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Nonlinear explicit analysis and study of the behaviour of a new ring-
type brake energy dissipator by FEM and experimental comparison 

J. J. del Coz Díaza*, P. J. García Nietob, D. Castro-Fresnoc and J. Rodríguez-Hernándezc 

aDepartment of Construction, University of Oviedo, 33204 Gijón, Spain 
bDepartment of Mathematics, University of Oviedo, 33007 Oviedo, Spain 

composed of steel bearing ropes, bent pipes and aluminium compression sleeves. The bearing 
ropes are guided through pipes bent into double-loops and held by compression sleeves. These 
elements work as brake rings. In important events the brake rings contract and so dissipate 
residual energy out of the ring net, without damaging the ropes. The rope’s breaking load is not 
diminished by activation of the brake. The full understanding of this problem implies the 
simultaneous study of three non-linearities: material nonlinearity (plastic behaviour) and failure 
criteria, large displacements (geometric non-linearity) and friction-contact phenomena among 
brake ring components. The explicit dynamic analysis procedure is carried out by means of the 
implementation of an explicit integration rule together with the use of diagonal element mass 
matrices. The equations of motion for the brake ring are integrated using the explicit central 
difference integration rule. The presence of the contact phenomenon implies the existence of 

cDepartment of Construction, University of Cantabria, 39005 Santander, Spain 

Abstract 
The aim of this paper is to comprehensively analyse the performance of a new ring-type brake 
energy dissipator through the finite element method (FEM) (formulation and finite element 
approximation of contact in non-linear mechanics) and experimental comparison. This new 
structural device is used as a system component in rockfall barriers and fences and it is 

the different contact surfaces, � being the dynamic coefficient of friction. Next, we define the 
non-dimensional variable γ by means of the expression tγ µω = / , where µω is the frictional 
resistance and t is the tangential traction component. In order to find the best brake 
performance, different dynamic friction coefficients corresponding to the pressures of the 
compression sleeves have been adopted and simulated numerically by FEM and then we have 
compared them with the results from full-scale experimental tests. Finally, the most important 
conclusions of this study are given. 

MSC2000 Codes: 74S05, 65L60, 65P99, 74M10, 49J40 
Key words: Inequality constraints; Finite element analysis; Explicit integration; Elastoplastic 
material; Coulomb’s law; Contact analysis; Weak solution 

inequality constraints. The conditions for normal contact are ω σ 0 , g σ 0 and gω = 0 , where ω 
is the normal traction component and g is the gap function for the contact surface pair. To 
include frictional conditions, let us assume that Coulomb’s law of friction holds pointwise on 

1. Introduction 
The finite element method is a numerical procedure that can be used to obtain solutions 
to many engineering problems involving stress analysis, heat transfer, 
electromagnetism, and in our case, a new ring-type brake energy dissipator [1-6]. 

* Corresponding author. Tel.: +34-985-182042; fax: +34-985-182433. 
E-mail address: juanjo@constru.uniovi.es (J. J. del Coz Díaz). 
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The main objective of this paper is to determine by FEM the absorbed energy and the 
failure modes in the different components of the brake. Then the FEM results are 
compared with experimental ones obtained by means of full-scale tests. 

The bearing ropes are guided through pipes bent into double-loops and held by 
compression sleeves forming elements that work as brake rings. In large events the 
brake rings contract and so dissipate the residual energy out of the ring net, without 
damaging the ropes (see Fig. 1). 

Fig. 1. Geometrical model of the new ring-type brake dissipator (left) and falling rock 
protection system (right). 

The falling rock protection system consists of a product made of nets [4] (interception 
structure), posts (support structure), ropes (connection structure) and brakes (connection 
structure). The energy level of a falling rock protection kit is defined as the kinetic 
energy of a regular block impacting on the net fence. In this way, the energy dissipating 
device is the most important element in order to absorb energy and to avoid the rupture 
of the connection components, so that the complete separation occurs of the component 
itself into two distinct parts. 

2. Strong form of the initial boundary value problem 
An elastoplastic body occupies a bounded domain ( )3,2=≤⋅δ dd with a Lipschitz 
boundary � , partitioned into three disjointed measurable parts u� , ρ� and c� so that 

[7]. A volume force of density 

The body is clamped on 
velocity fields vanish there. On c� the body is in contact with other bodies, the so-
called compression sleeves, bearing ropes and pipe bends. We model the contact with 
Coulomb’s law of dry friction [5, 8-9]. Finally, dM denotes the space of the second 

order symmetric tensors on d≤ , or equivalently, the space of the symmetric matrices of 
order d. 

The strong formulation of the contact problem is the following: 
Problem 1. For all [ ]0t I Tℜ , and all x ℜ δ d , find a displacement field 

ρd

d

( )
 f B acts in δ and a surface traction of > 0
meas u 
d
 
f S acts on �ρdensity and thus the displacement and .
 u 

) : δ×[0,T ]
 d
 [ ]
(
 )
dΦ ≤
 δ×
 Φ
and a stress field so that they satisfy 0 T
 M
:
x t , ,
 d 

[10]: 
1. Linear momentum balance: 

d
dρ 
in direct notation and 

ρ f B Ω 

d""
uf B Ω
∈ →
 (1)
 +
 =
 

(2)
 +
 =
 ""iuij j , i 

2
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d
in indicial notation. In Eqs. (1) and (2), ρ is the Cauchy stress tensor, ρ ij , fi 

B 

d 
being the components of the applied body force per unit volume f B , and the 
scalar Ω denotes the mass density, which may in general depend on the 

d
coordinates x 

d ℜδ . The two superposed dots on u denote partial differentiation 
with 

u : 
d 

S
ij j in fρ = for all [ ]0x t Tρℜ� ℜ, , d (3) 

i iu u= for all [ ]0ux t Tℜ� ℜ, , d (4) 

where jn refers to the components of the outward normal n to ρ�d 
. Initial 

conditions may be expressed by introducing an initial displacement field 
u ≤Φδ:0

d and initial velocity field v ≤Φδ:0

d d d where δ denotes the closure 
of the open set δ ; that is to say, including the boundary ≥δ = � ∗ � u cρ 

respect to time twice. The notation j in a subscript indicates partial 
differentiation of the quantity with respect to that coordinate direction. 

2.	 Initial and boundary conditions: 
In addition to the previous momentum balance, which must hold for any time 
t ℜ I [0,T ] , the problem is in general subject to certain initial and boundary 
conditions as well. The boundary conditions are stated by introducing prescribed 

d 
S d	 dtractions f : �ρ ×[0,T ]Φ ≤ and prescribed displacements �u ×[0,T ] Φ ≤ 

and requiring: 

∗ � , and 
requiring: 

= u0i in δ , (5) 

= v0i in δ	 (6) 

3. 
1∪ ij = (ui j , + u j i , ) (7) 
2 

0i t 
u 

= 

t=0iu" 

Strain-displacement relationships: 

where ij ∪ 
Constitutive relationships: 

• For linear elasticity: 

are the components of the strain tensor. 
4. 

ρ ij = cijkl ∪ kl (8) 

where is the fourth order elasticity tensor cijkl 

•	 For plasticity with kinematic/isotropic hardening: 
pρ	 = cijkl (∪ kl −∪ kl ) (9) ij 

where ∪ kl 
p is the inelastic portion of strain. Then, we define the 

d 
intermediate variable ∂ as: 

∂ij = ρ ij ε − qij	 (10) 

3
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d
where ρdε is the deviatoric stress tensor and q is the deviatoric back 
stress tensor. Classically, if one selects an associative flow rule, this may 
be done in terms of a consistency parameter ⊂" using: 

d" p ≥F∪ = ⊂" (11) 
≥ρd 

where ⊂" defines the magnitude of the rate of plastic flow and F denotes 
the yield function under consideration. For the von Mises description of 
plasticity, we have: 

d 
d" p ρ ε
∪ = ⊂" d (12) 

ρ ε 

ε εwhere ρdε = ρ ρ . To enable greater generality, we may introduce a ij ij 

combination of kinematic and isotropic hardening through use of the 
pparameter ∇ ℜ[0 1 , ] , a hardening modulus H and a hardening variable e . 

The evolution of e p is defined in terms of the consistency parameter ⊂" 
as: 

p (13) e" = ⊂" 
d

and the back stress q 

( )2 
1 

3
q H 

∂⊂ ∇ 
∂ 

= − 
d 

d" " d (14) 

The model is constructed so that pure isotropic hardening is produced 
when 1∇ = ; pure kinematic hardening is produced when 0∇ = and some 

occurs for intermediate values 
accomplished mathematically by replacing the yield function for perfect 
plasticity as follows: 

of ∇ .combination This may be 

d 2 ÿ
2
 

ρY is the uniaxial yield stress. With this choice of yield function, 

ρ
»
… Ÿ

⁄ 
when 
the flow rule in (12) must be altered slightly to read: 

d 
d" p ∂∪ = ⊂" d (16) 

∂ 
Finally, the model may be completed by specification of the so-called 
loading/unloading conditions for elastoplasticity. These may be given in 
terms of the classical Kuhn-Tucker conditions for inequality constraints 
in optimization: 

d d(ρ , ∂
 ∇
−
 ′ (15)
 p ) He p 0
+
=
q e , Y3
 3
 

À 
Œ
Ã 
Œ
Õ 

⊂" σ 0 (17) 
Γ ′ 0
 

⊂" Γ = 0
 
which ensure that; stresses and historic variables are not allowed to 
evolve to the extent that the stress point is outside the yield surface, the 

4 
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magnitude of the plastic strain rate is always positive and plasticity only 
occurs when the stress point is on the yield surface. These are usually 
augmented with a persistency condition: 

"Γ⊂" = 0 (18) 
which ensures that if elastic unloading begins to occur while a point is 
still on the yield surface, the plastic strain rate will be zero. 

5.	 Contact conditions 
The contact conditions interrelating the contact pressure, ω , 
function, g, on the contact surface �c 

Tucker optimality conditions, characteristic of problems involving inequality 

and the gap 
may now be stated in terms of Kuhn-

while 

g = 0 . When 

constraints [8, 11]: 
Àω σ 0 
Œ
Ãg ′ 0 (17) 
Œω g = 0Õ 

which must hold for all x 
d ℜ� c . The first equation (17) refers to the fact that all 

contact interaction must be compressive, the second states the 
impenetrability condition. The final condition given in (17), the complementarity 
condition, requires that compressive stress only be generated in the instance 
where contact is occurring, i.e., when g < 0 , this condition requires 
that ω be zero, consistent with an out-of-contact condition. 

to 

in general large strain inelastic conditions, such as our case. 

3.1. Contact conditions: continuum mechanics equations 
Let us consider N bodies that are in contact at time t. Let 
contact for each body 
time t gives [1, 10, 12]: 

{ ij ij ƒ
N 

t te d γ Δ i δ— 

3. Variational formulation of the problem 
One of the major areas of nonlinear analysis is the solution of problems in which 
separate bodies or structures may come in contact with each other. Several methods 
have been developed handle such problems. A particularly difficult nonlinear 
behaviour to analyze is the contact between two or more bodies [1, 10]. Contact 
problems range from frictionless contact in small displacements to contact with friction 

�t
c be the complete area of 

L, L = 1... N ; then the principle of virtual work for the N bodies at 

B t t S t t c c t t 
t } = ƒ

N {— t 
Δ ui ( fi ) dδ + — t 

Δ ui ( fi ) d� } + ƒ
N 

— t 
Δ ui ( fi ) d� 

δ δ �	 �ρ	 cL=1 L=1	 L=1 

(18) 
where the part in brackets corresponds to the usual terms: 
γ ij 

t = Cartesian components of the Cauchy stress tensor (force per unit area in the
 
deformed geometry).
 
Δ t eij = strain tensor corresponding to virtual displacements.
 

5
 



  

  

              

     

           

      
            

             
 

           

               

      
 

                
              

                
                

                 

                
 

        
 

              
                  

               
                

             
         

   

              
          

           

               
                

                         

              
              

             
   

 
                      

ACCEPTED MANUSCRIPT 

Δui = components of the virtual displacement vector imposed on configuration at time t,
 

of a function of xt
j , j = 1,2,3...
 

xi
t = Cartesian coordinates of material point at time t.
 

δt = volume at time t. 
B( f ) t = components of externally applied forces per unit volume at time t.i
 

S
( f i ) t = components of externally applied surface tractions per unit surface area at time 

components are zero and correspond to 

t. 
�ρ 

t = surface at time t on which external tractions are applied. 

Δui
S = Δui evaluated on the surface �ρ 

t (the Δui 

the prescribed displacements on the surface t 
u� ). 

and the last summation sign in Eq. (18) gives the contribution of the contact forces. The 
contact force effect is included as a contribution in the externally applied tractions. The 
components of the contact tractions are denoted as ( ) tc 

if and act over the areas t 
c� (the 

actual area of contact for body at time t), and the components of the known externally 
applied tractions are denoted as ( ) tS 

if and act over the areas t 
ρ� . It can be assumed that 

the areas t 
ρ� are not part of the areas t 

c� , although such an assumption is unnecessary. 

Fig. 2. Bodies in contact at time t. 

Fig. 2 illustrates schematically the case of two bodies, which are now considered in 
greater detail. In this paper, the two bodies in contact are denoted as body I and body J. 
Note that each body is supported so that without contact no rigid body motion is 

) tIJ f 
d 

be the vector of contact surface tractions on body I due to contact possible. Let ( 
) tIJ f 

d 
−= 

dddd

in (18) can be written as [1, 10, 13]: 

— I IJ t IJ J JI t JI IJ IJ t IJ Δu ( f ) dS + Δu ( f ) dS = Δu ( f ) dS (19) 
IJ i i JI i i — IJ i i— S S S 

with body J, then (

I 
iuΔ and where Δui

J are the components of the virtual displacements on the contact 
surfaces of bodies I and J , respectively, and : 

JI I JΔu = Δu − Δu (20) i i i 

S IJ S JI The pair of surfaces and are termed a ‘contact surface pair’. Note that these 
surfaces are not necessarily of equal size. However, the actual area of contact at time t 
for body I is Sc

t of body I, and for body J it is Sc
t of body J, and in each case this area is 

S IJ S JI S IJ S JI part of and . It is convenient to call the ‘contactor surface’ and the 
‘target surface’. Therefore, the right-hand side of (18) can be interpreted as the virtual 
work that the contact tractions produce over the virtual relative displacements on the 
contact surface pair. 

Let n and let s be a vector so that n and s 

(
d
 ) tJI f . Hence, the virtual work due to the contact tractions 

be the unit outward normal to S JI form a 

6
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right-hand basis (see Fig. 3 below). It is possible to decompose the contact tractions 
f IJ ) t S IJ d d( acting on into normal and tangential components corresponding to n and s 

S JI on : 
d dIJ t( f ) = ωn + ts (21) 

where ω and t are the normal and tangential traction components. Thus, 
d dT d T dIJ t IJ tω = [( f ) ] n ; t = [( f ) ] s 

d d
In order to define the actual values of n and s 

d 
S IJ d* d S JI consider a generic point x on and let y (x, t ) be the point on 

d d d d d* 

(22) 

that are used in the contact calculations, 
satisfying: 

) ( ) ** nyx T ddd −= 
is the unit normal vector that is used at (xy )t, * dd (see Fig. 3 below) and 

are used in equation (21) corresponding to the point x 
d 

Fig. 3. Definitions used in contact analysis. 

With the above definitions, the conditions for normal contact are given by Eq. (17). 
In order to include frictional conditions, let us assume that Coulomb’s law of friction 
holds pointwise on the contact surface and µ is the coefficient of friction [10]. 

} (23) x − y (x, t) = min { x − y
2 d 

S JI 2yℜ
 
d 

S JI
 The distance from x to is then given by: 
d 

g(x, t (24) 
d d

where n * n * , 
d 
s * . The function g is the gap 
function for the contact surface pair. 

given by: 

γ = t 
(25) 

µω 

d h " I * u"(x, t ) = (u " J 
d* d − u h d )→ s 

d 
(26) 

y (x ,t ) (x ,t ) 
d d d d d* * vector s at y (x, t) . Hence, u"(x, t )s is the 
d d 
y * relative to the material point at x . 

Àγ < 1 
Œ 
Ãγ < 1Ω u" = 0 (27) 

Let us define the non-dimensional variable γ 

where µω is the "frictional resistance", and the magnitude of the relative tangential 
velocity: 

corresponding to the unit tangential 
tangential velocity at time t of the material point at 
With these definitions Coulomb’s law of friction states [1, 10]: 

Œγ Ω sign ( ) = ( ) γ= 1 u" sign Õ 

Fig. 4. Interface conditions in contact analysis. 

Fig. 4 illustrates these interface conditions. The solution of the contact problem in Fig. 4 
therefore entails the solution of the virtual work equation (18) (specialized for bodies I 

7
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and J) subject to conditions (17) and (27). 

3.2. Solution approach for contact problems 
Let w be a function of g and ω such that the solutions of w(g,ω) = 0 satisfy the 
conditions for normal contact (17), and similarly, let v be a function of γ and u" such 
that the solutions of 

(28) 

γ can 
be variations in these quantities. Multiplying 

(the contactor surface), we obtain 

(uv )], IJ dS γ" 

governing equations to be solved for the two-body contact problem 

v(u" ,γ ) = 0 satisfy the frictional conditions (27). Then, the contact 
conditions are given by: 

w( g,ω ) = 0 

v u ( " ,γ ) = 0 (29) 
These conditions can now be imposed on the principle of the virtual work equation 
using a Penalty Approach (PA), Lagrange Multiplier Method (LMM) or Augmented 
Lagrangian Method (ALM) [14-17]. The variables ω and be considered 
Lagrange multipliers, so let Δω and Δγ 

S IJ (28) by Δω and (29) by Δγ and integrating over 
the constraint equation: 

— S IJ 
[Δω w(g,ω)+ Δγ = 0	 (30) 

In this work, we have used the ALM approach. In order to discretize the contact 
conditions, we have used the surface-to-surface contact elements. In summary, the 

are the usual 
principle of virtual work (Eq. (18)), with the effect of the contact tractions included 
through externally applied (but unknown) forces, plus the constraint Eq. (30). The finite 

4. Finite element model 

following a four-step process [2, 18]: 

Meshing of the geometrical model. 

element solution of the governing continuum mechanics equations can be obtained by 
using the discretization procedures for the principle of virtual work, and also by 
discretizing the contact conditions. 

Based on the geometric model previously described, the finite element model was built, 

•	 Definition of material properties and failure criteria. 
• Selecting the element types, formulations and real constants.
 
•
 
•	 Applying loads and boundary conditions and obtaining the solution 

The material properties adopted in our model are the following [19-20]: 
•	 Steel (Johnson-Cook model): A bilinear kinematic hardening option was 

selected to describe the material behaviour and the data provided by the 
experimental tests (in the form of stress-strain curves) was curve-fitted to a 
multi-linear representation for the thin steel plate. 

n ∪" * 
pρ	 = » A + B →∪ ÿ → »1+ C ln ÿ	 (31) y p ⁄ ⁄ 

The expression in the first set of brackets gives the stress as a function of strain 
*when ∪" p = 1.0 s-1, where ∪ p is the effective plastic strain rate. The constant A is 

the basic yield stress at low strains while B and n represent the effect of strain 

8
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hardening. The expressions in the second brackets represent the effect of strain 
rate, where C is the strain rate constant, and ∪" * 

p is the normalized effective 

plastic strain rate. The values adopted for the steel are: A = 7.92 ×10 −1 GPa; 
−	 −2B = 5.1 10 × 1 GPa; n = 0.26 ; and C = 1.4 ×10 . 

Fig. 5. Stress-strain curve for the steel. 

strain. The model uses a damage parameter D and when this parameter reaches the 
value of 1, the ultimate fracture is expected. The definition of the damage parameter is: 

1 p	 
eq 

f 

D d∪
∪ 

= — (32) 

where f∪ is the equivalent strain at fracture and p 
eq d∪ is the increment of equivalent 

plastic strain. The expression for the equivalent strain at fracture is given by: 
3 

1 2 

m 

vm 

p

4 
0 

1 ln 
D 

eq 
f D D e D 

ρ 
ρ ∪

∪ 
∪ 

−» ÿ » ÿ≈ ’
= + → +… Ÿ … ŸΔ ÷Δ ÷… Ÿ … Ÿ« ◊⁄ ⁄ 

" 

" 

• Aluminium (von Mises model): This model uses the original von Mises premise 
that the yield stress has a constant value: perfectly plastic behaviour. The 
adopted value for the aluminium is A = 2.7 ×10 −1 GPa of yield stress. 

The failure criterion used for the steel was the Johnson-Cook fracture model [21-23]. 
This failure model is a purely phenomenological model and is based on the plastic 

(33) 

where 1D , 2D , 3D and 4D are material constants (see Table 1), which can be determined 
from experiments, mρ is the average of the three normal stresses, vm ρ is the von Mises 

equivalent stress, ∪" p 
eq is the rate of the von Mises plastic equivalent strain and ∪" 0 is a 

reference strain rate. As can be seen in Eq. (33), the model depends on strain, strain rate 
and stress triaxiality, where the relationship mρ vm ρ is a measure of the latter. 

Table 1. Parameters used in the current fracture model for the steel. 

The failure criterion for the aluminium used in this work is the hydrodynamic tensile 
failure. In this way a constant hydrodynamic compressive limit is specified for the 
material. We have chosen a realistic value for this limit of about 1.0 GPa. If the value of 
the hydrodynamic pressure in a finite element falls below this limit, bulk failure is 
assumed to have occurred. When this happens, the pressure is set to zero, the internal 
energy is recomputed and the material is assumed to have healed so that negative 
pressures may occur in the next time-step but once again limited by the hydrodynamic 
tensile limit. 

The finite element types used in our model are the following [10, 19, 22-23]: 
•	 The bearing ropes and compression sleeves (see Fig. 1 above) were modelled 

using six faced brick-type (hexahedral) elements with SOLID164. 
• Pipe bends (see Fig. 1 above) were modelled using shell element SHELL163. 

9
 



  

  

            
           
            

          
     

 
              

             
      

 
                 

                
                 

            
                

             
           

  
 

               
              

             
  

 
               

              
               

            
          

           
     

 
             
              

             
  

     

     
                

              

             

ACCEPTED MANUSCRIPT 

•	 CONTA173 and TARGE170 were used in different contact pairs throughout the 
model, such as between bearing ropes and pipe bends, between compression 
sleeves and pipe bends and between pipe bends themselves. The contact was 
modelled as rigid-flexible standard type and the Augmented Lagrange Method 
(ALM) as the numerical algorithm. 

Fig. 6. Finite element types used in the model: (a) SOLID164 element, (b) SHELL163 
element, (c) CONTA173 and TARGE170 contact elements and (d) detail of the contact 

between bearing ropes and pipe bends. 

Next, the finite element mesh of the model and details of the contacts are shown in Fig. 
7. On the one hand, with respect to the boundary and initial conditions, we have applied 
a velocity of 5m/s at one of the edges of the brake ring-type energy dissipator, the other 

bend contact. 

edge remaining fixed (zero displacement). On the other hand, three different dynamic 
friction coefficients, µd , have been used in all the contacts of this study: 0.05; 0.10 and 
0.12. These three friction coefficients were chosen in order to obtain good agreement 
between the numerical and experimental results, according to the compression sleeve’s 
tightening pressure. 

Fig. 7. Finite element mesh and contact details: (a) Overall mesh, (b) Detail of pipe 
bend mesh, (c) Detail of compression sleeve mesh, (d) Detail of bearing rope-pipe bend 
contact, (e) Detail of pipe bend-compression sleeve contact (f) Detail of pipe bend-pipe 

In order to obtain the solution of the problem, an explicit dynamic analysis procedure is 
used. Explicit time integration is well suited to contact problems because the small time 
steps imposed by numerical stability can be used to deal with the discontinuities in the 
contact problem with different materials. The large time steps made possible by 
unconditionally stable implicit methods are not effective for discontinuous responses. 

convergence of Newtonian methods [12-13]. 

13, 18]: 

Furthermore, contact also introduces discontinuities in the Jacobian, which impedes the 

This procedure is based on the implementation of an explicit integration rule together 
with the use of diagonal or “lumped” element mass matrices. The equations of motion 
for the body are integrated using the explicit central difference integration rule [1, 12­

( 1) ( ) i≈ 1 ’ ≈ 1 ’ i+�t + �
 −+ tiΔ iΔd"
 d"
 d""
÷
◊ 

÷
◊ i2 2 (34)
 +
« «=u u ( ) u 

2 
≈ 1 ’ 
Δi+d


u 
d
 d"
( 1) ( ) i ( 1)t 

÷
◊i i+ + « 2+ �
 (35)
 =
 u u 

d"where u 
d""is velocity, u is acceleration and �t is the time increment. The superscript (i) 

refers to the increment number and i − 1 
and i + 1 

refer to mid-increment values. The 
2 2 

central difference integration operator is explicit in that the kinematic state can be 
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1
(i− ) 

and 
d"
u ( )i from the previous increment. The 

d"
advanced using known values of 2u 
explicit integration rule is quite simple but by itself does not provide the computational 
efficiency associated with the explicit dynamics procedure. The key to the 
computational efficiency of the explicit procedure is the use of diagonal element mass 
matrices because the inversion of the mass matrix that is used in the computation for the 
accelerations at the beginning of the increment is triaxial: 

d
 d
(
 )
( ) i ( ) i (36) 

where M is the diagonal lumped mass matrix, F is the applied load vector, and I 
d 

is the 
internal force vector. The explicit procedure requires no iterations and no tangent 
stiffness matrix. 

1 1 

( ) id"" −1 → −
M
 F
 I
=
u 
d
 

is required 
conditions, certain constraints, and presentation of results. For presentation of results, 
the state velocities are stored as a linear interpolation of the mean velocities: 

d""

−(i ) (i )+d"
 d"
Special treatment of the mean velocities for initial 2 2 etc. u , u 

≈ 1 ’ (i+1)
Δi+ t◊ u 

2 
(i+ )1d"
 d"
( 1) ÷i+ 2 (37)
 +
«=u u 

The central difference operator is not self-starting because the value of the mean 
1 

needs to be defined. The initial values (at time 

( ) 0 u +d"

t = 0 ) of velocity and 
acceleration are set to zero. We assert the following condition: 

(− )d"
velocity 2u 

1( ) ≈ 1 ’ 
Δ+ td"
 d""
÷

◊ = 02 (38)
 u« ( ) u 
2 

1 

Substituting this expression into the update expression for 
(i )+d"
 2 yields the following u 

1
(− )d"
definition of 2 :
u 

0( ) ≈ 1 ’ 
Δ− td"
 d"
 d""
÷

◊ = 0( ) 0( ) 2 (39)
 +
u« u u 
2 

system as: 

In this work 

The explicit procedure integrates through time by using many small time increments. 
The central difference operator is conditionally stable, and the stability limit for the 
operator (with no damping) is given in terms of the highest eigenvalue, τmax , in the 

2 
t ′ (40) 

τmax 

a small amount of damping is introduced to control high-frequency 
oscillations. With damping the stable time increment is given by: 

2 2t ′ ( 1+∂ −∂ ) (41) 
τmax 

where ∂ is the fraction of critical damping in the highest mode. Contrary to our usual 
engineering intuition, introducing damping into the solution reduces the stable time 
increment [12]. 
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5. Analysis of results 
In the first place, we have calculated the von Mises stress of the entire device for the 
three friction coefficients. Maximum values of the stresses obtained were: 8.3 GPa for 

dµ 0.05 = 

tests carried out in our laboratories with the numerical simulation. 

Table 2. Comparison of energy absorbed in full-scale experimental tests with energy 
absorbed obtained by means of numerical simulations by FEM. 

Fig. 9. Comparison of experimental tests with numerical simulations. 

6. Conclusions 
The finite element method has been proven to be a suitable tool in the modelling and 
analysis of singular structures, such as the analysis of the behaviour of a ring-type brake 

µd = 0.05 , 1.8 GPa for µd = 0.10 and 3.0 GPa for µd = 0.12 (see Fig. 8). 

Fig. 8. Von Mises stresses for different dynamic friction coefficients for: (a) , 
(b) µd = 0.10 and (c) µd = 0.12 . 

Secondly, we have calculated the energy absorbed in the device both in the three full-
scale experimental tests (T1, T2 and T3) and numerical simulations by FEM until its 
failure.. The results are shown in Table 2. Fig. 9 shows the comparison of experimental 

energy dissipator. 

A non-linear behaviour is also observed with respect to the structural response of the 
brake. The dynamic friction coefficient is considered an adjustable parameter in order to 
obtain good agreement in the values of the absorbed energy between the experimental 
tests and numerical results. 

With respect to the failure models, the hydrodynamic failure model used for the 
aluminium is more important than the Johnson-Cook failure model for the steel because, 
in practice, aluminium fails before steel. Besides, this model is very useful and allows 

The model analyzed shows important plasticization in the bent (curved) areas of the 
pipe bends. The main failure mode is due to the hydrodynamic compressive failure 
mode in the compression sleeves made of aluminium. 

calculations to proceed for long periods of time with tensile waves propagating around 
the system. 

An advantage of the explicit algorithms used in this work is that the bodies can be first 
integrated completely independently, as if they were not in contact. This uncoupled 
solution correctly indicates which parts of the body are in contact. The contact 
conditions are imposed after the two bodies have been updated in an uncoupled manner. 
Thus, no iterations are needed to establish the contact interface 
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In this work we have used a fine FEM mesh, with a meshing parameter of 0.008m 
resulting in about 877,000 nodes and 565,000 elements. The minimum time step was 
3.16 ×10−9 s and the maximum time step was 10.0 ×10−9 s. 

The problem was solved in a workstation computer with an Intel Core2 Duo 6600 @ 2.4 
GHz, with 8 GB RAM and 2 TB hard disk. The total CPU time employed for each 
simulation was 79,500 seconds and the total number of iterations in order to achieve 
convergence was 95,600. 
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Table 1. Parameters used in the current fracture model for the steel. 
Johnson-Cook failure coefficients 

D1 0.05+/- 20% standard deviation 
D2 3.440 
D3 -2.120 
D4 0.002 

Table 2. Comparison of energy absorbed in experimental full-scale tests with energy 
absorbed obtained by means of numerical simulations. 

Test number 
(tightening pressure) 

Dynamic friction 
coefficient 

Energy in full-
scale tests (kJ) 

Energy from 
simulations (kJ) 

T1 (12 MPa) 0.05 40 38 
T2 (14 MPa) 0.10 32 27 
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Fig. 1. Geometrical model of the new ring-type brake dissipator (left) and falling rock 
protection kit (right). 
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Fig. 2. Bodies in contact at time t. 
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Fig. 3. Definitions used in contact analysis. 
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Fig. 4. Interface conditions in contact analysis. 
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Fig. 5. Stress-strain curve for the steel. 
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Fig. 6. Finite element types used in the model: (a) SOLID164 element, (b) SHELL163 
element, (c) CONTA173 and TARGE170 contact elements and (d) detail of the contact 

between bearing ropes and pipe bends. 
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(a) (d) 

(b) (e) 

(c) (f) 
Fig. 7. Finite element mesh and contact details: (a) Overall mesh, (b) Pipe bend mesh’s 

detail, (c) Compression sleeve mesh’s detail, (d) Bearing rope-pipe bend contact’s 
detail, (e) Pipe bend-compression sleeve contact’s detail and (f) Pipe bend-pipe bend 

contact’s detail. 
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(a) 

(b) 

(c) 
Fig. 8. Von Mises stresses for different dynamic friction coefficients for : (a) d  0.05 , 

(b) d  0.10 and (c) d  0.12 . 
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Fig. 9. Comparison of experimental tests with numerical simulations. 
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