 

Average 0.26 0.14 
 

Table 7.25: The sensitivity and specificity of the SVM classifier (P-3 kernel) 
Run Sensitivity Specificity 

1 97.40 94.40 

2 97.40 94.00 

3 97.40 96.00 

Average 97.40 94.80 

 

From the above tables, it is quite evident that linear kernel-based SVM provides the highest 

degree of accuracy, sensitivity, and specificity when compared to other kernels, as well as 

when compared with the neural network-based classifier. This implies that SVM (as a 

classifier) in MRI breast cancer using the feature extraction in this study is a preferable 

choice for this automated system. 

7.6	 AUTOMATED	SYSTEM	

A complete automated cancer classification system was developed in the current study. 

Figure 7.17 shows a snapshot of the developed system. The MR images are inserted into this 

system, which classifies the image using features as either “malignant” or “benign”.  

 
FIGURE 7.17: A FULLY AUTOMATIC CLASSIFIER FOR BREAST CANCER 
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Figures 7.18 and 7.19 show the operation of an automatic classifier; both images illustrate the 

detection of two different tumour types. 

 

 
 

FIGURE 7.18: BENIGN CANCER DETECTION USING THE BREAST CANCER 
CLASSIFICATION SYSTEM 

 

 

 

FIGURE 7.19: MALIGNANT CANCER DETECTION USING THE BREAST 
CANCER CLASSIFICATION SYSTEM 
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7.7	 SUMMARY	

This chapter proposed two novel and efficient feature-extraction methods, which are further 

used with threshold-based classification, to identify malignant and benign cancer cells. 

Image-processing methods were applied to identify the tumour area in the MRI samples. The 

proposed feature-extraction methods were also compared with the earlier proposed feature-

extraction methods (total area of a tumour, angular smoothness of the corners, and counter-

clockwise to clockwise rotation ratio) for classification accuracy. The use of the proposed 

feature vectors in the classification system enabled it to outperform a classifier that is only 

used in earlier feature vectors. In addition, the proposed features will also be applied to 

different classifiers in order to obtain better results. 
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CHAPTER 8 

________________________________________________________ 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

8.1	 Introduction		

This concluding chapter of the thesis provides a summary of the research, discusses the 

research contribution to knowledge and provides directions for future research in this realm 

of study. 

8.2			Research	Summary		
The research work described in this thesis employs numerous image-processing techniques to 

analyze suspicious tissue patterns for the early detection of breast cancer. With the critical 

review of the research filed, it become clear that none of the study on the breast had produced 

optimal performance in all cases. Moreover, it was also found out from the review that there 

has been a pressing need to improve the accuracy and sensitivity rate of these approaches for 

the early detection of breast cancer. 

Although much attention has been directed toward ensuring technical quality assurance, 

which will guarantee optimal image quality across most breast screening methods (including 

for mammograms, ultrasound, and MRI), the quality of interpretation seems to be the weakest 

link in the diagnostic process. Thus, there was a need to develop tools or algorithms that 

assist experts in quick and accurate decision making. In order to increase detection and 

diagnostic accuracy, as well as to reduce the amount of labour required, computer-aided 

methodologies (algorithms) have been developed. These computer-aided algorithms are able 

to make certain diagnoses in a more quantitative. Such methodologies or algorithms are also 

developed to assist medical professionals in the timely evaluation of medical images, while 

also helping them to detect abnormalities in the breast at earlier stages. In general, these 

methodologies employ computers to assist doctors to interpret medical images. In particular, 

these methodologies, which automatically detect or classify abnormalities in the breast, can 

be very useful for breast cancer control, and they can provide doctors with a second 

perspective that is both highly consistent and repeatable. 
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The techniques proposed herein not only improve image quality, but they also help to 

increase the image contrast; further, they automatically determine tumour location, greatly 

reduce the human workload associated with making diagnoses, and improve the accuracy of 

detection and diagnosis. Application of computer-aided algorithms during the pre-processing 

stage helps to separate suspicious regions (which may contain abnormalities) from the 

background region. In other words, such pre-processing methodologies partition the images 

acquired from the MRI scan into several non-intersecting regions, while extracting ROIs and 

suspicious tissue candidates from these images. Generally, a computer-based breast cancer 

detection system uses some image-processing methods, like image segmentation, 

classification, and so forth, to detect breast cancer in its early stages. This research was 

focused on the development of a method that can detect and classify breast tumours using an 

ANN and SVM based classifier. The performance of this classifier was also checked via a 

cross-validation test. The false-positive and false-negative rates were also determined, and 

they were found to be very low. 

8.3	Research	contribution		
This research work made a significant contribution in the field of automated breast cancer 

detection system development. Present work developed a system that can segment and 

classify the tumours in breast cancer automatically. The developed system can made a correct 

diagnosis for the type of the breast tumours. The introductory chapter of the report provided a 

list of objectives to meet in order to achieve the research aim. Based on these objectives, the 

following aims were accomplish in this research: 

• It provided the novel feature extraction method. 

• It combined many feature extraction to classify the type of the tumour. 

• It provided an automatic segmentation and classification system. 

• It also provided a high accuracy classification system. 

• It gave relatively low number of false-positive and false-negative rate during 

classification. 

As stated in chapter 1, there was a limitation of using MRI in breast cancer image processing 

research. The use of MRI in this study can positively improve the field of medical image 

research. In other words, by exploring complex and automated stages to segment and classify 

the tumour (using multi feature extraction), a better automated model can be developed. As 

far as present study is concerned, breast cancer automatic segmentation was successfully 
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provided the suspicious area with 97% accuracy. The developed model is tested against the 

55 images that were pre-marked (classified) by the experts of the field.  

Moreover, in terms of the exploration for classifier and feature extraction, this research did 

not just apply simple feature extraction as often seen in research within this area of study. It 

developed a new feature extraction method to classify the tumours more accurately. The 

radial mapping and uniform radial mapping feature was clearly improved the classfication 

accuracy of the system. 

These feature extraction methods were combined with ANN and SVM methods to provide 

accurate and error free classifications.  

 

8.4	 FUTURE	AVENUES	
Although this study has made numerous positive contributions, it is important to 

acknowledge the study’s limitations. Since early detection is the only approach that can be 

used to successfully manage or treat breast cancer, which is a highly life-threatening 

condition, much effort must be made to improve the accuracy with which various systems 

identify sites of structural distortion, while also quantitatively assessing the cancer detection 

rate. Improved methods are needed to ensure the early detection of breast cancer. In fact, 

increased sensitivity is required to reduce the mortality rate associated with this disease, 

while also improving the prognosis of breast cancer patients. 

To improve the accuracy with which lesions are detected at the breast boundary region, novel 

segmentation approaches are required. One possible solution may be to impose shape 

restrictions on the growing mass. Further, one can also improve the performance and 

accuracy of the results by applying this approach to high-quality digital mammogram images. 

It is important to note that the MRI-based breast cancer detection methods proposed herein 

were tested on a small set of clinical MRI images, as there is a lack of standard MRI datasets. 

Future work should validate the results reported here in larger datasets. 

The current state of the art says that most of the work that has been carried out on the 

detection of breast cancer include a single modality concept. However, as was discussed in 

previous chapters, the features retrieved from one modality are not sufficient for classifying 

and detecting the abnormalities associated with early-stage breast cancer. Future research 
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should be carried out to design and test image-processing algorithms that extract features 

from other modalities (like mammograms, ultrasound images, CT, PET, and so on), while 

also combining these features at different levels to improve detection rates and accuracy. 
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