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Abstract This manuscript introduces a novel methodology to solve the state 
estimation of discrete-time multi-input multi-output (MIMO) nonlinear sys­
tems with uncertain dynamics. The mathematical model of the nonlinear sys­
tems considered in this paper satisfies the usual Lagrangian structure that 
characterizes many mechanical, electrical or electromechanical systems. A re­
current neural network (RNN) estimates the uncertain dynamics of the MIMO 
system with an updating law based on a particular variant of the discrete-time 
version of the super-twisting algorithm (DSTA). A Lyapunov stability anal­
ysis defines the convergence zone for the state estimation error throughout 
the solution of a matrix inequality. The convergence zone for the estimation 
is smaller when the DSTA and the RNN work together in an observer. Nu­
merical examples demonstrate how the adaptive observer reduces the zone of 
convergence and the oscillations in the steady state compared with a discrete 
version of the STA with additional linear correcting terms. An experimental 
implementation shows how the observer estimates the unknown states of a 
Van Der Pol Oscillator. A comparison against some variations of the DSTA 
justifies the advantages of the mixed DSTA-RNN observer. 
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1 Introduction 

1.1 Preliminaries and motivation 

The estimation of non-measurable states for nonlinear systems with uncertain 
dynamics is a relevant problem in control theory [1,2]. State observers are the 
main tool aimed to solve the estimation of the non-measurable states. The 
most common designs introduce a linear correction term depending on the 
output error (usually known as the Luenberger form). These observers require 
the mathematical description of the system under study [3,4]. Nevertheless, 
these models may be inaccurate to represent the whole dynamics of the system. 
Therefore, the state observer may not produce a reliable estimation of the real 
non-measurable states [5,6]. 

Sliding mode observers (SMO) offer a different alternative to solve the 
problem of state estimation for uncertain systems. SMO may endorse finite-
time convergence for the estimation error and robustness against parametric 
uncertainties as well as bounded external perturbations [7,8]. Nowadays, there 
is a bunch of design methods for SMO based on the first and higher (equal 
or greater than two) order sliding mode theories. The main disadvantage of 
the so-called first order sliding mode (FOSM) solutions is the high frequency 
oscillations in the estimation error trajectory (known as chattering) [9]. This 
undesired characteristic is partially alleviated by increasing the order of the 
controller. Despite this operational disadvantage, SMO exhibit better estima­
tion performance than high gain observers when the mathematical description 
of the system is not available [10,11]. In particular, the super-twisting algo­
rithm (STA) can estimate the uncertain dynamics of the second order system 
if the upper-bound of the function associated with the time derivative of the 
second state is known [12]. The success of STA came from its numerous ap­
plications in state estimation, feedback control and parameter identification 
problems. In particular, the STA was successfully applied to solve the state ob­
server design for single-input single-output (SISO) or multi-input multi-output 
(MIMO) systems [13,14] as well as to design output feedback controllers [15, 
16]. Just recently, some results [17–19] have introduced the discrete-time anal­
ysis of the STA working as a nonlinear observer, but requiring a suitable 
mathematical description of the system that should be estimated. Moreover, 
the application of SMO enforces the presence of quasi-periodic oscillations on 
the states affected by the controller or by the observer. This movement is 
known as quasi-sliding mode and its amplitude is proportional to the gains 
fixed for the sliding mode algorithm [20–23]. 

Notice that, all the STA applications require a discrete-time implemen­
tation in embedded systems (using complex methods of integration). In con­
sequence, there is an evident necessity of developing a discrete-time analysis 
of stability for the STA. The existing results offered analytic solutions to ad­
just the gains of the DSTA. Nevertheless, the possibility of selecting the gains 
value to reduce the size of region that characterize the quasi-sliding mode reg­
imen has not been deeply studied. Adaptive techniques are an alternative to 
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reduce the zone of convergence as well as new designs that exploit the bene­
fits of a sliding mode observer and the characteristics of adaptive techniques 
where the mathematical model is inaccurate or even unavailable [24]. When the 
mathematical description of the system (for continuous and discrete plants) 
is unavailable, adaptive modeling techniques can reduce the steady state os­
cillations of controlled systems or estimated states in the case of designing 
observers [25–28]. 

Artificial Neural Networks (ANN) may approximate nonlinear functions 
affected by the presence of bounded perturbations, model uncertainties and 
signal noises [29,30]. The adaptive modeling by DNN has been developed for 
both, continuous and discrete-time systems. For discrete-time systems, recur­
rent neural networks (RNN) [31] are updated by learning laws represented by 
equations in differences. The work developed in [32] addresses the identifica­
tion, state estimation and tracking problems for DNN with continuous dy-
namics (DiffNN) by means of Lyapunov control functions. On the other hand, 
RNN have employed the backpropagation through-time algorithm to update 
their free parameters [33]. In the context of discrete-time Lyapunov theory, the 
work in [34] updates the weights of a RNN by means of an extended Kalman 
Filter like learning. Besides, the work presented in [35] exploits the concept of 
Lyapunov controlled functions to develop new learning laws for RNN. 

Several results [36–40] explore solutions based on sliding modes (SM) and 
DNN to overcome the disadvantages of each individual technique. The work 
developed in [36] solves the adaptive control problem based on the DNN with a 
first order SM learning law. For second-order systems, the work in [26] suggests 
a two stages observer: in the first stage, a DNN estimates the dynamics of the 
mechanical system under analysis, and in the second stage, the STA working as 
an observer rejects some kinds of bounded perturbations. All these collective 
solutions based on both DNN and SM work mainly in continuous-time systems. 
The work in [18] introduces a discrete-time version of the STA (DSTA) with 
the stability analysis in terms of the discrete-time second Lyapunov method. 
However, this algorithm requires the complete knowledge of the functions that 
describe the system dynamics or at least an upper-bound for them. 

1.2 Contribution 

There are several designs gathering the advantages of DiffNN and SM solutions 
in continuous time. The lack of results in discrete-time framework that justifies 
the real-time implementation of such continuous observers constitutes a strong 
motivation to develop a discrete-time observers for second order nonlinear 
systems based on an integrating method using RNN and the DSTA. Therefore, 
the main contributions of this study are 

1. The design of a discrete-time adaptive observer for MIMO systems with a 
adaptive second order sliding mode structure. 
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2. A novel learning law obtained from a discrete time controlled Lyapunov 
analysis with two different correction terms: a classical linear term and a 
nonlinear one based on the DSTA. 

3. The comparative analysis of the region of convergence for the estimation 
error and how this proposal reduces it when the RNN is introduced in the 
observer design. 

4. The method issued to calculate the gains needed in both the RNN and the 
DSTA. 

1.3 Structure of the paper 

Section 2 describes the problem formulation, the class of nonlinear systems 
and the characteristics of the RNN structure used in this study to approximate 
the uncertain system. Section 3 presents the observer structure implementing 
the RNN and the DSTA. The main result is summarized in the Theorem 
included in this section. Section 4 contains numerical results related to the 
state estimation of a simple pendulum and a two-link robot manipulator. The 
results and advantages provided by the RNN with DSTA learning law are 
compared with an observer based on a generalization of the STA working as a 
feasible realization of a differentiator in discrete-time [41]. Section 5 provides 
a real experimental setup where the states of a Van Der Pol Oscillator are 
estimated by the RNN-DSTA observer. Some discussion about the results 
obtained in this study are formulated in Section 6. Finally, Section 7 presents 
the conclusions of this work. 

2 Problem formulation 

The problem solved in this study was to design an adaptive observer based 
on RNN and DSTA intended to estimate the states of an uncertain and per­
turbed MIMO system formed by a set of second order systems. The observer 
design included the adaptive laws that adjusted the weights of the RNN as 
well as the gains of the DSTA. Consider the class of uncertain discrete-time 
nonlinear MIMO systems governed by a set of 2n equations in differences and 
an algebraic linear state output mapping: 

xi (k + 1) = xi (k) + τxn+i (k) 

xn+i (k + 1) = xn+i (k) + τfi (x (k) , u (k)) + τξi (k) (1) 

yi (k) = xi (k) 

⊤
with i = 1, . . . , n. x := [x1, . . . , x2n] , x ∈ R2n is the state of the MIMO 
second-order nonlinear uncertain system. The output of the system is y ∈ Rn 

⊤formed as y := [y1, . . . , yn] . The positive scalar τ defines the sampling time for 
⊤the discrete system. The signal u ∈ Rn , u := [u1, . . . , un] is the control action 

{ }

+belonging to the admissible control set Uadm := u(k) : lu(k)l ≤ u < ∞ .0 
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The nonlinear function fi : R
2n × Rn → Rn is uncertain but there exists 

(by assumption) a known constant f+ ∈ R+ such that lfi (·, ·)l ≤ f+. The i 
⊤ 

vector ξ := [ξ1, . . . , ξn] represents the non measurable and bounded system 
perturbations. The set Uadm may contain a large class of stabilizing control 
designs. Therefore, one may assume that the system trajectories are bounded 
as follows: 

lx (k)l ≤ ε, 0 < ε < +∞, ∀k ≥ 0 (2) 

Notice that the assumption given for the function fi, supports the application 
of diverse state estimators based on sliding modes [18]. However, the upper 
bound f+ may overestimate the value of fi throughout the time which in the i 

case of discrete SMO may lead to larger oscillations in the transient period of 
the estimation of xn+i. Indeed, this undesirable behavior can affect the design 
of a possible output feedback controller. For example, the domain where the 
control action is valid may reach big values that could be unattainable by real 
actuators. 

One of the main objectives of this work is to relax the assumption of the 
class of systems that can be estimated when the function fi is unavailable. 
The assumption presented in (2) justifies the locally nonlinear approximation 
of system (1) by a RNN. Consider that the states of this RNN as x̂ ∈ R2n and 
their dynamics depend on two sets of parameters W1 and W2 that must be 
adjusted in such a way that the estimation error ∆ = x̂− x has its origin as a 
practical stable equilibrium point with a convergence region characterized by 
a positive scalar β defined as 

β := lim l∆(k)l (3) 
k→∞ 

In equation (3), lim (·) = lim sup (·). The learning laws depend only on the 
k→∞ k→∞ 

available output y. Then, the RNN used to approximate the discrete nonlinear 
system operates as an state estimator for (1). The key tool to solve the design of 
the adaptive laws for the weights in the RNN was the Lyapunov stability theory 
for discrete-time systems. The RNN observer did not consider the application 
of classical Luenberger correction terms [42,3]. Instead, the RNN observer 
implements nonlinear gains based on the DSTA structure in both the observer 
structure and the corresponding learning laws derived from the Lyapunov 
analysis. 

3 Design of the RNN state observer 

3.1 System description and main assumptions 

Notice that the system in (1) can be rewritten in the following form 

xα (k + 1) xα (k) + τxβ (k)= 
xβ (k + 1) xβ (k) + τf(x, u) + τξ(k) 

(4) 

y (k) = Cx (k) = xα (k) 
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[ ]⊤⊤ ⊤In equation (4), the following definitions are used, x := xα xβ , xα := 
[ ]

⊤ ⊤
[x1, . . . , xn] , xβ := [xn+1, . . . , x2n] and C = In×n, 0n×n . The matrix In×n 

represents the identity matrix of dimension n × n, 0n×n represents a matrix 
[ ]⊤ 

with zero entries of dimension n × n and f(x, u) := f1(x, u), · · · , fn(x, u) . 
In this study, the following assumptions are supposed to be fulfilled. 

Assumption 1. The nonlinear functions fi (·, ·) satisfy the Lipschitz con­
dition with respect to their first argument, that is: 

|fi (x, u)− fi (z, u)| ≤ Li lx − zl 
(5) 

R
2n u ∈ Uadm ⊂ Rnx, z ∈ ; 

Remark 1 Assumption 1 justifies the existence and the uniqueness for the 
solution of (1). This assumption is needed because RNN can approximate un­
known/uncertain nonlinear functions with bounded trajectories and bounded 
variations. However, when the nonlinear functions in (1) have fast oscillations, 
the RNN cannot track its states. 

Assumption 2. The term ξ has a deterministic nature and it is uniformly 
bounded as 

2
lξ (k)l ≤ Υ, ∀k ≥ 0,ΛΥ (6) 

R
n×nΛ⊤ = ΛΥ ∈ , ΛΥ > 0,Υ 

In the last equation, l·lΛ represents the weighted norm, that is, for a vector 
T ∈ Rn, its weighted norm is given by lT lΛ = T ⊤ΛT , where 0 < Λ = Λ⊤ ∈ 
R

n×n. The adaptive observer proposed in this paper obeys a RNN structure 
that approximates the nonlinear function f (·, ·), that is, there exists a nominal 
part f0 (x (k) , u (k) | Ω) and a modeling error f̃ (x (k) , u(k), Ω) (based on the 
Stone-Weisstrass theorem [43]) where Ω is the set of parameters used to adjust 
the nominal part. This approximation model is given by 

f (x(k), u(k)) := f0 (x(k), u(k)|Ω) + f̃ (x (k) , u(k), Ω) 

The specific selection of Ω implies the validity of the following assumption: 
Assumption 3. The error modeling f̃ satisfies:

  2 
  

 
f̃(x, u, Ω)

 
≤ n1, n1 ∈ R

+ ∀k ≥ 0 (7) 
Λf̃ 

with Λ ̃ ∈ Rn×n, 0 < Λ ̃ = Λ⊤ .f f f̃ 

The nominal part f0 := f0 (x (k) , u (k) |Ω) satisfies a particular RNN struc­
ture 

∗ ∗ f0 := Ax(k) +W σ (x(k)) +W ϕ (x(k)) u(k) (8) 1 2 

∗where A ∈ Rn×n is a Hurwitz matrix in the discrete-time sense and W1 ∈ 
∗ 

R
n×2n and W2 ∈ R

n×2n are constants matrices. These parameters can be pre­
∗ ∗sented as Ω ∈ Rn×4n, which are defined as Ω = [W ,W ]. The set of parame­1 2 

ters satisfies, by assumption, the following condition Ω = argminΩ0 lf(x, u)− 
f0(x, u, Ω0)l for a given pair x and u. 
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∗ ∗Assumption 4. The weights W and W are assumed to be unknown but 1 2 
bounded by known positive constant matrices W̆1 and W̆2, that is, 

⊤∗ M⊤ Λ̃W ≤ W̆1 
∗(W ) MW ∗ 

1 1 (9) 1 
⊤ 
M⊤ Λ̃W ≤ W̆2 

∗ ∗(W ) MW ∗ 
2 22 

[ ]⊤ 
With M = 0n×n In×n , W̆1, W̆2 > 0 and Λ̃W1 , Λ̃W2 are positive definite and 
symmetric matrices of appropriate dimensions. 

In (8), σ (·) : R2n → Rn and ϕ (·) : R2n → Rn×m are the so-called 
activation functions used in the design of RNN. In this study, sigmoid functions 
defined the set of activation functions. However, they may also be selected as 
simple polynomials of fixed order, Chebyshev polynomials or even Wavelets 
[44]. The class of sigmoid functions used in this study is: 

aσi 
aϕij σi (x) ϕij (x)= =, 

x (10) ⊤ ⊤−c −cx1 + bσi
e σi ϕij 1 + bϕij 

e 

R
2nwhere aσi

, aϕij 
, bσi

, bϕij 
∈ R, cσi

, cϕij 
∈ , i = 1 : n, j = 1 : m. 

Assumption 5. The activation functions must satisfy the conditions of 
continuity and boundedness, that is, 

2 2 2lσ (x)− σ (z)l ≤ Lσ lx − zl lσ (x)l ≤ L+ (11) σ 

2 2 2
lϕ (x)− ϕ (z)l ≤ Lϕ lx − zl lϕ (x)l ≤ L+ 

ϕ 

∀x, z ∈ R2n where Lσ, Lϕ, L
+ 

ϕ are bounded positive scalars. σ , L
+ 

∗Clearly, by the characteristics of matrices W and the boundedness of the i 

activation functions, the following inequalities are valid: 

2 2∗ ∗lMW Ψi(k)l ≤ ǫi lW Ψi(k)l ≤ ǭii ΛWi 
i Λ W̃i (12) 

ǫi, ̄ǫi ∈ R+ i = 1, 2 

3.2 Discrete-Time RNN Observer 

The substitution of the RNN representation (8) in equation (4) yields: 

  

xα (k) + τxβ (k) 
( )

x (k + 1) =
xβ (k) + τ f0 + f̃(x(k), u(k), Ω) + ξ (k)

y (k) = xα (k) (13) 

The adaptive observer proposed in this study introduces the output cor­
rection terms of the DSTA structure in the RNN design. The results in [45] 
provide a discrete-time characterization of the convergence zone for the DSTA. 
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Let us propose a discrete-time observer using the robust characteristics of the 
DSTA and the adaptive advantages obtained with the RNN approximation: 

µ1x̂α(k) + τx̂β(k) + τB̄1(k)x̂(k + 1) = ( ) (14) 
µ2x̂β(k) + τ Ax̂β (k) + W̄1(k)σ̂ + W̄2(k)ϕ̂u(k) + B̄2(k)

with the following definitions
 

¯
B1(k) := B1λ (∆α (k))S (∆α (k)) 

B̄2(k) := B2S (∆α (k)) 

B̄1(k) and B̄2(k) are the correction terms based on the DSTA. These terms of­
fer extra robustness against external perturbations and modeling uncertainties 
[13,37]. The gain matrices B1, B2 and the function λ (∆α (k)) are 

B1 := diag [B11, B12, . . . , B1n]
 
B2 := diag [B21, B22, . . . , B2n]
 

λ (∆α (k)) := diag [λ1 (∆1 (k)) , . . . , λn (∆n (k))] 
1/2

λi (·) := |·| , i = 1 : n 
⊤

S (∆α (k)) := [sign (∆1 (k)) , . . . , sign (∆n (k))]

The sign function sign (·) in discrete-time is 
 

 
−1 if a < 0 

sign (a) := 0 if a = 0 
 

1 if a > 0 

This representation for the sign function in the discrete-time domain avoids 
the discontinuity problem commonly exhibited in continuous sliding modes 

¯ ¯algorithms. The time varying parameters W1 and W2 are the weights of the 
observer to be updated with an appropriate learning law and they are defined 
as 

2W̄1(k) := W1(k + 1) + W1(k), (15) 
2W̄2(k) := W2(k + 1) + W2(k) 

σ̂ := σ(x̂) and ϕ̂ := ϕ(x̂) are the activation functions evaluated in the esti­
mated states. Notice that equation (12) can be rewritten as 

x̂ (k + 1) =Axx̂ (k) +B (k)S(∆α(k)) +MW̄1(k)σ̂ + MW̄2(k)ϕ̂u(k) (16) 

where 
µ1In×n τIn×n τB1λ (∆α (k)) Ax := , B (k) := 

0 µ2I + τA τB2 

The values of µ1, µ2 in equation (3.2) ensure the stability of matrix Ax placing 
their poles inside the unitary circle. The term ∆α := xα − x̂α corresponds 
to the output error. The observer uses an on-line training to improve the 
current representation of (1) depending of the current values of ∆α. The weight 
matrices are updated by nonlinear learning laws given by 

Wj(k + 1) = Φj (Wj(k), x̂(k), y(k), u(k)) j = 1, 2. (17) 

Here, the weights Wj must be adjusted to reduce the approximation error 
between the nominal part and the uncertain nonlinear model. 
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3.3 Discrete-time adaptive learning law 

The nonlinear updating laws for the observer in (16) are described by the 
following equations in differences 

[ ( ) ]

Π−1 −1Wi (k + 1) = − εi − g In×n Wi (k) +i i 
[ ]

τΠ−1M⊤P AxNδC
⊤∆α (k) Ψ⊤− (18)i i 

τΠ−1M⊤P [B (k)S (∆α (k))]Ψ
⊤ 

i i 

where i = 1, 2 and 

)

−1Πi := , gi > 0
(

(

εi + gi In×n
)

εi := τ2 Ψ⊤(k)Ψi(k)/4 M⊤ΛWi
Mi 

Ψ1(k) := σ (x̂(k)) , Ψ2(k) := ϕ (x̂(k)) u (k) 
ΛWi 

= Λ⊤ > 0Wi 

( )−1 
The matrix Nδ ∈ R

n×n is defined by Nδ := CC⊤ + δIn×n with δ being 
a small positive scalar. The parameters gi are the learning coefficients for the 
RNN. The matrix P is the positive definite solution (if there exists) 0 < P = 
P ⊤ , P ∈ R2n×2n to the next matrix inequality 

A⊤PAx + A⊤PRaPAx + Rb − (1− α)P ≤ Q0 (19)x x 

where 
5 

Ra := Λi 

i=1 

+Rb = δNAx 
+ CNAx 

C⊤ + τ2u LϕW̆2 + τ2LσW̆10 

N⊤A⊤NAx 
= x Nδδ Ax

Λ⊤The matrices Λj = j > 0, j = 1 : 5 are positive definite matrices. The main 
result of the this study is stated in the following theorem. 

3.4 Main Result 

Theorem 1 Assume that the assumptions 1-5 are valid for the class of sys­
tems represented by (1). Consider the observer (16), supplied by the learning 
laws (18), which was aimed to estimate the nonlinear trajectories of x. If there 
exists a positive definite matrix Q0 = 0 , Q0 > 0, such that the algebraicQ⊤ 

Riccati-like matrix inequality (19) is feasible for a positive definite and sym­
metric matrix P , and if the observer gains are selected such as all the compo­
nents B1,j are positive and lB2l ≥ η1, then, the state estimation error ∆ is 
ultimately bounded with a bound given by 

ρ 
β = (20)

1− α 
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1 2 
where ρ := (ΛB) Q

−1/2 
+ Γ , 0 < ΛB = Λ⊤ ΛB ∈ R

n×n , Γ :=λmax 0 B,2 
2 
L 

(ǫi + ǭi+ϑi)+n1 +Υ . The constants n1 and Υ defined in (6) and (7). ǫi, ǭi 
i=1 

Z⊤B2l
2are given in (12), ϑ1 = λmax(Z22)lB2l

2 , ϑ2 = λmax(Λ31)lB1 
⊤ 

12 with 
Z22 and Λ31 being positive definite matrices of appropriate dimensions. 

Proof The recurrent dynamics of the estimation error ∆ satisfies the following 
form 

∆ (k + 1) = Ax∆ (k)−B (k)S (∆α (k)) + τMξ(k)+ 
L

2 
{ [ ] }

∗ ˜ (21) 
τM Wi Ψi + W̃i (k + 1) + W̃i (k) Ψi/2 + τMf̃ (x(k), u(k))
 

i=1
 

where Ψ̃1(k) := σ(x(k)) − σ(x̂(k)) and Ψ̃2(k) := (ϕ(x(k)) − ϕ(x̂(k)))u(k). Let 
define the following Lyapunov-like (energetic) function as 

{ } { }

−1 −1V (∆, W1,W2) =∆
⊤P∆ + g tr W ⊤W1 + g tr W ⊤W2 (22) 1 1 2 2 

where tr(H) defines the trace operator of matrix H . Following the second 
stability method of Lyapunov for discrete systems, one must estimate the first 
difference of the Lyapunov function, that is, 

V (k + 1) − V (k) = ∆⊤(k + 1)P∆(k + 1) −∆⊤(k)P∆(k)+ 

{ }

g −1tr (W1(k + 1) −W1(k))
⊤ 
(W1(k + 1) + W1(k)) +1 (23) 

{ }

g −1tr (W2(k + 1) −W2(k))
⊤ 
(W2(k + 1) + W2(k))2 

Substituting the expression (21) in the first term obtained in (23) and 
applying a number of times the Young’s inequality Y ⊤X +X⊤Y ≤ X⊤ΛX + 
Y ⊤Λ−1Y [46] valid for any X, Y ∈ Rr×s, 0 < Λ = Λ⊤ ∈ Rr×r , one may 
estimate the upper bound of ∆⊤(k + 1)P∆(k + 1) as 

( )

∆⊤(k + 1)P∆(k + 1) ≤ ∆⊤ (k) Ax x PRαPAxPAx + A⊤ ∆ (k)+ 

2 
2 �2 ∗ ˜lB (k)S (∆α (k))l + τ2 W Ψi(k) +Z i=1 i 

ΛW ∗ 
i 

τ2 f̃ (x(k), u(k)) + τ2 lξ (k)lΛξ̃
+ 

Λf̃

[ ] (24) 
2τ 

�2 
S(∆α(k))

⊤B(k)⊤PM⊤ W̃i(k + 1) − W̃i(k) Ψ(k)/2−i=1 
[ ]

�2
2 ∆⊤ (k)A⊤PM⊤ W̃i (k + 1) − W̃i (k) Ψ/2+ i=1 x 

[ ] 2 
τ2 �2 W̃i (k + 1) − W̃i (k) Ψ(k)/2i=1 

Λ W̃1 
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∗In equation (24), W̃i := Wi − Wi and the matrix Ra corresponds to the 
definition introduced in (19). Besides, the following identities are valid 

Z := Λ−1 + P + P (Λ6−9)P1 

ΛW∗ 

1 
M 

= 

( )

Λ−1 + Λ−1:= M⊤ + Λ10−12 + P + P (Λ13−14)P2 6 

Λ−1 + Λ15−16 + P + P (Λ10 + Λ17−18)P3 7

(

:= M⊤ 

)

M+ Λ−1M⊤ΛW∗ 

2 
( ( ) )

Λ−1 + Λ−1P + Λ19−21 P + P11 15 
( )

P + P P12 16 19 + Λ22−23

Λ W̃1 
M 

Λ−1 + Λ−1 + Λ−1Λ W̃2 
= 

( )

Λ−1Λ ̃ := M⊤ + Λ−1 + Λ−1 + Λ−1 + Λ−1 + Λ−1 + P + PΛ24P Mf 4 8 13 17 20 22 
( )

Λ−1 + Λ−1 + Λ−1 + Λ−1 + Λ−1Λ˜ := M⊤PM + M⊤ Mξ 5 9 14 18 21−24

The matrices Λj are positive definite matrices (j = 1 : 24). By definition of 
σ̃(x, x̂) and ϕ̃(x, x̂) and the sector conditions requested to construct the ac­
tivation functions described in (11), the following upper bounds are valid for 

2 
τ2 ∗ ˜W Ψ(k)i 

ΛW ∗ 
i 

2 2∗ ∗ ∆ (k)lτ2 lW ≤ τ2Lσ lWσ̃(x (k) , x̂ (k))l1 1ΛW ΛW ∗ 
1 

∗ 
1 

If we considered the following equations Λ13 + Λ14 = P −2 and Λ−1 + Λ−1 +4 8 
Λ−1 + Λ−1 + Λ−1 
13 17 20 + Λ21 + P = Λ̃W∗ 

1 
with Λ̃W∗ 

1 
= Λ̃⊤ 

∗ 

1 
> 0 one gets W

∗ 2 ∗ ⊤∆ (k)l ≤ τ2Lσ∆
⊤ (k) (W ) M⊤Λ̃W

∗ τ2Lσ lW MW ∆ (k)1 ∗ 

11 ΛW 1∗ 
1 

Considering a similar analysis and defining Λ10 +Λ17 +Λ18 = P −2 and Λ−1 +3 
+ Λ15 + Λ16 + P = Λ̃W∗ 

2 
= Λ̃⊤Λ−1 

7 ∗ 

2 
> 0 the next inequality is obtained W

⊤∗ ∗ϕ̃(x (k) , x̂ (k))u(k)l ≤ τ2Lϕu
+∆⊤ (k) (W ) M⊤Λ̃W

∗τ2 lW ∗ 

2 
MW ∆ (k)2 2 2ΛW ∗ 

2 

Assumption 2 implies 

τ2Lσ lW ∗ W̆1∆ (k)2 
ΛW 

≤ τ2Lσ∆
⊤ (k)∆ (k)lM⊤ ˜1 M∗ 

1 

∗ 
2 

(25) 
∗ 2 ˘

ΛW 
≤ τ2Lϕu W2∆ (k)+∆⊤ (k)τ2Lϕu

+ lW ∆ (k)lM⊤ ˜2 M 

⊤Let consider the term S (∆α (k)) B⊤ (k)ZB (k)S (∆α (k)), which can be 
Z11 Z12 rewritten by a block decomposition for the matrix Z := with 
Z12 Z22 

Z11 ∈ R
n×n , Z12 ∈ R

n×nand Z22 ∈ R
n×n . Based on this block decomposi­

tion, the following expression is valid 

2
S⊤ (∆α(k))B

⊤ (k)ZB (k)S (∆α(k)) = τ2 lB1λ (∆a)S (∆α(k))lZ11 
+ 

22τ2S⊤ (∆α (k))B2 
⊤Z12B1λ (∆a)S (∆α(k)) + τ2 lB2S (∆α(k))lZ22 
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2The Cauchy-Schwartz inequality implies that lB1λ (∆a)S (∆α(k))lZ11 
≤ 

2
lB1λ (∆a)lZ11 

. By the Young’s inequality, one gets 

S⊤ (∆α)B2 
⊤Z12B1λ (∆a)S (∆α) ≤ 

(26) 
2 2

lZ12B1λ (∆a)S (∆α)lΛ−1 + lB2S (∆α)l
31 Λ31 

The last terms of equation (26) are bounded because B1 and B2 are finite 
positive numbers to ensure the convergence of the RNN observer. To introduce 
the output error in the stability analysis, the following equation is applied 

( )

δIn×n + C⊤C ∆(k) = C⊤∆α (k) + δ∆(k) 

Therefore, the next identity holds 

( )

∆ = Nδ C
⊤∆α + δ∆ (27) 

Applying again, the Young’s inequality after the substitution of (27) and 
the definition of W̃ (k) in equation (24), with the results given in (25) and, if 
Λ25 + Λ26 are selected as P −2, the next equation is valid 

( )

∆⊤ (k + 1)P∆ (k + 1) ≤ ∆⊤ (k) AxPAx + A⊤PRaPAx + Rb ∆ (k)−x 

2 
L 

2 τ∆⊤ 

δ A
⊤ 

α (k)CN
⊤ PM [Wi (k + 1) + Wi (k)]Ψi(k)/2+ x
 

i=1
 

2 
L 

[ ]

⊤ ⊤ ˜2τ S (∆α (k)) B (k) PM Wi (k + 1) + W̃i (k) Ψi(k)/2+ 
i=1 

2 
L 

τ2 lM [Wi (k + 1) + Wi (k)]Ψi(k)/2l +ΛW1 
i=1 

2 
2

λmax (ΛB) l∆α (k)l+ f̃ (x(k), u(k)) + lξ (k)lΛξ̃
+ 

Λf̃

2 2 2 
L L L 

∗ 2 ∗ 2τ2 lMW i Ψi(k)l + τ2 lWi Ψi(k)l + ϑiΛWi 
Λ W̃i 

i=1 i=1 i=1 

Here Λ ˜ := Λ−1 + Λ−1 := Λ−1 + Λ−1 and i = 1, 2. By the assump­W1 27 W2 30 28 , Λ ˜ 29 

tions 3 and 4, the upper-bound of ∆⊤ (k + 1)P∆ (k + 1) in (23), adding and 
subtracting the term αV (k) and if there exists a solution for the discrete-time 
Riccati like equation given in (19), the next inequality is valid for Ṽ (k) in 

˜ 2
V (k) ≤ −αV (k)− l∆α (k)lQ0 

+ λmax (ΛB) l∆α (k)l+ Γ + 
{ }

g −1tr [Wi (k + 1) + Wi (k)]
⊤ 
(Θi (∆α (k) ,Wi))i 

http:observer.To
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Here Γ is defined in the main theorem and Θi as 

Θi (∆α (k) ,Wi) = −τM⊤PAxNδC
⊤∆α (k)Ψi 

⊤(k)+ 

−1τM⊤PB (k)S (∆α (k))Ψi 
⊤(k) + g [Wi (k + 1) −Wi (k)] i 

( )

+τ2M⊤ΛWi
M [Wi (k + 1) + Wi (k)] Ψ

⊤(k)Ψi(k)/4i 

With the application of the Choleskii decomposition [46] and the learning law 
defined in (17) the next inequality is obtained 

1 2
T −1/2

λ2∆V (k) ≤ −αV (k)− (QΔa 
) (QΔa 

) + (ΛB) Q + Γmax 04 

11/2 −1/2
Where QΔa 

:= Q ∆α (k) − λmax (ΛB) Q . Finally, with the defini­0 2 0 

tion of ρ in Theorem 1, 

V (k + 1) ≤ (1− α)V (k) + ρ 

The recursion process on this inequality leads to 

k 
L 

k i−1
V (k + 1) ≤ (1− α) V (0) + (1− α) ρ 

i=1 

If the limit when k goes to infinity is considered, one has 

ρ 
lim V (k) ≤ (28) 
k→∞ 1− α 

This last inequality concludes the proof. 

Remark 2 The solution of the matrix inequality (MI) described in equation 
(19) seems to be a restrictive condition. However, this MI can be transformed 
into two Linear MI’s (LMI). The MI in (19) is rewritten as 

A⊤PAx + A⊤PRaPAx + Rb − (1− α)P ≤ Q0 (29) x x 

With Ra defined in (19). If the next inequality is fulfilled, 

P + PRaP ≤ G (30) 

which is equivalent (by Shur complement [46]) to 

G − P P 
≥ 0 (31) 

R−1P a 

The MI in (29) can be rewritten as 

A⊤GAx − (1− α)P + Rb ≤ Q0 (32) x 

Then, the solution of (19) is relaxed to the solution of LMI’s (31) and (32). 
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Remark 3 The regular DSTA applied as robust discrete approximation of 
derivative function only requires that lf (·, ·, ·)) l2 ≤ f+. In consequence, the 
gains of the STA can be adjusted using only this value. The actual value of 
the chattering, obtained when the DSTA is realized in practice, depends on 
this gain. The application of DNN introduces a formal method to reduce the 
DSTA values and in consequence, the chattering values are also smaller. 

Let consider a RNN structure with a given number of components in the 
weights W1 and W2 such that: 

lf̃(x, u, Ω)l + lfo(x, u|Ω)l ≤ lF (x, u, ξ)l (33) 

Notice that this inequality also includes the modeling strategy based on 
RNN, that is lF (x, u, ξ)l ≥ lf̃(x, u, Ω)+fo(x, u|Ω)l. Assume that we selected 
the number of components in the weights W1 and W2 in such a way that 

∗ ∗ lfo(x, u|Ω)l2 ≤ lAx(k)l2 + lW σ(x(k))l2 + lW ϕ(x(k))u(k)l2 ≤ η21 1 

+where η2 := λmin{A}ε
+ + (W1)

+σ+ + (W2)
+ϕ+u0 . The Stone-Weierstrass 

theorem [43] justifies the value of η2 which satisfies η2 ≤ f+ , 

lf̃(x, u, Ω)l + η2 ≤ lF (x, u, ξ)l ≤ f+ (34) 

The upper bound f+ is given in (20). We can conclude that 

lf̃(x, u, Ω)l ≤ f+ − η2 (35) 

. 
Therefore according to Theorem 1, lB1l ≥ 0 and lB2l ≥ (f+ − η2) when 

the RNN is included in the model. From classical results applying the DSTA 
as a robust exact differentiator [13],[45], the gains needed to ensure the con­
vergence of the DSTA are smaller than the case when the RNN is not in 
the modeling process. The results in Theorem 1 of this manuscript and work 
reported in [45] show that the boundary layer also depends on the gain selec­
tion. As a consequence the boundary layer where the estimation error converge 
with the scheme DSTA-RNN is smaller than the use of the DSTA working as 
a RED. 

4 Numerical Results 

4.1 Simple pendulum 

As an illustration of the results presented in this paper, an Euler (explicit) 
discretization of the generalized STA (GSTA) presented in [41] and a DSTA 
reinforced with the RNN scheme are compared. Let consider a simple pendu­
lum described by the following equations in differences 

x1 (k + 1) =x1 (k)+τx2 (k)
 

1 mgl Vs
 
x2 (k + 1) =x2 (k)+τ uk−τ sin (x1 (k))− τ x2 (k) + τψ (k) (36) 

J 2J J
 
y (k) =x1 (k)
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� �
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where x1 = θ is the angle of oscillation, x2 is the angular velocity, m is the 
pendulum mass, g is the gravitational force, l is the pendulum length, J = ml2 

is the arm of inertia, Vs is the pendulum’s viscous friction coefficient. For the 
simulation the bounded perturbation is expressed as ψ1 (k) = 0.5 sin (2k) + 

+0.5 cos (5k). Here, the upper-bound for the control signal is u = 1. For sim­
ulation, the initial conditions were x1,0 = −1 and x2,0 = 3 for the model and 
x̂1,0 = 0, and x̂2,0 = 0 for the observer. The following numeric values were 

( )

mapplied to simulate the pendulum model: m = 1.1kg, l = 1m, g = 9.81 s2 

0.18kg·mand Vs = s2 . The input applied into the system was u = sin(2k) cos(5k). 
The observer parameters were chosen as B1 = 5 and B2 = 2 and A = −0.012 
The activation functions were 

    

0.25 0.05 
0.05 

aσ =  aφ = 0.25 , bσ =  bφ = 0.05 , cσ = cφ = 
0.05 

0.25 0.05 

2.0005 2.0005 
Selecting µ1 = µ2 = 0.95 the value of δ = 0.001, Rb = and 

2.0005 2.0005 
Q0 = 10 ∗ I2×2 the positive definite solutions P and G in Remark 1 were 

1.3613 2.15× 10−5 7.825 0.011 
P = G = 

2.15× 10−5 1.3613 0.011 7.826 

With these values the boundary layer defined in equation (20) is defined as 

10 
β = = 10.1937 

1− 0.019 

The discrete structure for the GSTA working as a robust exact differentiator 
is 

x̂1(k + 1) = x̂1(k) + τx̂2(k)− τB1|∆1(k)| 2
1 
sign(∆1(k)) − B̃1∆1(k) 

˜x̂2(k + 1) = x̂2(k)− τB2sign(∆1(k)) + B2∆1(k) 

Notice that the GSTA has a linear gain that improves the performance of the 
estimation process when the estimation error has a big amplitude, while the 
sign function is more effective when the estimation error has a small amplitude. 
The gains of the GSTA were chosen similar to the gains used in the DSTA-
RNN. The linear gains were B̃1 = 2 and B̃2 = 1.5. Figure 1 shows the results of 
the state estimation process. The first graphic represents the estimation of the 
measurable state, i.e., the position of the pendulum. Both observers (GSTA 
and the DSTA-RNN) reproduced the nonlinear trajectories of the system. 
The DSTA-RNN presented a delay before reproducing the position of the 
pendulum, which is a direct consequence of the learning process of the RNN 
structure. The second graph of this Figure shows a better performance in the 
state estimation process when the RNN is introduced in the observer structure. 
The GSTA observer did not converge to the real states with small gains. 
This problem was corrected by the adaptive contribution of the RNN. Notice 
that the DSTA-RNN observer was designed assuming that the function f (·, ·) 
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was unknown. The system given in (36) was used only as a data generator 
to train the RNN section. If the gains corresponding to the GSTA observer 
are increased to fulfill the condition B2 > f+, the GSTA can reproduce the 
nonlinear dynamics of the simple pendulum. In this example, the condition 
was not accomplished only to show how the RNN structure improved the 
performance of the DSTA with smaller gains B1 and B2. The increment of B2 

in order to fulfill the condition B2 > f+ in the GSTA implied a considerable 
increment of the chattering amplitude in the estimation process. With the 
gains chosen as 10 and 7, and B̃1 = 2 and B̃2 = 1.5 the GSTA observer 
presented and adequate performance. The performance of DSTA-RNN and 
the GSTA observers were compared throughout the euclidean norm of the 
estimation error. Figure 2 presents this comparison. The DSTA-RNN had a 

Pendulum position 
2 

1 

0 

-1 

-2 

Pendulum position 
5 

0 

-5 

Fig. 1 Simple pendulum state estimation process a) Position state estimation process b) 
Velocity state estimation process 

faster convergence and its steady state response remains below the euclidean 
norm of the estimation error obtained with the GSTA. The obtained value of 
β coincided with the simulation results. 

4.2 Flexible Link Robot Manipulator 

Let consider a 4-dimensional nonlinear system that describes the dynamics 
of a flexible link robot manipulator. The nonlinear dynamic equations for a 
single-link manipulator with flexible joint and negligible damping are given by 

Iq̈1 + MgL sin(q1) + κ(q1 − q2) = 0 

Jq̈2 − κ(q1 − q2) = u 

where q1 and q2 are the angular positions, I and J are the moments of inertia, 
κ is the spring constant, M is the total mass, L is the length of the link in 

ra
d

 
ra

d
 

0 5 10 15 
Time (s) 

0 5 10 15 
Time (s) 
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0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

�
e(
t)
�

 2 

Performance Index 

RNN 
GSTA 

0 5 10 15 
Time (s) 

Fig. 2 Performance index to compare the simulation results between the DSTA and the 
DSTA-RNN observer 

the robot manipulator and u is the corresponding input. By the state variable 
approach, defining q1 = x1 and q2 = x3, the last equation can be rewritten as 

ẋ = f(x) + g(x)u 

[ ]⊤ 
where x = x1 x2 x3 x4 and 

    

x2 0 
   −a sin(x1)− b(x1 − x3) 0 
   f(x) = g(x) = (37) 
  0x3 

−c(x1 − x3) d 

MgL κ κ 1where a = , b = I , c = and d = . For simulation a = 2, b = 2, c = 1I J J
and d = 1. The input signal is u(k) = −0.1 sin(2τk). The parameters of the 
DSTA-RNN used in simulation were 

2 0 5 0 −2τ −1.1τ 
B1 = , B2 = , A = 

0 2 0 2.1 −1.5τ −3.1τ 

The activation functions were chosen as 

    

0.025 0.05 
0.05 

aσ = aφ = 0.025  , bσ = bφ = 0.05  , cσ = cφ = ,
0.05 

0.025 0.05 

And the linear gains for the GSTA were 

2 0 1.5 0 ˜ ˜B1 = , B2 = 
0 1 0 1 



18	 Iván Salgado et al. 

The sampling period was established as 0.001. The parameters of inequalities 
in Remark 1 were chosen as Ra = I4×4 and Rb as 

	  

1.0931 0 1.0460× 10−4 0 
	 1.045× 10−7 09.094× 10−6 0 
	 Rb =	 , 
	 0 1.045× 10−7 0 9.0940× 10−6 

 

0 1.045× 10−7 0 9.0940× 10−6 

where α = 0.006, δ = 0.1 and Q = 10×I4×4. The solution of the LMI’s yielded 
to the following results 

	  

0.2501 0.0478 0.0705 0.0691 
	 0.0477 0.2501 0.0691 0.0705 
	 P =	 , 
0.0705 0.0691 0.2498 0.0491  

0.0691 0.0705 0.0491 0.2499 
	  

1.0697 0.3639 0.5177 0.5086 
	 0.3639 1.0697 0.5086 0.5177 
	 G =	 × 107 
0.5177 0.5086 1.0685 0.3747  

0.5086 0.5177 0.3747 1.0685 

With these solutions, the upper bound for the convergence zone was β = 
20.1207. Figure 3 presents the estimation results for the positions and velocities 
of each link of the flexible robot. Similar to the previous example, a comparison 
between the DSTA-RNN and the GSTA observer was proposed. In Figure 3, 
the solid line represents the real dynamics obtained with the nonlinear model 
(37), the dashed line depicts the trajectories provided by the DSTA-RNN and 
the dotted line represents the results obtained with the GSTA observer. The 
DSTA-RNN reached the real trajectories before the GSTA observer. GSTA 
observer exhibited an overshoot before it reached the real trajectories of the 
flexible robot manipulator. This disadvantage decreased while using the DSTA-
RNN observer. To explore with detail the convergence of both observers, figure 
4 presents a closer view of the first two seconds of simulation. Figure 5 illus­
trates the performance index selected as the euclidean norm of the estimation 
error. In this figure, the value of the estimation error trajectories remained in­
side the boundary layer delimited by the value of β. The DSTA-RNN scheme 
converged faster than the GSTA and with less overshoot. 

5 Experimental results 

Let us consider the Van Der Pol Oscillator given by the following set of differ­
ential equations 

ẋ1 = x2, 
( )

2ẋ2 = −x1 + κ 1− x + u,	 (38) 1

y = x1 
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Fig. 3 Comparisson between the DSTA-RNN and the GSTA. The solid lines represent the 
real dynamics. The dashed lines correspond to the trajectories obtained with the DSTA-RNN 
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Fig. 4 Closer view of the estimated trayectories obtained by the DSTA-STA and the GSTA 
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Fig. 5 Performance index comparison between the GSTA and the DSTA-RNN observers 

where κ is a model parameter equal to 0.1. Figure 6 shows the electronic 
circuit and the computer interface. The circuit parameters can be found in 
[47]. The computer interface employed a dSPACE 1104 board. The Van Der 
Pol oscillator was internally controlled by a Continuous Singular Terminal 
Sliding-Mode (CSTSM) controller given by 

2

3ϕ = x2 − ẏd + k2⌈x1 − yd⌋ 
1

2

( )

2 ẍd + x1 − κx2 1− x − k1⌈ϕ⌋1 + z (39) u = 

ż = −k3⌈ϕ⌋
0 

where yd is the desired trajectory to follow, z is an extended variable, k1 = 
4, k2 = 3 and k3 = 2 were the design parameters. The dSPACE board ran at 
5KH and the controller was implemented with an Euler discretization method. 
Notice that, the discrete measurements of the available output and control 
input were the ones used to test the DSTA-RNN and the GSTA. 

Fig. 6 Schematic overview of the practical implementation and circuit diagram of an au­
tonomous Van Der Pol oscillator. 
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The values used in the activation functions in the DNN observer were 

0.5 
aσ1 = 40, bσ1 = 1, cσ1 = ,

0.5 

25 
aσ2 = 12, bσ2 = 1, cσ2 = ,

25 

0.2 
aφ1 = 10, bφ1 = 1, cφ1 = ,

0.7 

12.3 
aφ2 = 15, bφ2 = 1, cφ2 = 

12.3 

The matrices A and P were selected as
 

0 1 60 40
 
A = , P = 

−0.01 −1000 40 106 

The learning coefficients are chosen as g1 = g2 = 0.8 and α = 0.01, µ = 0.5 
Λ̃Ψ1 = QWi 

= I2×2 and B1 = 5 and B2 = 10. The linear gains in the GSTA 
were B̃1 = −0.5 and B̃2 = −1. Figure 7 shows the comparison between the 
states estimated by the DSTA-RNN and the GSTA. The continuous red line is 
the data measurement of the Van Der Pol Oscillator. The dashed blue lines are 
the estimation provided by the DSTA-RNN and the dotted black line is the 
estimation obtained by the GSTA. Figure 7 presented a closer view into the 
first 0.2 seconds of experimentation. One can appreciate the learning period 
where the RNN-DSTA had an oscillatory behavior. After the DSTA-RNN 
reached the steady state, the oscillations disappeared. The main problem with 
the GSTA is usually the chattering effect in the second state. In the state 
estimation of x2, the GSTA presented a bigger overshot than the DSTA-RNN. 
Moreover, in steady state, the GSTA presented high frequency oscillations. 
Figure 8 depicts the Euclidean norm of the estimation error. The black line 
is the result of choosing B1 = 0 and B2 = 0. Therefore, just the linear gains 
were activated and the GSTA worked just as a classical Luenberger observer. 
Without the non linear gains B1 and B2, the algorithm did not reach the real 
states. The GSTA presented bigger oscillations and it is represented by a red 
line. The experimental setup brings a problem when the available measurement 
had some small but high frequency variations. The GSTA produced more 
oscillations because of the noisy available output. The DSTA-RNN reduced 
the oscillations and provided a faster convergence (blue continuous line). 

6 Discussion 

The simulation results in this study showed some advantages of the DSTA­
RNN observer over classical results vailable in literature such as the ones 
described in [41,45]. This study proposes a discrete-time analysis to guarantee 
the convergence of the estimation error to a neighborhood around the origin. 
The main advantages of the observer desing presented in this manuscript are: 
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Fig. 7 Estimation procedure obtained with the DSTA-RNN and the GSTA implemented 
with real data 
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a) the Lyapunov analysis showed that the DSTA-RNN observer can be ap­
plied in real applications because it can be implemented in embeded systems 
through equations in differences. This is one of the main advantages obtained 
with a discrete scheme over continuous schemes that require some numerical 
integration methods, b) without the mathematical description of the nonlin­
ear MIMO system, the DSTA-RNN seemed to be a better option to estimate 
the unknown dynamics of MIMO systems represented by a second order gen­
eral form. Indeed, the differentiators in [13,41] and [45] have higher frequency 
oscillations in the second state. The results presented in this manuscript re­
inforce the state estimation process of second-order systems. Moreover, the 
gains needed to enforce the convergence are smaller than those used in the 
classical GSTA observer, c) in a possible output feedback control design, the 
DSTA-RNN produces smaller overshoot. 

Some possible disadvantages are a) in terms of complexity, the number of 
operations needed in the RNN observer is significantly increased. At least, the 
RNN introduces two new equations in differences for W1 and W2. However, 
the estimation process is better with the adaptive adjustment. It is clear that 
there exists a compromise between the reduction of conservatism introduced 
with the kind of systems that the STA can deal with and the increase of 
the computational complexity introducing an adaptive observer but with the 
possibility of manage a more general class of MIMO second-order systems, b) 
the complexity of tuning the gains for each observer is quite different. The 
GSTA requires to choose only four principal parameters (see the works in [13, 
45,41] ), the DSTA-RNN observer introduces an additional MI to obtain the 
value of matrix P in the learning laws. The complexity of an adaptive scheme is 
always bigger, but in terms of estimation quality, it presents more advantages, 
c) the selection of the corresponding values of the activation functions which 
still remains as an open problem because their estimation is made by try to 
test process. 

7 Conclusions 

In this paper, a second-order algorithm based on the DSTA and RNN solved 
the problem of state estimation of nonlinear MIMO systems. The Lyapunov 
stability was used as the main tool to derive the learning laws and the stabil­
ity proofs of the proposed state estimator. With this technique, the dynamics 
of the DSTA are incorporated into the learning laws of the RNN. This learn­
ing procedure provided robustness against perturbations. A possible drawback 
with the present approach is regarding the computational complexity in the 
simulation and the implementation. However, in the discrete-time domain, the 
implementation of the RNN just includes two additional differences equations 
to upload the weights W1 and W2. Another difference with the continuous 
case is the practical stability achieved in this study against the finite-time 
stability offered by the GSTA in continuous time. Unfortunately, finite-time 
convergence requires theoretically infinite switching frequency, that cannot be 

http:theadaptiveadjustment.It
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obtained in real implementations. Numerical results characterized the per­
formance of the observer designed in this manuscript. Further research must 
include the design of a controller based on the estimated states provided by 
the DSTA-RNN. 
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