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a b s t r a c t

Battery equivalent circuit models (ECMs) are widely employed in online battery management applica-
tions. The model parameters are known to vary according to the operating conditions, such as the battery
state of charge (SOC). Therefore, online recursive ECM parameter estimation is one means that may help
to improve the modelling accuracy. Because a battery system consists of both fast and slow dynamics, the
classical least squares (LS) method, that estimates together all the model parameters, is known to suffer
from numerical problems and poor accuracy. The aim of this paper is to overcome this problem by
proposing a new decoupled weighted recursive least squares (DWRLS) method, which estimates sepa-
rately the parameters of the battery fast and slow dynamics. Battery SOC estimation is also achieved
based on the parameter estimation results. This circumvents an additional full-order observer for SOC
estimation, leading to a reduced complexity. An extensive simulation study is conducted to compare the
proposed method against the LS technique. Experimental data are collected using a Li ion cell. Finally,
both the simulation and experimental results have demonstrated that the proposed DWRLS approach
can improve not only the modelling accuracy but also the SOC estimation performance compared with
the LS algorithm.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Battery energy storage systems are rapidly gaining popularity in
high power and high voltage applications due to their advanta-
geous features, such as high efficiency and low environmental
impact when compared to fossil fuels. Among different battery
types, Li ion batteries are typically the preferred power source to
provide high power and energy density and long service life [1,2]. In
order to maximize the battery performance, the key to success is an
efficient battery model to support the system design, analysis and
management strategies. Among existing battery model types,
known as electrochemical models, reduced ordermodels, and data-
driven black-box models [3], equivalent circuit models (ECMs) of-
fering acceptable modelling accuracy with ease of parametrization
and implementation have been widely used for real-time battery
management applications, including battery power prediction [4],
state of charge (SOC) and state of health (SOH) estimation [5,6],
balancing [7,8], charging control and optimization [9e11].
ng).

r Ltd. This is an open access article
One of the challenges in utilizing an ECM is that the model
parameters depend on the batteries' operating conditions, such as
battery SOC, SOH and environmental temperature [12e16]. For
example, the internal Ohmic resistance of a LiFePO4 cell and a Li ion
NCA cell is almost doubled when the temperature decreases from
25�Cto0�C [13,14]. The dependency of the model parameters on the
operating conditions can be captured using a look-up table, which
is a widely employed technique for ECM parametrization
[12e14,17]. However, it usually requires running a large number of
experiments in order to collect sufficient test data to cover the
entire range of the operating conditions to build the look-up tables.
Another drawback is that the batterymodel parameterswill change
with ageing, making the previous characterization obsolete.
Therefore, online recursive model parameter estimation algorithms
are needed to solve this problem.

There are various methods within the literature for online
recursive estimation of battery ECM parameters, such as recursive
least squares (RLS) [18e20] and adaptive filter approaches
[4,21e23]. Verbrugge et al. proposed using the weighted RLS
(WRLS) method for online estimation of battery ECM parameters
and SOC [18]. The authors then presented a newmethod in Ref. [19]
to further improve the estimation performance by assigning each
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Battery equivalent circuit model.

C. Zhang et al. / Energy 142 (2018) 678e688 679
time-varying model parameter with one individual forgetting fac-
tor. These forgetting factors are optimized using the Newton's
method. Guo et al. [20] used RLS for ECM parameter estimation and
a Kalman filter (KF) for SOC estimation. Plett suggested a joint
extended Kalman filter (EKF) [5] and a joint Unscented Kalman
filter (UKF) [4] for the simultaneous estimation of the battery SOC
and time-varying model parameters. A dual filter technique
combining EKF and UKF was proposed in Ref. [23] to estimate
together the ECM parameters and SOC. The performance of filter-
based methods for SOC estimation depends on the availability of
an accuratemodel and careful filter parameter tuning, e.g., to define
the noise covariance. When using KF methods for joint estimation
of parameters and states, the system order is usually high and the
algorithm tuning can be difficult. In order to decouple the param-
eter identification and state estimation processes to suppress the
cross interferences between these two parts, Wei et al. [24] pro-
posed using the RLS method for recursive ECM parameter identi-
fication and the EKF method for SOC and SOH estimation.

Another difficulty for ECM parameter estimation is that the
battery terminal voltage-current behaviours include both fast dy-
namics (FD), i.e., resistance and charge transfer effect, and very
slow dynamics (SD), i.e., the diffusion effect. Consequently, the
widely used LS methods, (e.g., RLS and WRLS) which estimate
together all the model parameters suffer from numerical problems
due to the high system stiffness, low data storage resolution and
fast sampling [25,26]. Those effects were illustrated experimentally
in Refs. [27e30]. In order to address this problem, Hu et al. [29]
proposed a two-timescale scheme that estimates separately the
battery FD and SD parameters. Here, the battery FD and SD were
assumed to lie in different frequency ranges, and therefore they
could be separated using linear high-pass and low-pass filters. The
experimental results demonstrated modelling accuracy improve-
ment of this two-timescale technique over the conventional WRLS
method. However, this linear filter-based separation method is not
a proper solution to deal with systems containing large non-
linearities and uncertainties that are common within battery
models. Further, the SOC estimation logic was implemented in an
open-loop manner and thus it could be sensitive to disturbances.
Wei et al. [31] proposed a multi-timescale estimator to identify the
ECM parameters and the battery open-circuit voltage (OCV) in real
time. The parameters and OCV estimation processes were decou-
pled and implemented on different timescales to reduce the cross-
interference between them. This leads to improved convergence
and robustness. However, only first-order ECM was considered in
Ref. [31], and the applicability of the proposed method for higher-
order ECMs was not presented. Dai et al. [30] suggested a
different method to estimate the battery FD and SD on separated
time scales. In this study, the FD parameters were estimated using
the RLS algorithm while the SD parameters were estimated using
the EKF method. Although the modelling accuracy and parameter
estimation consistency were illustrated through the experimental
validation, the battery OCV and SOC were assumed to be known,
which decreases the online applicability of this technique.

In order to address these problems, this paper presents a novel
decoupled WRLS (DWRLS) method for online estimation of both
the ECM parameters and battery SOC. The contributions of this
paper are summarized as follows. First, based on a priori knowledge
that the battery FD and SD occur on different timescales, the sep-
aration of them are implemented in time-domain in order to
obviate the incorrect assumption of linear battery dynamics in the
frequency domain. Second, the battery FD and SD parameters are
estimated separately. When estimating the SD (or FD) part, the
voltage response from the estimated FD (or SD) part is removed
from the total model output voltage. By this way, the coupling
between battery SD and FD can be effectively suppressed to
improve the estimation performance. Third, the proposed algo-
rithm can be implemented for batch data processing for offline
model training, or operated recursively to estimate the ECM pa-
rameters in real time. Furthermore, this DWRLS approach can also
be used for battery SOC estimation, which circumvents a full-order
state observer to reduce the complexity. The SOC estimator is a
closed-loop mechanism and is thus more robust against noises and
external disturbances. Finally, test data are collected using a Li ion
NCA cylindrical cell and comparative results are analysed to verify
the algorithm's effectiveness.

The reminder of this paper is organized as follows. Section 2
presents the battery mathematical description, the LS algorithm
and the proposed DWRLS scheme for online parameter estimation.
Section 3 presents a simulation study to validate the performance
of the proposed DWRLS method for parameter identification of a
system that consists of both the FD and SD. Then the experimental
test setup, the data acquisition and the offline model training re-
sults are introduced in Section 4. The recursive implementation of
the DWRLS method for realtime parameter and SOC estimation, in
comparison with the LS-based method, is demonstrated in Section
5. Concluding remarks and further work are given in Section 6.
2. Battery ECM formulation

2.1. ECM

The battery ECM is given in Fig. 1, wherev; i are the battery ter-
minal voltage and current, respectively. vj; j ¼ 0;1;2 is the over-
potential voltage across Rj. The battery OCV depends on the SOC,
i.e., OCV ¼ f ðSOCÞ. The OCV hysteresis is low and therefore negli-
gible [28,32]. The resistors and capacitors R0;Rj;Cj; j ¼ 1;2 are the
time-varyingmodel parameters that need to be identified. The total
number of RC networks is regarded as the model order, which is a
trade-off between model accuracy and complexity. For Li ion bat-
teries, an ECM with two RC networks is commonly employed
[13,14,27,29,30,33]. Let t1; t2 be the time constants of the two RC
networks, and assume thatt1 < t2. Herein, R0;R1;C1describe the
battery resistance, charger transfer and double layer effect, which
occur on a time scale of less than 10 s, and can be considered as the
FD part. Meanwhile,R2;C2are used to capture the battery diffusion
effect occurring at amuch larger time scale, typically around tens or
hundreds of seconds, and therefore considered as the SD part
[29,30]. The battery OCV also belongs to the battery SD since the
battery SOC usually changes slowly within a standard drive cycle,
that for example, represents urban vehicle driving [13,28,33].
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Fig. 3. Circuit model for the simulation study.
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2.2. Problem formulation

It is assumed that the current between samples is constant. The
dynamics of one RC network can be then given as follows:

vjðkþ 1Þ ¼ ajvjðkÞ þ bjIðkÞ; j ¼ 1;2 (1)

where

aj ¼ exp
�� Ts

�
tj
�

bj ¼ Rj
�
1� aj

�

vjðkÞ stands for vj at the k-th sampling time, and Ts is the sampling
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Fig. 4. The test data for the simulation study: (a) vo
interval in seconds (s).
Let z be the time shift operator, i.e., zxðkÞ ¼ xðkþ 1Þ. The z-

transfer function from current i to vj can then be expressed as

vjðkÞ ¼
bj

z� aj
iðkÞ

The battery SOC is obtained using thewidely employed coulomb
counting method [5,33,34],

SOCðkþ 1Þ ¼ SOCðkÞ þ Ts
Cn

IðkÞ (2)

where Cnis the battery nominal capacity in Ampere-second (As).
Next, the model terminal voltage can be expressed as,

vðkÞ ¼ OCVðkÞ þ v0ðkÞ þ v1ðkÞ þ v2ðkÞ (3)

Let vs be the sum of the over-potentials across the resistors, one
has:vs ¼ v0 þ v1 þ v2 ¼ v� OCV . If the battery SOC (and thus the
OCV) is unknown, an estimated OCV value can be used instead, as
follows,

vs ¼ v� OCV ¼ v� f
�
SOC

�
(4)

where OCV and SOC are the estimated battery OCV and SOC,
respectively.

Combining Eq (3) and Eq (4) leads to,
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vs ¼ v0 þ v1 þ v2 þ
�
OCV � OCV

�
(5)

Let c0 ¼ OCV � OCV ¼ f ðSOCÞ � f ðSOCÞ as the OCV estimation
error, which depends on the SOC estimation error and the slope of
the OCV-SOC curve. If the battery SOC and SOC are both updated
using Eq (2), the SOC estimation error will keep constant as the
initial error, therefore c0 depends on the slope of the OCV vs SOC
curve alone and is slowly varying, as shown in Fig. 9. From Eq (5),
we therefore get:

vsðkÞ ¼ v1ðkÞ þ v2ðkÞ þ R0iðkÞ þ c0

¼
�
R0 þ

b1
z� a1

þ b2
z� a2

�
iðkÞ þ c0

¼ qn;2z
2 þ qn;1zþ qn;0

z2 � qd;1z� qd;0
iðkÞ þ c0

(6)
0 100 200 300 4

-5

0

5

c
u
rr
e
n
t
/
A

0 100 200 300 4
time /s

3.5
3.6
3.7
3.8
3.9

v
o
lt
a
g
e
/
V

Fig. 7. Battery motorway drive cycle test s
where

qd;1 ¼ a1 þ a2
qd;2 ¼ a1a2
qn;2 ¼ R0
qn;1 ¼ b1 þ b2 � R0ða1 þ a2Þ
qn;0 ¼ R0a1a2 � a2b1 � a1b2
2.3. LS and RLS formulation

This section presents the established LS and RLSmechanisms for
battery ECM parameter estimation. The regression form of Eq (6)
can be expressed as:

z2vsðkÞ¼ qd;1zvsðkÞþqd;0vsðkÞþqn;2z
2iðkÞþqn;1ziðkÞþqn;0iðkÞ

þ�
1�qd;1�qd;0

�
c0

(7)
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Let

yðkÞ ¼ z2vsðkÞ;
q ¼ 	

qd;1; qd;0; qn;2; qn;1; qn;0;
�
1� qd;1 � qd;0

�
c0

T
;

fðkÞ ¼
h
zvsðkÞ; vsðkÞ; z2iðkÞ; ziðkÞ; iðkÞ;1

iT

Eq. (7) can be re-expressed as

yðkÞ ¼ qTfðkÞ (8)

The model parameters are obtained by minimizing a cost
function of

JLS ¼
Xh

yðkÞ � qTfðkÞ
i2

(9)

Eq (8) is the linear-in-the-parameter formulation, and therefore
after obtaining i; vs (and thusyðkÞ;fðkÞ), the unknown parameter q
can be obtained using LS algorithm in Eq (10), or recursively using
RLS or WRLS algorithm in Eq (11).

q ¼
�
FTF

��1
FTY

F ¼ ½fð1Þ;fð2Þ;…;fðNÞ�T ;
Y ¼ ½yð1Þ; yð2Þ;…; yðNÞ�T

(10)

whereN is the total number of data samples.
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eðkþ 1Þ ¼ yðkþ 1Þ � fT ðkþ 1ÞqðtÞ
qðkþ 1Þ ¼ qðkÞ þ Pðkþ 1Þfðkþ 1Þeðkþ 1Þ

Pðkþ 1Þ ¼ PðkÞ � PðkÞfðkþ 1ÞfT ðkþ 1ÞPðkÞ
1þ fTðkþ 1ÞPðkÞfðkþ 1Þ þ Q0

(11)

Q0 is a small positive-definite matrix introduced to prevent the
covariance matrix Pfrom keeping decreasing and eventually losing
the parameter tracking capability. The initial parameters qð0Þ; Pð0Þ
can be obtained using priori knowledge, or by performing a block-
wise LS estimation as discussed within [35,36].

The implementation procedure of the LS method in Eq (10) is
summarized in Table 1 for completeness.

The implementation procedure of the RLS method in Eq (11) is
well documented in a number of research publications and
educational texts, such as [35,36], and is therefore not discussed in
detail here.
2.4. DWRLS method

The previous section presents the classical LS-based method for
battery ECM parameter estimation. The challenge is that the algo-
rithm's numerical stability and parameter convergence depend on
the selection of the sampling interval [25,27,37]. Since the battery
system consists of both FD and SD, if the sampling rate is high, the
pole of the SD part lies closely to the unit circle, and its estimation
may even become unstable in the presence of system uncertainties
and noises. On the other hand, if the sampling rate is too slow, the
FD part can be lost due to aliasing. For example, suppose t1 ¼ 10s
and t2 ¼ 400s in the ECM in Fig. 1. As a rule of thumbTs=t1 <0:5,
0 60 70 80 90 100

C /%

V versus SOC.



Þ

Table 1
The implementation procedure of the LS method.

Step 1: collect battery terminal voltage and current measurements
vðkÞ; iðkÞ; k ¼ 0 : N

Step 2: estimate initial SOC, i.e., SOCð0Þ
Step 3: calculate SOCðkÞ; k ¼ 1 : N using Eq (2)
Step 4: obtain OCVðkÞ using SOCðkÞ.
Step 5: calculate vsðkÞ in Eq (4), and thus obtain yðkÞ;fðkÞ
Step 6: calculate q (and thus the model parametersaj; bj; R0; c0) using Eq (10)
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such that Ts <5s. Suppose Ts ¼ 2s, the SD pole is then located close
to the unit circle, i.e., a2 ¼ expð�Ts=t2Þ ¼ 0:995. Further, when the
FD and SD parameter are together estimated using the LS method,
the estimation is normally biased towards the high frequency
range. This leads to poor accuracy within the low frequency
domain. The LS method is thus also sensitive to high frequency
noise and disturbances [27e29]. As illustrated in Ref. [27], the
modelling performance of the discrete time domain RLS method
decreases with fast sampling data. The DWRLS method is proposed
here to address these problems.

Consider the objective function for the ECM model parameter
optimization as

J ¼
X
k

e2ðkÞ (12)

where eðkÞ ¼ vs � v0ðkÞ � v1ðkÞ � v2ðkÞ � c0is the modelling error.
Let

y1ðkÞ ¼ vsðkÞ � v2ðkÞ
y2ðkÞ ¼ vsðkÞ � v0ðkÞ � v1ðkÞ (13)

where y1corresponds to the battery FD voltage
(i.e.y1 ¼ v0 þ v1 þ c0), because the SD voltagev2 is subtracted from
the total model outputvs. Similarly, y2represents the battery SD
voltage. The cost function in Eq (12) is re-expressed as follows,

J ¼
X

½y1ðkÞ � v0 � v1ðkÞ � c0�2bJ1;

J ¼
X

½y2ðkÞ � v2ðkÞ � c0�2bJ2
(14)

Here, J1 andJ2 are the sub-cost functions corresponding to the
battery FD and SD, respectively. The minimization processes of J1
and J2 can be iteratively implemented. The key concept is that
whenR0;R1;C1 are estimated by minimizing J1, R2;C2 are assumed
to be known to calculate v2 using Eq (1) and then subtract it fromvs.
Similarly, when estimating R2;C2; c0 byminimizingJ2, keep R0;R1C1
constant. The simulated over-potentials across the resistors, i.e.,
v0; v1; v2, are used to link the two identification parts of the method
together to form the complete model.

For the SD identification, the objective function is:

J2 ¼
X

½y2ðkÞ � v2ðkÞ � c0�2 ¼
X�

y2ðkÞ �
b2

z� a2
iðkÞ � c0

�2

(15)

The LS algorithm presented in Section 2.3 can be used to find the
parameters a2; b2; c0 in Eq (15) by minimizing:

J2 ¼
X

½zy2ðkÞ � a2y2ðkÞ � b2iðkÞ � ð1� a2Þc0�2

¼
Xh

p2ðkÞ � qT2f2ðkÞ
i2

where p2ðkÞ ¼ zy2ðkÞ,f2ðkÞ ¼ ½y2ðkÞ; iðkÞ;1�T and

q2 ¼ ½a2; b2; ð1� a2Þc0�T
However, note that

J2 ¼
X

ðz� a2Þ2
�
y2ðkÞ �

b2
z� a2

iðkÞ � c0

�2
¼ ðz� a2Þ2J2 (16)

Since ðz� a2Þ2 is a high pass filer, the parameter estimation by
minimizing J2 will be biased towards the high frequency domain. To
avoid this, the test data can be pre-processed using a low pass filter
of the form 1�a2

z�a2
,

y2;f ðkÞ¼
1�a2
z�a2

y2ðkÞ; i:e:; y2;f ðkþ1Þ¼ a2y2;f ðkÞþð1�a2Þy2ðkÞ

i2;f ðkÞ¼
1�a2
z�a2

iðkÞ; i:e:; i2;f ðkþ1Þ¼ a2i2;f ðkÞþð1�a2ÞiðkÞ

(17)

A new objective function given below can be then minimized to
obtain the SD parameters,

J2;f ¼
Xh

zy2;f ðkÞ � a2y2;f ðkÞ � b2i2;f ðkÞ � c0
i2

¼
Xh

p2;f ðkÞ � qT2;ff2;f ðkÞ
i2

(18)

wherep2;f ðkÞ ¼ zy2;f ðkÞ, f2;f ðkÞ ¼ ½y2;f ðkÞ; i2;f ðkÞ;1�T and q2;f ¼
½a2; b2; ð1� a2Þc0�T

The samemethod can be applied for the FD identification, i.e., by
minimizing J1 to obtaina1; b1;R0,

y1;f ðkÞ ¼
1� a1
z� a1

y1ðkÞ; i:e:; y1;f ðkþ 1Þ ¼ a1y1;f ðkÞ þ ð1� a1Þy1ðk

i1;f ðkÞ ¼
1� a1
z� a1

iðkÞ; i:e:; i1;f ðkþ 1Þ ¼ a1i1;f ðkÞ þ ð1� a1ÞiðkÞ

(19)

J1;f ¼
Xh

zy1;f ðkÞ � a1y1;f ðkÞ � R0ðz� a1Þi1;f � b1i1;f ðkÞ � c0
i2

¼
Xh

p1;f ðkÞ � qT1;ff1;f ðkÞ
i2

(20)

where p1;f ðkÞ ¼ zy1;f ðkÞ, f1;f ðkÞ ¼ ½y1;f ðkÞ; zi1;f ðkÞ; i1;f ðkÞ;1�T

andq1;f ¼ ½a1;R0; b1 � a1R0; ð1� a1Þc0�T
The filters designed in Eqs (17) and (19) are based on the

approximate maximum likelihood principle detailed in
Refs. [38,39], which is a simple and useful model identification
technique. Another benefit of using this kind of filters is to suppress
the high frequency disturbances due to noises or un-modelled
dynamics. Further, it can be shown thatJ2;f ¼ J2, andJ1;f ¼ J1.
Therefore, although the battery FD and SD parts are identified
separately, the original model training criteria, i.e., the cost function
in Eq (12), is unmodified, sinceJ1 ¼ J2 ¼ J. The overall modelling
accuracy can thus be secured when combining the SD and FD parts
to form the complete model. Finally, since 1�a2

z�a2
is a low pass filter

and J2;f corresponds to the battery SD, the filtered data y2;f ; i2;f can
be down-sampled to reduce the computational complexity and to
improve the numerical stability without loss of information [29].

Eventually, the decoupling between the battery FD and SD
voltage responses is performed in a twofold manner, i.e., the sub-
traction separation in Eq (13) and the low pass filtering in Eq (17).
Another useful technique to further reduce the interference be-
tween the SD and FD parts is to use a short data length for the FD
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estimation, since a short data length can still consist of sufficient
information about the FD part, while the SD part is not fully excited.

However, there is an implementation issue with this filter
design, since a1; a2 are unknown before the identification process is
conducted. To overcome this problem, the algorithm can be
executed in an iterative manner [38]. For each iteration, the a1; a2
obtained from the previous iteration can be used to construct the
filters. The parameter initialization can be realized using prior
knowledge, or a look-up table trained offline.

The implementation procedure of the DWRLSmethod for offline
model training by processing batch data is given in Table 2.

2.5. SOC estimation

Note that c0ðkÞ ¼ OCVðkÞ � OCVðkÞ. Therefore, when c0 is esti-
mated, the battery OCV and SOC estimation can be compensated as
follows

OCVcorrection ¼ OCVðkÞ þ ccorrection
SOCcorrection ¼ f�1

�
OCVcorrection

� (21)

where f�1 stands for the inverse of f ðSOCÞ in (4) and obtained from
the battery OCV vs SOC relationship, and

ccorrection ¼ 1
N1

XN1

L¼1

c0ðk� Lþ 1Þ

As discussed within [28], there is no need to correct the SOC
estimation at every sample, since it generally takes some time for
the estimates to converge to stable values. Therefore, this SOC
correction approach is executed every N1 samples to avoid esti-
mation fluctuations. Note that this SOC estimation only affects the
c0in the parameter estimation process. Therefore, reset c0ðkÞ to

c0ðkÞ � ccorrection in the estimated qT1;f ; q
T
2;f after each SOC correction,

and the rest model parameters R0; aj; bj will then remain unaffected
[28].

The DWRLS method for both parameter and SOC estimation can
be implemented in a recursive manner for online applications, as
illustrated in Fig. 2.

3. Simulation study

This section presents a simulation study to show the efficacy of
the proposed DWRLS method for the offline identification of a 2nd
order linear system which consists of both FD and SD.

3.1. Simulation set up

Consider only the RC networks and R0 in the ECM as the system
to be identified, as shown in Fig. 3. The system parameters are given
below in Eq (22),
Table 2
The implementation procedure of the DWRLS method for offline model training.

Initializea1; b1; a2; b2;R0; SOCð0Þ
For each iteration
Step 1 calculate SOCðkÞ;OCVðkÞand then vsðkÞ; k ¼ 1 : N
Step 2 calculate v1ðkÞ; v2ðkÞ; k ¼ 1 : Nusing Eq (1)
Step 3 calculate y1ðkÞ; y2ðkÞ; k ¼ 1 : Nusing Eq (13)
Step 4 calculate y1;f ðkÞ; y2;f ðkÞ; i1;f ðkÞ; i2;f ðkÞ; k ¼ 1 : N using Eq (17) and Eq

(19)
Step 5 estimate qT2;f in Eq (18) and qT1;f in Eq (20), using the LS method
t1 ¼ 10s; t2 ¼ 400s; R1 ¼ 0:02U; R2 ¼ 0:03U; R0 ¼ 0:03U
(22)

The load current simulates the hybrid pulse power test, which is
widely used for battery characterization [14,27]. The current i and
the over-potential vsare shown in Fig. 4(a). The current profile
consists of six pulse current tests, followed by a 360 s constant
current (2 A) discharge and a rest period for approximately 1 h.
Each pulse current test consists of 10-s charging and 10 s dis-
charging, and the pulse current levels are 1, 2, 4, 6, 8 and 10 A, in
sequence. The rest period between any two consecutive pulses is
40 s. Fig. 4(b) shows a zoomed-in segment of the load current. The
sampling time is 1 s.

The current and voltage signals are corrupted with white
Gaussian noise, and the root mean square (RMS) of the noise values
are 10 mA and 2 mV, respectively, representing the low noise level.

The two parameter identification methods, the LS and DWRLS
represented in Tables 1 and 2 respectively, are selected for the
comparative study. For the DWRLS approach, the total iteration
number is set to 3, as it will be shown in the following section that
the parameter estimation has converged at the second iteration.

The initial model parameters are set as
t1 ¼ 20s; t2 ¼ 200s; R1 ¼ 0:01U; R2 ¼ 0:01U; R0 ¼ 0:02U for
the DWRLSmethod. Note that for the SD identification, all the 5000
sample data set is used; while for the FD identification, a smaller
data set, i.e., 400 data samples starting from the first current pulse,
is used to further decrease the interferences from the SD part, as
explained in Section 2.4.

3.2. Simulation results and discussion

The parameters obtained using the LS method are

t1 ¼ 16:6s; a2 ¼ �0:44; R1 ¼ 0:0298U; R2 ¼ 0:00022U; R0
¼ 0:03U

Because a2 ¼ �0:44and a2 ¼ expð�Ts=t2Þ; the second RC
network time constant t2 becomes an imaginable number. Further,
because R2is much smaller thanR0;R1, the voltage contribution
from the second RC network is also negligible. The estimated pa-
rameters using the LS algorithm diverge away from the true pa-
rameters in Eq (22), and the 2nd RC network of the system (i.e., the
SD part) is not captured.

The parameter identification results using the DWRLS approach
at each iteration are given in Table 3. It can be seen that the esti-
mated parameters using the DWRLS method converge toward the
true parameters in Eq (22) and are significantly better than those of
the LS method. Table 3 also shows that the DWRLS algorithm can
give the good estimation directly after the first iteration from the
incorrect initial estimates. This therefore can validate the conver-
gence rate of the proposed technique.

Next, the modelling errors (eðkÞ defined in Eq (12)) using the LS
and DWRLS schemes are described in Fig. 5. As it can be seen, the
DWRLS mechanism achieves better modelling accuracy than the
one obtained by using the LS approach. The RMS errors (RMSEs) are
Table 3
The parameter identification results using the DWRLS method at each iteration.

Iteration No. t1 t2 R1 R2 R0

Initialization 20 200 0.01 0.01 0.02
Iteration 1 10.55 425 0.0206 0.0301 0.030
Iteration 2 10.20 406 0.0201 0.0300 0.030
Iteration 3 10.16 404 0.0202 0.0300 0.030
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2 mV and 7.9 mV, respectively. The model identified by the LS
method causes the large transient errors as the current changes and
the large bias error when the current keeps constant (i.e., low
frequency excitation signal) due to the model discrepancy. A Bode
plot of the two identified models are shown in Fig. 6, which shows
that both the LS and DWRLS methods can achieve high accuracy at
high frequency range (>0.5 rad/s). However, the LS estimation
shows the noticeable bias error in the low frequency domain
(<0.06 rad/s), while the DWRLS estimation still maintains the high
accuracy.

4. Offline ECM parameter identification

This section presents a comparative study between the classical
LS method and the DWRLS method for offline ECM parameter
identification using experimental test data.

4.1. Experimental test setup

Experimental data have been collected from a commercial cy-
lindrical 3 A h 18650-type cell which comprises graphite negative
electrode and a LiNiCoAlO2 positive electrode. A Bitrode battery
cycler is used with a thermal chamber for maintaining the ambient
temperature constant at 25 �C. First, the battery is fully charged by
the constant-current, -constant-voltage (CC-CV) method, and then
discharged at 1C rate to 75% SOC, followed by a rest period of 2 h.
Finally, a drive cycle test that simulates a motorway driving sce-
nario is applied until the battery reaches the cut-off voltage at 2.5 V.
The test data from 75% to 60% SOC are used in this section as pre-
sented in Fig. 7. The sampling time is 1 s.

Another drive cycle test is implemented in the same way, which
simulates an urban driving scenario starting from 75% SOC until
end of discharge, as depicted in Fig. 8.

The battery OCV versus SOC relationship is characterized
experimentally [32], as given in Fig. 9.

4.2. Offline model training results and discussion

The motorway-drive test data in Fig. 7 are used here for offline
model estimation. Since SOC does not show a significant change
and the temperature is kept constant, the model parameters are
assumed to keep constant [13]. In this section, the battery SOC is
assumed to be known. Therefore, the OCV can be obtained using
the OCV-SOC relationship defined in Fig. 9, and then subtracted
from the battery terminal voltage response. Similar to Section 3.2,
for the DWRLSmethod, all the data samples are used for the SD part
identification; while for the FD part identification, only the first 400
data samples are used.

The identified model parameters by the LS method are given
below.
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t1 ¼ 34:5s; a2 ¼ �0:023; R1 ¼ 0:0252U; R2 ¼ 0:00037U; R0
¼ 0:0355U

Note that the model has a negative pole a2, corresponding to an
imaginary time constant of the 2nd RC networks. Once again
similar to the LS results in Section 3.2, R2 is very small, and the
voltage contributions of the 2nd RC networks v2 is negligible
compared withv0; v1.

The identified model parameters using the DWRLS method are

t1 ¼ 19s; t2 ¼ 423s; R1 ¼ 0:0132U; R2 ¼ 0:0157U; R0

¼ 0:0354U

The modelling errors using the two schemes are compared in
Fig. 10. The results indicate that the LS method shows biased
modelling error, and its performance is much less efficient than the
DWRLS method. The modelling RMSEs are in turn 9.4 mV and
1.9 mV. Therefore, it can be concluded that the proposed technique
can improve the modelling accuracy. Further, from the two iden-
tifiedmodel parameter sets, it can also be observed that the DWRLS
model covers a wider timescale (the larger RC time constant is
423 s) than the LS one (the larger RC time constant is 34.5 s).

This section gives similar parameter estimation results to the
simulation study in Section 3.2. Therefore, we can reasonably assert
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Fig. 13. SOC estim
that similar conclusions apply here, i.e., that the identified model
using the DWRLS method offers better modelling accuracy in the
low frequency range than the LS method.
5. Realtime parameter and SOC estimation

This section presents a comparative study of the realtime
parameter and SOC estimation results using the recursive imple-
mentation of the LS and DWRLS schemes. The urban drive cycle test
data in Fig. 8 from 75% to 25% SOC are used here. The test data
below 25% SOC are discarded in order to circumvent the nonlinear
battery dynamics in the low SOC range. The estimated initial SOC is
assumed to be 65%, with a 10% error.

The parameter estimation results using the LS and DWRLS
methods are shown in Fig. 11. As it can be seen, both the two
techniques show noticeable parameter variations as the SOC de-
creases from 75% to 25% SOC. The ECM parameter evolution can
affect the battery terminal voltage dynamics and the power ca-
pacity (due to the perceived resistance changes), which needs to be
taken into consideration for online battery management. Note also
that the results of the two methods both indicate that the battery
internal resistance is relatively lower at around 50% SOC. Moreover,
since the twoR0estimations are similar, it can be concluded that the
both LS and DWRLS methods can estimate accurately the series
resistanceR0.
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The two RC network time constants obtained using the DWRLS
algorithm are widely separated in timescale, and the two resistors
are both noticeable. On the other hand, the second RC network
identified by the LS algorithm only corresponds to high frequency
fluctuations, and its voltage contribution to the total model output
is negligible. Furthermore, the DWRLS model covers a wider
timescale than the LS model. The parameter estimation results of
the LS method, i.e., the two pole locations, are similar to those
presented in Section 3.2 and Section 4.2.

The modelling errors are analysed in Fig. 12. As it can be seen,
the DWRLSmodel shows the better accuracy over the LSmodel. The
modelling RMSEs are 2.8 mV and 4.4 mV, respectively. The low
modelling errors come as no surprise because of the adaptive na-
ture of the two algorithms, which can keep track of the model
parameter evolutions as the SOC decreases to improve the
modelling accuracy.

Next, the SOC estimation using the comparative tools is carried
out and the results are plotted in Fig. 13. As it can be seen, the SOC
estimation accuracy of the DWRLS method is remarkably better
than that of the LS method. The SOC RMSEs are 0.86% and 2.98%,
respectively. This result can be explained by the difference of the-
vsestimations error, i.e., vsðtrueÞ � vsðestimationÞ, using the two
methods, as shown in Fig.13(c). vsðtrueÞ is calculated by subtracting
the true OCV from the measured voltage, i.e., vsðtrueÞ ¼ v� OCV ,
and vsðestimationÞis a sum of the model's simulated over-potentials
across the resistors, i.e., vsðestimationÞ ¼ v0 þ v1 þ v2. During the
charging/discharging operation, the battery OCV is not measurable,
and can only be estimated by subtracting the over-potentialvs
(which depends on the model parameter identification) from the
measured battery terminal voltage, i.e., OCV ¼ v� vs. Therefore, the
better parameter identification scheme can improve the estimation
accuracy of the over-potentialvs, and subsequently improve the
OCV and SOC prediction performances. As depicted in Fig. 13(c), the
vs estimation error using the LS algorithm is higher than that of the
DWRLS algorithm. Subsequently, the OCV estimation error of the LS
model is also higher, leading to the larger SOC bias error as depicted
in Fig. 13(b). Based on the conclusions from Section 3 and Section 4,
we can reasonably assert that this poor SOC estimation perfor-
mance of the LS algorithm is caused by the model discrepancy in
the low frequency domain, and this problem can be overcome by
the proposed DWRLS technique.
6. Conclusion

6.1. Discussion and future work

Previous work in the literature has already established the ne-
cessity of realtime estimation of the time-varying ECM parameters
in order to improve the SOC prediction accuracy [18,20,24,40]. The
results and analysis presented in the previous sections in this paper
have already demonstrated the superiority of the proposedmethod
over the conventional LS based approaches as the benchmark.
Another advantage of this DWRLS method, compared against the
methods combining RLS and KF as in Refs. [20,24], is that the
proposed algorithm does not require an additional full-order
observer (i.e., KF) for SOC estimation. The SOC estimation accu-
racy of the DWRLS method is about 1%, which is comparable with
the previously reported results in Refs. [20,24,33].

The proposed DWRLS method for adaptive ECM parameter
identification considers only the estimation of the resistance and
capacitance values, and depends on the knowledge of the battery
OCV vs SOC relationship, which can be characterized offline
experimentally [32]. However, the OCV-SOC relationship also
changes with temperature and ageing [41,42]. The temperature
effect on battery OCV is negligible for the Li ion NCA cell used in this
paper (the OCV varies less than 5 mV when the temperature de-
creases from 25�C to 0�C according to our test results). Ageing can
also cause OCV variations, which need to be taken into consider-
ation in order to further improve SOC estimation accuracy. A
scheme to update the OCV-SOC relationship as the battery ages is
needed, and will be investigated in future work.

6.2. Concluding remarks

ECMs are widely used in battery management system applica-
tions, and the model parameters depend on the operation condi-
tions. Adaptive parameter estimation techniques can be used to
track the parameter evolution and to improve the modelling ac-
curacy. In addition, the battery system consisting of both fast and
slow dynamics causes numerical problems to the traditional LS-
based method for model parameter estimation. In order to over-
come these problems, this paper proposes the novel DWRLS
method which estimates separately the model fast and slow dy-
namics. SOC estimation is also achieved based on the ECM
parameter estimation results, without the use of an additional full-
order observer. Both the simulation and experimental studies have
been conducted to validate the superiority of the proposed DWRLS
method over the traditional LS algorithms in terms of modelling
and state estimation accuracy. The results confirm convincingly
that the proposed approach possesses enough capability for both
offline model training, and online parameter and battery SOC
estimation with high accuracy. This designed technique therefore
has the high potential for realtime battery management applica-
tions in electric vehicles and other battery energy storage systems.
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