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ABSTRACT

ROCHA, J. N., C. M. BARNES, P. REES, C. T. CLARK, G. STRATTON, and H. D. SUMMERS. Activity Mapping of Children in Play

Using Multivariate Analysis of Movement Events. Med. Sci. Sports Exerc., Vol. 52, No. 1, pp. 259–266, 2020. Purpose: (i) To develop

an automatedmeasurement technique for the assessment of both the form and intensity of physical activity undertaken by children during play.

(ii) To profile the varying activity across a cohort of children using a multivariate analysis of their movement patterns.Methods:Ankle-worn

accelerometers were used to record 40 min of activity during a school recess, for 24 children over five consecutive days. Activity events of

1.1 s duration were identified within the acceleration time trace and compared with a reference motif, consisting of a single walking stride

acceleration trace, obtained on a treadmill operating at a speed of 4 km h−1. Dynamic time warping of motif and activity events provided met-

rics of comparative movement duration and intensity, which formed the data set for multivariate mapping of the cohort activity using a prin-

cipal component analysis (PCA).Results: The two-dimensional PCA plot provided clear differentiation of children displaying diverse activity

profiles and clustering of those with similar movement patterns. The first component of the PCA correlated to the integrated intensity of move-

ment over the 40-min period, whereas the second component informed on the temporal phasing of activity. Conclusions: By defining move-

ment events and then quantifying them by reference to a motion-standard, meaningful assessment of highly varied activity within free play can

be obtained. This allows detailed profiling of individual children’s activity and provides an insight on social aspects of play through identifi-

cation of matched activity time profiles for children participating in conjoined play. Key Words: CHILDREN’S PHYSICAL ACTIVITY,

INERTIAL SENSORS, DYNAMIC TIME WARPING, MULTIVARIATE CLUSTERING, ACTIVITY PROFILING
Physical inactivity is one of the major causes of death
worldwide (1) and so exercise and activity programs,
designed to avoid sedentary lifestyles, are increasingly

prevalent and have been shown to reduce risk factors, such as
type 2 diabetes, heart disease, and even some cancers (2). For
these reasons, it is important for children to develop the healthy
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habit of frequent physical activity (3,4) and considering that
children spend a large amount of their day at school, recess be-
comes a natural time to encourage this. A wide range of factors
determine children’s propensity for activity (5); however, it is
clear that good playground design can have a positive effect
(6,7). There is also a growing realization that the quality of ac-
tivity, as reflected in the movement competence of individuals
is as important as the quantity of exercise undertaken (8,9).

Given this importance of exercise to a healthy lifestyle, de-
tailed and quantitative assessment of activity frequency and
intensity is a well-established research area (10,11). Measure-
ment is often by wearable, inertial sensors (i.e., accelerome-
ters) (12,13), placed at various locations on the body (14), to
give signals that are proportional to the intensity and direction
(magnetometer) of movement (15). Although the implementa-
tion of this technology to obtain a faithful record of body acceler-
ation is relatively straightforward, the interpretation of the data to
inform on activity is more difficult. In particular, the wide range
of movements and irregular intensity of activity displayed by
children during free play (16) present a demanding challenge to
quantitative analysis. The commonly used metric for assessment
of activity is “counts”—integrated acceleration-magnitude
during a defined epoch (17). This gives a ready measure that
directly correlates to energy expenditure; however, it conveys
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 no information on the form of movement undertaken and by

definition is insensitive to rapid changes in activity level.
We, therefore, present a technique, based on the raw accelera-
tion trace and the use of a standardized reference signal—a
“movement motif,” which is a data sequence corresponding
to a known motion, such as a walk step or run stride. The
movement motif provides a time series template (18,19) to
which movement events within the acceleration trace can be
compared, using pattern matching implemented with a dy-
namic time warping algorithm (20). The evaluation of activity
through analysis of specific movement features and patterns is
well established, withmany variations of machine learning ap-
proaches reported (21). The aim in these studies is to classify
activity into identifiable phenotypes such as walking, running,
standing, and so on (22,23). Our approach differs in that al-
though a reference motif is classified (a walking stride), indi-
vidual movement events are not. We compare rather than
classify. This removes any restriction on the form of move-
ment, thus avoiding misclassification errors, while maintaining
the context that a known movement type provides. Each com-
parison of amovement event with themotif quantifies the inten-
sity and duration of the movement relative to the reference point
of the motif sequence. This provides quantitative assessment of
both quantity and form of motion undertaken during an activity
session. The definition of specific movement categories for tra-
ditional pattern classification necessitates the use of extended
time sequences (multiple strides) to ensure that example sets are
uniform enough to describe a single class (17,24–26). In the ap-
proach presented here, there is no such restriction, and event-
motif comparisons are made with accelerometer time–sequence
data acquired at 40 Hz. Implementation of the technique on chil-
dren’s motion data obtained from a 40-min school play period, al-
lows high resolution temporal profiling of their activity (27,28).
Participant profiling, based on the multiparameter movement met-
rics, is presented and used to assess variation within the cohort
(29) and day-to-day trends across a week of measurements.
METHODS

Participants and settings. The study was based on a set
of 24 children, whose motion was recorded for one school-
week (5 d), in a primary school in the United Kingdom, two
children were absent on one of the days, and so, the total data
set included 118 motion records. In the participant sample set,
12 of the children were in year 5 and 12 in year 6, 18 children
were boys and the summary statistics of the cohort are as follows:
age, 10.5 ± 0.6 yr; height, 1.44 ± 0.09 m; mass, 39.6 ± 9.5 kg;
body mass index (BMI), 18.8 ± 3.1 kg·m�2. The participants
wore ankle-mounted accelerometers during school recess for
5 d. The participants’ BMI, height, weight, sex, and school year
were registered, and the distributions of these metrics were typi-
cal for the age group of children. A stadiometer (Holtain,
Crymych, UK) and digital scales (SECA, Hamburg, Germany)
were used to measure stature (to the nearest 0.01 m) and BMI
(to the nearest 0.1 kg), respectively, following standard procedures.
Furthermore, children were classified as either underweight (<5th
260 Official Journal of the American College of Sports Medicine
percentile) (n = 1), normal weight (5th to 85th percentile)
(n = 16), overweight (>85th to <95th percentile) (n = 5) or
obese (≥95th percentile) (n = 2). (For more information about
the participants, see Supplemental Digital Content 1, Appendix—
supplementary information, http://links.lww.com/MSS/
B710). The data were recorded with consent from the legal
guardians and assent from the children, following the guide-
lines and policies of the institutional ethics committee and
the Declaration of Helsinki.

Instruments. The children’s motion was evaluated during
normal time school-time recess (40 ± 4min·d−1) for 5 d. A cus-
tomMicro Electro-Mechanical System based device was used
to measure their physical activity at a frequency of 40 Hz and
record it onto amicroSD card (30). The sensor system incorporated
a triaxial accelerometer with a ±16g dynamic range, 3.9 mg point
resolution (with an amplitude coefficient of variation of 0.004 at
40 Hz) (ADXL345 sensor, Analog Devices). It was housed in a
small plastic case and affixed via a Velcro strap to the lateral
malleolar prominence of the fibula of the right leg (see addi-
tional images, Supplemental Digital Content 1, Appendix –
supplementary information, http://links.lww.com/MSS/B710).

Data extraction and analysis. All data handling and
analysis were done in the Matlab 2016b environment. The
total duration of play varied between 42 and 50 min, only
the first 40 min of activity were analyzed, this ensured that
all traces studied were of the same duration. The methods de-
scribed in this section were applied to all the children’s measure-
ments along the 5 d, unless stated otherwise. Data acquired in
the radial acceleration axis were selected for analysis because
this had proven to be highly informative in previous work
(30), with information being contained on push-off impulse,
force of heel and toe impact, and angle of leg lift. The raw accel-
eration time signal, with no filtering or smoothing applied, was
used in all analyses. The extraction of movement metrics is
based on the use of a “movement motif.” This is a short, 1.1 s
accelerometer sequence from a single stride, taken by a 27-yr-
old man walking on a treadmill at a speed of 4 km·h−1, with
the same sensor system and attachment as used in the children’s
play study. This motif sequence, of a known and well under-
stood biomechanical movement, provides a standard reference
to which all of the children’s movements can be compared. This
choice of movement motif was based on a requirement for a
known and well-understood motion pattern that was distinct
from those of the children to avoid biasing of any comparative
analyses. We need a reference that is known and unchanging.
This is difficult to obtain from a child because there is high var-
iability due to the different states of physical maturity within the
chosen age group. Also, the reference comes from outside of the
group, and so, we get a comparison to an independent reference
rather than self-referencing within the study cohort. Selected se-
quences of the acceleration signal, corresponding to movement
events within each child’s trace, were extracted using a threshold
demarcation of 1.5g. Comparison of each movement event with
the motif was done using the Matlab dynamic time warping
algorithm—dtw. This provides metrics on time difference (Δt)
and amplitude difference (Δd). A full mathematical description
http://www.acsm-msse.org
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FIGURE 1—A, Typical radial acceleration trace from a child wearing an ankle-mounted sensor for a 40-min play session. B, Expanded view of a 5-s
play sequence.
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of Δt and Δd is given in the results section. Dimensional reduc-
tion of 80 metrics obtained from the time dependence of Δd and
clustering of the 24 children into similar groups was done using
Matlab functions for principal component analysis—pca—and
dendrogram clustering—dendrogram.
EXPERIMENTAL PROCEDURES
AND RESULTS

Signal processing and data extraction. An example
of a raw acceleration trace is shown in Figure 1. This is typical
for a child at play, displaying variable and interrupted move-
ment across the play session and complex acceleration features
at short timescales, with no discernible regularity. Commonly
FIGURE 2—A, Radial acceleration trace of the walk-stepmotif. B, Short sample
is compared with each of these using DTW. C, DTW traces for a motif-event co
difference, δdi. D, Scatter plot of all events within a single 40-min playground se
Δt—fractional extension of signal due to time-warping. Red areas indicate param
and running on a treadmill with a unit incremented speed of 3 to 13 km·h−1. DT

MEASURING CHILDREN’S PLAY
used analyses of acceleration data take a time-averaged ap-
proach, defining “counts” and categorizing activity level by
the use of signal cut-points (31). In implementing time integra-
tion, some knowledge of the form of the movement is inevi-
tably lost. To avoid this, we take an alternative approach and
implement an event-based analysis that highlights the tempo-
ral shape of the short, often subsecond, acceleration features.
This providesmetrics that can inform on the type ofmovement
undertaken, with a time resolution that is consistent with bio-
mechanical and musculoskeletal control dynamics. The chal-
lenge in doing this for children’s play data is to find a robust
method for definingmotion events within nonuniform acceler-
ation traces. Our solution is to use a movement “motif”—a
well-understood, standard motion pattern. This sets a reference
of typical acceleration trace showing event peaks detected, themotif signal
mparison with instantaneous time warps, δti, and acceleration amplitude
ssion, Δd—magnitude of fractional event-to-motif acceleration difference,
eter space occupied by reference data obtained from participant walking
W, dynamic time warping.

Medicine & Science in Sports & Exercise® 261



FIGURE 3—A and B, Time-dependentmeasures for +0ve Δd (A) and −0ve
Δd (B); cumulative movement-event count—blue circles, ∑Δd within
2-min time window—black bars. C, Motion-metrics PCA for all children,
the day of activity is indicatedby the color shading (Monday—red,Tuesday—
green, Wednesday—blue, Thursday—black, Friday—magenta).
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 to which the acceleration signal can be compared, and events

identified as data sequences with similar amplitude and duration
as the motif. Essentially, the raw acceleration trace is sectioned
into events through a loose pattern matching to the motif stan-
dard. The movement motif is shown in Figure 2A and is the ac-
celeration trace from a single stride taken by an adult (male, age
27 yr) on a treadmill walking at a speed of 4 km·h−1. Motion
events are located using a peak detect algorithm with an im-
posed peak threshold of 1.5g and aminimum peak-to-peak distance
of 40 samples (1 s). Thus, a series of short sections within the signal
trace are identified, within which the acceleration is similar to or
greater than that imposed when walking. The identification pro-
cess also ensures that no two events temporally overlap. A short
trace section with five events identified is shown in Figure 2B.

Once motion events have been identified a secondary
challenge arises as to how these are to be parameterized?
As Figure 1B shows, they vary considerably in shape, dura-
tion, and magnitude, thus, it is difficult to capture this hetero-
geneity with a tractable number of consistent metrics that can
be easily extracted. We, therefore, choose to characterize each
event by comparison to the motif rather than by direct mea-
surement of the event acceleration values. Each motion event
is assessed by asking the question—“how close is it to a walk
step?” This produces correlation metrics that are quantitative,
robust, and which provide context to the movement under-
taken. The event to motif correlation is done using a dynamic
time warping algorithm (32). The dynamic time warping be-
tween event and motif signals introduces time steps in the data
sequence to achieve optimummatching between traces (33,34).
Basically, the two signals are stretched at various time points to
create “warped” sequences, these stretches are imposed in a
way that achieves the best match between the pair of traces.
Two parameters are extracted from each of these event-motif
comparisons—the fractional change in time (Δt) and the mag-
nitude of the acceleration difference between the time warped
signals (Δd), measured as the mean per sample point. These
result from summation over the full trace and are mathemati-
cally defined as:

Δt ¼ ∑iδti
tmotif

½1�

Δd ¼ ∑i∣δdi∣
nDTW

½2�

if ∫accelevent > ∫accelmotif then Δd þ ′ve

if ∫accelevent < ∫accelmotif then Δd − ′ve

where δti and δdi are the time and amplitude differences, re-
spectively (see Fig. 2C), tmotif is the duration of the motif sig-
nal, and nDTW is the total number of samples in the time
warped signals. These event parameters can be displayed for
a complete activity session in the form of a simple scatter plot.
262 Official Journal of the American College of Sports Medicine
The plot obtained from the sample trace in Figure 1 is shown
in Figure 2D. This provides an individualized, contextual
map of movement, and a ready visualization of the child’s ac-
tivity during play. Each point identifies a movement event,
thus their density quantifies the amount of activity undertaken
and corresponds to the information gathered in a traditional
approach, where activity counts are recorded. Here, however,
there is also information on the form of each movement, cap-
tured in the x and y coordinate values. The Δd value gives an
immediate indication as to the intensity of the movement with
the zero point being the reference level of walking (~3 MET·h
for the 4 km·h−1 motif (35)). The Δt value informs on how close
the time phasing of acceleration is to awalk step.Values ofΔt>0
indicate the magnitude of the fractional difference in duration of
each movement event to that of the walking stride motif. This is
an absolute number and so does not differentiate between shorter
or longer duration. Comparison to the motif standard also allows
benchmarking of the child’s activity to that undertaken in a con-
trolled environment. The areas outlined in red in Figure 2B indi-
cate the range of values obtained when the motif is compared
with other events in the treadmill-study acceleration signal, from
which it is extracted. This shows the evolution from walk areas
(lowΔt, 3–5 km·h−1) to running (highΔt, 9–13 km·h−1). The red
shaded area centered at zero Δd is the parameter state space
http://www.acsm-msse.org
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covered by multiple step events acquired at 4 km·h−1 (i.e.,
stride-to-stride variability in the motif itself ). The overlay of
data from a staged walk to run exercise of the treadmill (red
sections) onto the map of the child’s movement (black circles)
provides an immediate visual assessment of their activity in the
40 min of play. The spread of data shows the range of activity
intensity and indicates the degree of variability compared with
the controlled movement on a treadmill running through a se-
quence of set speeds. A number of features are evident in the
child’s movement map: (i) a majority of low-intensity events
have greater Δt values than the motif sequence (3–5 km·h−1

section), this reflects the shorter stride duration relative to
the adult walk motif; (ii) there is a wide range of movement
profile with events (black circles) spanning a continuous area
that encompasses the 3- to 13-km·h−1 treadmill reference set;
(iii) there are ultrahigh intensity outlier events, which reflect
movement for which the sum acceleration is well above that
within a gait step produced by an adult running at high speed
(13 km·h−1).

Multivariate profiling. The extraction of multiple param-
eters for profiling of children from their activity profile was
based on the time dependent values of Δd (Fig. 3A) as this gave
a much greater discrimination that theΔtmetric. The total num-
ber of events plus the summed value of the positive and nega-
tive Δd metric within a sliding, 2-min time window provided
80 measures per child over the 40-min activity sequence.
Dimensional reduction was implemented using PCA; the
FIGURE 4—A,Motion-metrics PCA for all childrenwith highlighted areas. B–G
areas of the PCA plot—L (B & E), M (C and F), and H (D and G).

MEASURING CHILDREN’S PLAY
two-dimensional plot for all 118 activity traces is shown in
Figure 3B. To interpret the PCA plot three regions were
identified: L—low axis 1 and 2; M—medium axis 1, high
axis 2; H—high axis 1, low axis 2 (Fig. 4A). Representative
plots of the acceleration trace (magnitude) from each of these
regions, are shown in Figure 4B–G. Inspection of these shows
that component 1 of the PCA correlates to activity intensity,
measured as mean acceleration over the duration of the activity
session (Pearson, r = 0.54), (for correlation plot, see Supple-
mental Digital Content 1, Appendix—supplementary informa-
tion, http://links.lww.com/MSS/B710), whereas component 2
reflects differences in the time-staging of activity during play.
Closely located points in the PCA plot indicate children with
highly similar motion variables.

Figure 5A shows an expanded view of the PCA plot (shaded
area in Fig. 4A). The raw traces, from two children juxtaposed
in the PCA plot, indeed confirm that their acceleration profiles
are highly correlated across the whole of the play duration
(Fig. 5C and D). Dendrogram plots provide an alternative to
PCA for identifying hierarchical clustering of children based
on their activity profiles. Figure 5B shows the dendrogram for
all traces, sorted into 30 clusters using a weighted method with
arithmetic mean (WPGMA), operating on the pairwise distance
matrix between all points in the multivariate space (Euclidean
distance). This provides information on groups of children with
similar activity, for example, cluster 17 encompasses the chil-
dren shown in the red square on the PCA plot. It also allows
, Typical accelerationmagnitude traces for childrenwithin the highlighted

Medicine & Science in Sports & Exercise® 263
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FIGURE 5—A, Expanded view of the gray shaded area in PCA plot of
Figure 4, with similar pair (black line) and similar group (red dash line)
of children highlighted. B, dendrogram plot showing cluster relationships,
cluster 17 corresponds to the red-dash highlighted area of the PCA plot. C
and D, Acceleration magnitude plots for the pair of children highlighted
by the black outline in the PCA plot.

FIGURE 6—Motion-metrics PCA with daily activity of two children
highlighted (child A—red, child B—green). Black-filled circles represent
Friday activity points of six children in same year (year 6) as child B.
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quantitative assessment of similarity/dissimilarity using the
cluster separation metric.

Longitudinal study of the PCA plot provides insight on the
daily activity patterns of the children. As an example, two chil-
dren with differing patterns of play are shown highlighted in
Figure 6. Child A exhibits highly varied activity profiles with
large day-to-day variance in the level and the time pattern of
physical motion, whereas child B displays a tight cluster of
points from consistent daily activity patterns. Analysis of the
varying activity profiles across a week also point to social in-
fluences on play. The extremely consistent play pattern of
child B is disrupted on the Friday of the study week, and they
have a much reduced activity level on this day. Inspection of
the PCA plot shows that the upper left region, in which the Fri-
day play data of child B sits, is dominated by a cluster of other
data points from Friday activity traces for children from the
same class. The time-dependent acceleration traces for all of
this group show an extended period of inactivity between the
15- and 25-min points of the play session (see additional figures,
264 Official Journal of the American College of Sports Medicine
Supplemental Digital Content 1, Appendix—supplementary
information, http://links.lww.com/MSS/B710). Thus, there is
strong circumstantial evidence that the altered play pattern of
child B is due to the influence of their peer group.
DISCUSSION AND CONCLUSIONS

The aim of this study was to demonstrate automated, quan-
titative assessment of children’s movement during play. There
is a growing appreciation of the importance of the quality of
activity in developing movement competence (9) and auto-
mated assessment of various movement tasks, based on signal
feature extraction from wearable sensors, has been reported
(36,37). Recognition and classification of activity type have
also been achieved using Machine Learning algorithms (38,39).
Although these approaches provide enhancedmetrics on activity,
over and above simple quantification, they are based on a pre-
mise that there exists a stable and recognizable movement pattern
associated with each activity category, for example, walk, run,
skip, and so on. For children at play, it is debatable whether such
pattern standards exist. They exhibit an almost unlimited
range of movement and even in core motions, such as walking
will display highly varied patterns, both at an individual level
in step-to-step variance and at population level in the changing
walk style across the cohort. In recognition of this, we have
developed an alternative method for activity profiling, based
on identifying when movement takes place rather than when
acceleration is produced. This follows other quantitative tech-
niques in being focused on discrete motion events rather than
continuous acceleration-based metrics. However, it offers a
novel alternative when characterizing these events as it imple-
ments indirect measurement by comparison to a reference
standard, rather than direct extraction of data from the child’s
motion signal. The advantage here is that because the acceler-
ation patterns displayed by the children can be of any form,
movement is no longer constrained to fit to a preordained pat-
tern. Benchmarked quantification is maintained as the extrac-
tion of metrics is always in reference to the known motif,
which becomes the yardstick for interpretation.
http://www.acsm-msse.org
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As all metrics stem from comparison to a single motif this
approach provides robust data that support comparison across
a cohort and across different study days. By resolvingmovement
into motion events of short duration, the technique also provides
multiparameter descriptions of each child’s play session, and this
allows multivariate profiling of the cohort. All of the moment-
to-moment detail of the varied play activity is captured and
can be mapped, using a dimensional reduction algorithm, into
a map of all activity profiles. This allows visual inspection of
the variation or uniformity in activity level and identification
of clusters of like individuals who display similar activity pat-
terns. This clustering may also point to social influences upon
play, as closely mapped children have very similar acceleration
time traces, and this suggests common play during the mea-
sured period. The activity map also shows temporal change
across a longitudinal study and could be a powerful analysis
tool in the case of intervention, where coordinate position on
the map shows comparative performance between individuals,
preintervention and postintervention.

In the work presented, the reference standard chosen was
a walk step, but other motifs could be used to give activity
MEASURING CHILDREN’S PLAY
profiling in relation to a running stride, hop step, arm move-
ment, or similar. It is important to note that the motif deter-
mines the values of the extracted activity parameters but
does not change the form of the measured motion signal.
Thus, if an alternative motif pattern is used, the values of
Δd and Δt for each event will be different but the density of
movement events and the comparative relationships between
children will be unaltered. In this respect, the motif acts as a
filter through which we view the children’s movement; chang-
ing it provides a different perspective of the same underlying
activity topography.
J. N. R. undertook this work while on a research visit funded by the
Erasmus+ Credit Mobility Programme (2017-1-PT01-KA103–035245),
C.M.B. was funded under a UK EPSRC Doctoral Training Grant. The
authors thank the children of the city and county of Swansea who
participated in the study. The results of the present study do not con-
stitute endorsement by ACSM. The results are presented clearly,
honestly, and without fabrication, falsification, or inappropriate data
manipulation.
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Sciences, Coventry University, Priory Street, Coventry, CV1 5FB,
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