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Abstract: Interest in the Mn+1AXn phases (M = early transition metal; A = group 13–16 elements, 
and X = C or N) is driven by their ceramic and metallic properties, which make them attractive 
candidates for numerous applications. In the present study, we use the density functional theory to 
calculate the elastic properties and the incorporation of lithium atoms in the 312 MAX phases. It is 
shown that the energy to incorporate one Li atom in Mo3SiC2, Hf3AlC2, Zr3AlC2, and Zr3SiC2 is 
particularly low, and thus, theoretically, these materials should be considered for battery applications. 

Keywords: MAX phases; DFT; elastics; lithiation 

1. Introduction 

MAX phases are a class of ternary nitrides and carbides that we can categorize into families 
of M(n+1)AXn, with n = 1, 2, 3, 4, and other MAX phase-related structures like the 321 MAX phases 
or the iMAX phases [1–4]. A family of 211 of these materials was discovered in powder form in 
1960, with the name H-phases from Nowotny et al. [5], but, after many years, Barsoum and El-Taghy 
synthesized the first bulk MAX phase, Ti3SiC2 [6], with enough purity to enable them to characterize 
its properties. Since then, there interest has grown regarding MAX compounds, due to their unusual 
properties, which are a result of their bonding characteristics and their structures [7–14]. Just like 
MXenes, which are the corresponding binary carbides and nitrides that are created from MAX phases 
after an exfoliation process that removes the A layer [7], the MAX compounds have a high elastic 
stiffness and are good electrical conductors [8]. Regarding their mechanical behavior, MAX phases are 
machinable and have high thermal and damage resistance [11,12]. These properties have constituted 
the 312 MAX phases as important materials for numerous high-end applications, including space, 
electronic, and nuclear [13–25]. 

A schematic of the crystal structure (P63/mmc, space group no. 194) [5] of the 312 MAX phases is 
given in Figure 1. The “metallic” layers (A) are positioned between the n “ceramic” layers (M3AX2 

for n = 2) along the c-direction. The M and X layers effectively form M2X slabs, with face-centered 
cubic-type stacking. In the present research, we have examined the potential application of the 312 MAX 
phases as anode materials in Li-ion batteries or supercapacitors. Modern battery technology uses the 
3D carbon structure, graphite, as an anode material, and there are reports that graphene batteries that 
could have better performances [26]. Etching the A from the MAX compounds leads to the 2D material 
MXenes, which, from a theoretical point, could become the future Li-ion battery anode material, as it 
exhibits better cycles than graphite [27,28]. However, in order to create the MXenes, the method of 
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hydrofluoric acid (HF) etching is used, and although it removes the A layer, it also affects the bonding 
between the M and X layers. This creates some unwanted characteristic changes, as it sometimes affects 
the elastic properties of the material. Moreover, although in most cases MXenes have unique electrical 
characteristics, sometimes when the etching removes the A layer, the resulting structure becomes a 
semiconductor [29], and as a result, this MXene cannot be used as an anode material. Recently, the first 
2D MAX phases (MAXenes) were demonstrated that consist of a 2D structure, which, unlike the 2D 
MXenes, keeps the A layer [30]. In order to examine the application of MAXenes in Li-ion batteries, it is 
evident that the interactions of Li in the MAX phases should be examined first in order to predict how 
the lithiation is affected by the A layer. Lastly, as has been indicated in previous studies, the creation of 
MXenes is a high-cost method [29]. From all of the above, we believe that our research is important, 
as the Li-doped MAX phases could have better performances in the Li-ion batteries technology than 
MXenes, and moreover, they have never been investigated before. 
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Although Mo3SiC2, Hf3AlC2, Zr3AlC2, and Zr3SiC2 are of interest, it should be noted that not all of 
these compounds have been synthesized yet, although there are many reports that provide some of 
them in stable forms. Specifically, Zhou et al. [31] have synthesized an Zr3AlC2 together with Solvas-
Zapata et al. [32], who synthesized Zr3(Al1−xSix)C2. Regarding Mo3SiC2, there are many theoretical 
reports [33] about its properties, like self-healing. However, it has not been synthesized. There are 
also experimental reports on stable forms of Zr3SnC2 and Hf3AlC2 from Lapauw et al. [34]. There are 
also some trends in thin film MAX phases [35], as well as in sol-gel methods of creating the MAX 
phases compounds [36], that are examined by experimentalists for the synthesis of new MAX phases. 
To conclude, of the four 312 materials that we propose should be examined for potential lithiation, 
two of them have already been synthesized in stable forms (Zr3SnC2 and Hf3AlC2) and one has been 
synthesized as part of a mixed structure (Zr3SiC2); accordingly, we believe that their lithiation abilities 
could be investigated both experimentally and theoretically. We will then propose some 
experimental works with the stable synthesized forms of the 312 MAX phases that could be 
examined, in order to see their performances as Li-ion battery anodes. 

2. Computational Methods 

CASTEP, a plane-wave DFT code, was employed for all the calculations [37,38]. The generalized 
gradient approximation, ultra-soft pseudopotentials [39], and the Purdew, Burke, and Ernzerhof 
(PBE)[40] exchange-correlation function were used. To optimize the geometry, the Broyden–Fletcher–
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The aim of the present work is to study the elastic properties and Li formation in the M3AX2 

phases (M = Hf, Nb, Ta, Ti, V, Zr, and Mo; A = Si, Al, Sn, Ga, and In; X = C) using the density 
functional theory (DFT), and to compare our results with other related experimental and theoretical 
studies. Although Mo3SiC2, Hf3AlC2, Zr3AlC2, and Zr3SiC2 are of interest, it should be noted that 
not all of these compounds have been synthesized yet, although there are many reports that provide 
some of them in stable forms. Specifically, Zhou et al. [31] have synthesized an Zr3AlC2 together 
with Solvas-Zapata et al. [32], who synthesized Zr3(Al1−xSix)C2. Regarding Mo3SiC2, there are many 
theoretical reports [33] about its properties, like self-healing. However, it has not been synthesized. 
There are also experimental reports on stable forms of Zr3SnC2 and Hf3AlC2 from Lapauw et al. [34]. 
There are also some trends in thin film MAX phases [35], as well as in sol-gel methods of creating 
the MAX phases compounds [36], that are examined by experimentalists for the synthesis of new 
MAX phases. To conclude, of the four 312 materials that we propose should be examined for potential 
lithiation, two of them have already been synthesized in stable forms (Zr3SnC2 and Hf3AlC2) and 
one has been synthesized as part of a mixed structure (Zr3SiC2); accordingly, we believe that their 
lithiation abilities could be investigated both experimentally and theoretically. We will then propose 
some experimental works with the stable synthesized forms of the 312 MAX phases that could be 
examined, in order to see their performances as Li-ion battery anodes. 

2. Computational Methods 

CASTEP, a plane-wave DFT code, was employed for all the calculations [37,38]. The generalized 
gradient approximation, ultra-soft pseudopotentials [39], and the Purdew, Burke, and 
Ernzerhof (PBE) [40] exchange-correlation function were used. To optimize the geometry, 
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the Broyden–Fletcher–Goldfarb–Shanno (BFGS) minimizer was employed and implemented in the 
CASTEP. The supercells contained 108 atomic sites, with a plane-wave basis set cut-off of 450 eV, 3 × 3 
× 1 Monkhorst–Pack (MP) [41]. The Li interstitial was placed at all possible sites. After an extensive 
search for all the possible sites, we found all the minimum energy positions of the Li interstitials. 
The minimum energy sites are presented in Figure 2. For the elastic properties, a unit cell was 
considered, with a plane-wave energy cut-off of 550 eV and with 18 × 18 × 2k-point mesh. 
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the elastic constants provide is also connected to the chemical bonds of the atoms of the solid. The 
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Zr3SnC2 results in the conclusion that it is easiest to deform via <001> compression under uniaxial 
stress. 

Focusing on the bulk elastic parameters, in Table 1, the bulk modulus B, Young’s modulus Y, 
and the shear modulus G have been calculated. It is evident that the Zr3SnC2 has the lowest value of 
B, and, as a consequence, it has the lowest resistance under compression. Conversely, Mo3SiC2, which 
has the highest value, has the highest resistance to compression. The shear modulus G has the lowest 
value in Zr3SnC2, and so this MAX phase is more prone to shape change than the others. The Young’s 
modulus Y, which is a measure of the stress required for deformation, has the lowest value in the 
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3. Results 

3.1. Elastic Properties 

The mechanical behavior of materials is dependent on their elastic constants. Moreover, the elastic 
properties of the materials are linked to the bonding characteristics, so the information that the 
elastic constants provide is also connected to the chemical bonds of the atoms of the solid. The MAX 
compounds have hexagonal crystal structures [5,42]. Therefore, the 312 MAX phases have six different 
elastic constants: c11, c12, c13, c33, c44, and c66. Only the first five of them are independent, taking 
into account that c66 = (c11 − c12)/2. In order for the MAX compounds to be dynamically stable, the 
following conditions must be met [43]: 

c11 > 0, c33 > 0, c44 > 0, (c11 + c12) c33 > 2(c13)2, and (c11 − c12) > 0 (1) 

The calculated results for the selected 312 MAX phases have been investigated in previous 
studies [44,45]. In Table 1, we present the elastic properties of the 312 MAX phases. It is seen that the 
above conditions are met, and so the studied MAX phases are mechanically stable. 

The elastic stiffness of a solid, regarding the (100) <100> strain, is calculated by the c11 constant. 
Thus, V3AlC2 is the stiffest. On the other hand, Zr3AlC2 and Ti3InC2 are the least stiff. The c12 

elastic constant is a measure of the deformation of the material in the (110) plane along the <100> 
direction. Therefore, Ti3AlC2 is the most easily deformed. The c12 and c13 values indicate that when 
force is applied along the a- crystallographic axis, Ti3AlC2, Ti3InC2, Ti3GaC2, and V3AlC2 are easier 
to shear along the b and c axes than the other MAX compounds in Table 1. Lastly, the lower value 
of c33 for Zr3SnC2 results in the conclusion that it is easiest to deform via <001> compression under 
uniaxial stress. 

Focusing on the bulk elastic parameters, in Table 1, the bulk modulus B, Young’s modulus Y, and 
the shear modulus G have been calculated. It is evident that the Zr3SnC2 has the lowest value of B, and, 
as a consequence, it has the lowest resistance under compression. Conversely, Mo3SiC2, which has the 
highest value, has the highest resistance to compression. The shear modulus G has the lowest value in 
Zr3SnC2, and so this MAX phase is more prone to shape change than the others. The Young’s modulus 
Y, which is a measure of the stress required for deformation, has the lowest value in the Zr3SnC2 MAX 
phase, compared to the other MAX phases in Table 1 (also refer to [44–52]). 
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Table 1. Calculated elastic constants Cij (GPa), bulk modulus B (GPa), shear modulus G (GPa), Young’s 
modulus Y (GPa), Poisson’s ratio v, Pugh’s ratio B/G, elastic anisotropy factor A, and shear anisotropy 
factor (kc/ka) for the 312 MAX phases *. Comparison with previous studies [44–52]. 

Phase c11 c12 c13 c33 c44 A kc/ka B G Y B/G v Ref. 

355 74 66 295 125 0.971 1.314 157 131 307 1.199 0.174 [44] 
358 84 75 293 122 0.974 1.343 163 127 303 1.279 0.190 [47] 

Ti3AlC2 361 75 70 299 124 0.954 1.297 160 131 309 1.221 0.178 [47] 
368 81 76 313 130 0.983 1.253 168 135 320 1.245 0.183 [46] 

- - - - - - - 165 124 297 1.331 0.20 [49] 

Zr3AlC2 
322 
314 

84 
78 

97 
79 

287 
262 

138 
107 

1.330 
1.024 

1.116 
1.279 

165 
151 

122 
110 

294 
266 

1.353 
1.373 

0.203 
0.207 

This 
[46] 

V3AlC2 
404 
390 

84 
82 

108 
116 

361 
358 

158 
158 

1.151 
1.225 

1.075 
0.991 

197 
196 

153 
147 

364 
354 

1.288 
1.333 

0.191 
0.200 

This 
[46] 

349 79 79 283 123 0.963 1.324 161 125 298 1.288 0.192 This 

Hf3AlC2 
347 
357 

77 
82 

80 
83 

291 
283 

127 
126 

0.941 
0.940 

1.251 
1.365 

162 
166 

127 
128 

302 
305 

1.276 
1.297 

0.189 
0.193 

[50] 
[51] 

348 79 82 290 112 1.058 1.264 163 121 291 1.347 0.203 [52] 

Ta3AlC2 
411 
441 

113 
132 

136 
138 

343 
382 

156 
175 

0.772 
0.781 

1.217 
1.217 

214 
231 

143 
157 

351 
384 

1.497 
1.471 

0.227 
0.223 

This 
[46] 

365 89 99 352 156 1.202 1.012 184 143 341 1.287 0.191 [44] 
370 99 111 349 151 1.209 1.038 192 138 334 1.392 0.210 [46] 

Ti3SiC2 372 88 98 353 167 1.267 1.036 185 149 352 1.245 0.183 [48] 
- - - - - - - 185 139 333 1.331 0.20 [49] 
- - - - - - - 186 144 343 1.291 0.192 [48] 

Hf3SiC2 
357 
348 

93 
101 

115 
120 

334 
335 

157 
144 

1.362 
1.300 

1.005 
0.972 

188 
190 

136 
127 

329 
312 

1.382 
1.496 

0.209 
0.227 

This 
[46] 

Ta3SiC2 
335 
352 

145 
220 

221 
210 

325 
345 

179 
182 

3.284 
2.628 

0.365 
1.126 

239 
256 

103 
102 

270 
270 

2.320 
2.509 

0.317 
0.324 

This 
[46] 

Zr3SiC2 
323 
320 

85 
100 

99 
107 

304 
296 

135 
125 

0.794 
0.804 

1.024 
1.090 

169 
174 

122 
113 

295 
279 

1.385 
-

0.209 
0.233 

This 
[46] 

Mo3SiC2 377 175 186 364 151 1.637 1.011 245 116 301 2.112 0.300 This 

Hf3SnC2 
320 
326 

95 
96 

96 
97 

300 
300 

115 
107 

1.075 
0.991 

1.093 
1.123 

168 
170 

112 
110 

275 
272 

1.500 
1.550 

0.227 
0.234 

[45] 
[46] 

319 103 80 304 113 0.976 1.170 163 112 273 1.455 0.221 [44] 
Ti3SnC2 331 96 80 285 108 0.943 1.302 161 113 274 1.436 0.217 [46] 

331 91 81 299 129 1.103 1.193 162 122 285 1.328 0.208 [48] 

Zr3SnC2 
280 
297 

92 
90 

84 
87 

257 
268 

110 
95 

1.192 
0.972 

1.179 
1.177 

148 
154 

99 
98 

243 
244 

1.495 
1.571 

0.227 
0.237 

[45] 
[46] 

Ti3InC2 
338 
340 

80 
85 

63 
67 

276 
263 

92 
97 

0.754 
0.826 

1.371 
1.478 

151 
152 

111 
111 

267 
267 

1.360 
1.362 

0.205 
0.205 

[44] 
[46] 

Ti3GaC2 
359 
356 

78 
86 

69 
75 

292 
285 

123 
113 

0.959 
0.920 

1.341 
1.390 

159 
162 

130 
122 

306 
293 

1.223 
1.324 

0.179 
0.198 

[44] 
[46] 

356 88 91 324 140 1.125 1.125 175 134 320 1.306 0.195 [44] 
Ti3GeC2 357 100 97 325 129 1.051 1.152 180 126 307 1.426 0.216 [46] 

355 85 94 338 148 1.171 1.032 177 138 312 1.283 0.207 [48] 

* Elastic constants and moduli are shown in round figures. 

In order to gain information about the brittle or ductile failure of the MAX phases, the Pugh’s 
modulus (B/G) is used [53]. More analytically, when the Pugh’s modulus exceeds 1.75, the material 
is characterized as ductile, which means that a crack progresses slowly when plastic deformation 
occurs. Conversely, in brittle materials, cracks extend rapidly with little applied stress. According 
to the results of Table 1, all of the MAX phases studied are brittle, except for Mo3SiC2 and Ta3SiC2. 
Another important parameter is the anisotropy factor kc/ka = (c11 + c12 − 2c13)/(c33 − c13), which 
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indicates whether the MAX phase is more compressible along the a- or c-axis. It is obvious that Ti3SiC2, 
Mo3SiC2, Hf3SnC2, Hf3SiC2, V3AlC2, and Ta3SiC2 are the only MAX compounds of those studied 
where compression on the a-axis has almost the same value as on the c-axis. 

The Poisson’s ratio is another important constant that informs us if the material is a central-force 
solid or a non-central-force solid [48], and also classifies the materials as brittle or ductile [54,55]. If the 
Poisson’s ratio is between 0.25 and 0.50, then the material is a central-force solid. Otherwise, it is a 
non-central-force solid. Furthermore, if the Poisson’s ratio is more than 0.26, then the solid is ductile, 
and if it has a lower value, it is brittle. The calculated results show that all the studied MAX phases in 
Table 1 are non-central-force and brittle, except for Mo3SiC2 and Ta3SiC2, which are central-force. 

The elastic anisotropy, A, is an important description meaning that a body cannot develop the 
same strain independently of the direction in which the stress is applied. The elastic anisotropy factor 
indicates how the elastic properties of a solid are dependent on the direction of the stress. Additionally, 
the elastic anisotropy is connected with the thermal expansion and the crystal microcracks [56]. For the 
MAX phase systems that are hexagonal, the elastic anisotropy factor is calculated from the equation 
A = 4c44/(c11 + c33 − 2c13), and if A = 1, the crystal is isotropic. The results of Table 1 characterize 
Mo3SiC2 and Ta3SiC2 as being more elastically anisotropic than the other MAX phases, and because 
the value of the elastic anisotropy factor of Hf3SnC2 is almost 1, this MAX phase is elastically isotropic. 

As regards the elastic properties of the MXenes, focusing on the research of Ge et al. [57] on the 
superconducting and high hardness of Mo3C2, it has been proved that it is a brittle material with a B/G 
of 2.35. We calculated that the hypothetical Mo3SiC2 is a brittle material, and we found that the B/G is 
slightly lower than the similar MXene, with a value of 2.11. As a result, it is seen that the Mo3SiC2 is 
not as brittle as Mo3C2, which makes it more difficult to crack during “diffusion”. As regards the Ti3C2, 
Borysiuk et al. [58] used the molecular dynamics method in order to predict the elastic properties of the 
Tin+1Cn MXenes, and they calculated, in the case of Ti3C2, a value of 502 GPa for the Young’s modulus, 
while Bai calculated a c11 constant equal to 523 GPa [59]. Compared to our results, it is evident that for 
every one of the Ti3AC2 MAX compounds, the Young modulus and the elastic constant c11 have much 
lower values. Focusing on the Zr3C2 MXene, Xie et al. [60] made a theoretical study on the elastic 
properties of that MXene, and compared to our 312 MAX phases with Zr-A-C, it is seen that only the 
Zr3SnC2 is less stiff. As a result, it will be softer and more easily machinable than the Zr3C2. From all 
of the above, it is evident that the majority of our MAX phases are performing with better elasticity 
characteristics and can be more easily manipulated than the similar MXenes, in order to be used as 
anodes in Li-ion batteries (LIBs). 

3.2. Lithiation 

The formation energy to incorporate a Li atom in the MAX phase, with ΔH for Li-intercalated 
systems, is defined by the following equation: 

ΔH = E(withxLi) − E(withoutLi) − xE(Li) (2) 

where E (with xLi) and E (without Li) are the energies of the system with and without Li atoms. Herein, 
we used one Li atom as an interstitial, and in result, x = 1. Also, E (Li) is the total energy of a single 
Li atom (here, it is 192.029 eV). In order to calculate the energy of the one Li atom, we performed a 
calculation for a supercell consisting of 67 Li atoms, and we performed geometry relaxation. We thus 
calculated the energy of the supercell, and we divided it with 67 in order to find the energy of the one 
atom. In Table 2, the formation energies of the lithiated 312 MAX phases are provided. 
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Table 2. The formation energy of 312 MAX phases when one Li atom is inserted. 

312 MAX Phases Formation Energy/eV 

Ti3AlC2 1.1966 
Zr3AlC2 0.1499 
V3AlC2 2.6507 
Hf3AlC2 0.4172 
Ta3AlC2 1.7890 
Ti3SiC2 1.1597 
Hf3SiC2 0.6902 
Ta3SiC2 1.2943 
Mo3SiC2 0.0056 
Zr3SiC2 0.1608 
Hf3SnC2 1.9508 
Ti3SnC2 2.9303 
Zr3SnC2 1.6645 
Ti3InC2 2.1320 
Ti3GaC2 0.9735 
Ti3GeC2 1.5416 

From Table 2, it is evident that the lithiation of the 312 MAX phases studied here is endothermic, 
which reflects instability. However, Mo3SiC2, Hf3AlC2, Zr3AlC2, and Zr3SiC2 exhibit Li formation 
energies less than 0.5 Ev, making the incorporation of Li in the MAX lattice feasible, and they are 
even lower than those of MAX materials considered in previous works [61–63]. This is extremely 
important, as MXenes are generally considered better candidates for battery applications, compared 
to the MAX phases. Nevertheless, the present work identifies four materials (Mo3SiC2, Hf3AlC2, 
Zr3AlC2, and Zr3SiC2) that are potentially important for such applications. It should be stressed that 
previous experimental works have only identified oxygen-doped Ti3SiC2 as having high Li-ion storage 
capacity, and hence, as being potentially important as an anode material for Li-ion batteries [64]. 
In the present study, though, we found that Ti3SiC2 has a high formation energy for lithiation (refer 
to Table 2). This implies that doping could further decrease the Li-intercalation formation energy 
of Mo3SiC2, Hf3AlC2, Zr3AlC2, and Zr3SiC2, thus making them appropriate candidates for battery 
applications. MAX phases present potential advantages over MXenes, exhibiting better material 
properties (high thermal-shock resistance, elastic stiffness, melting temperatures, and electrical and 
thermal conductivity). They are less-complicated structures, as they do not need functional groups to 
be stabilized [61]. We searched the literature about the formation energy of similar lithiated MXene 
structures, but we could only find a report about Ti3C2 where the formation energy for the lithiated 
structure was calculated at 4.40 eV [65]. It is obvious that this value is higher than our theoretical 
results, so the lithiation in the 312 MAX phases needs less energy than the above-mentioned MXene. 

In an effort to link the elastic properties with the Li formation energies in the 312 MAX phases, 
we considered Figure 3. This was motivated by initial work on the Ti3AC2 (A = Sn, Si, Ge, Ga, Al, and 
In) MAX phases where there is a decrease of Li formation energy with respect to the C11 elastic constant 
(refer to Figure 3a). Nevertheless, when considering the whole range of the 312 MAX phases, there is no 
specific trend (refer to Figure 3b–d). Future theoretical work should include thermodynamic models to 
investigate further if the bulk properties impact the formation energies of Li in these systems [66–68]. 
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dependence of the formation energy (eV) of the lithiated 312 MAX phases from the C11 (GPa) elastic 
constant. (d) The dependence of the formation energy (eV) of the lithiated 312 MAX phases from the 
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4. Conclusions 

To summarize, the mechanical behavior and the formation energy for the lithiation of the 312 MAX 
phases has been calculated using the density functional theory. From our calculations, it is evident 
that Zr3SnC2 is more prone to shape change along the b- and c-axes when stress along the a-axis is 
applied. Moreover, Zr3SnC2 does not need high stress in order to deform, and has low resistance to 
deformation under compression. 

The energy to incorporate Li-ions in the 312 MAX phases is considerably high, with the exception 
of Mo3SiC2, Hf3AlC2, Zr3AlC2, and Zr3SiC2, for which formation energies of Li intercalation less 
than 0.5 eV were calculated. The Li formation energies in Mo3SiC2 and Zr3SiC2 are particularly low. 
However, they have not yet been synthesized. Regarding the other compounds, it could be proposed 
that their potential as LIBs or supercapacitor anodes should be examined. 

To conclude, from the four 312 materials that we propose should be examined for potential 
lithiation, two of them have already been synthesized in stable forms (Zr3SnC2 and Hf3AlC2) and one 
has been synthesized as part of a mixed structure (Zr3SiC2), and so we believe that their lithiation 
ability could be investigated both experimentally and theoretically. There have been, compared to the 
MXenes, very few studies of the MAX phases for battery applications. Obviously, the incorporation 
of Li is only part of the picture, and future studies should focus on the diffusion of Li from both an 
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experimental and theoretical viewpoint. Doping strategies should also be employed to lower the 
formation and migration energies of Li in the MAX phases. 
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