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Abstract: 

Directed evolution was applied to dye-decolourizing peroxidase Dyp1B from Pseudomonas 

fluorescens Pf-5, in order to enhance the activity for oxidation of phenolic and lignin substrates.  

Saturation mutagenesis was used to generate focused libraries at 7 active site residues in the 

vicinity of the heme cofactor, and the libraries were screened for activity towards 2,6-

dichlorophenol. Mutants N193L and H169L were found to show 7-8 fold enhanced kcat/KM 

towards DCP, and replacements at Val205 and Ala209 also showed enhanced activity towards 

alkali Kraft lignin. Residues near the predicted Mn(II) binding site were also investigated by 

site-directed mutagenesis, and mutants D154E, S223N and H127R showed 4-7-fold increased 

kcat/KM for Mn(II) oxidation. Mutant F128R also showed enhanced thermostability, compared 

to wild-type Dyp1B. Testing of mutants for low molecular weight product release from 

Protobind alkali lignin revealed that mutant H169L showed enhanced product release, 

compared with WT enzyme, and the formation of three low molecular weight metabolites by 

this mutant was detected by reverse phase HPLC analysis. 

 

Introduction 

    The dye-decolorizing peroxidases are a family of bacterial and fungal peroxidases, first identified 

in 1999 [1], that are structurally unrelated to mammalian and plant peroxidases [2], that were initially 

shown to have high activity for oxidation of anthraquinone dyes [3]. In 2011, Rhodococcus jostii 

RHA1 DypB was first bacterial enzyme to be identified to have activity towards polymeric lignin, a 

property thought to be held by fungal lignin peroxidases [4]. This enzyme was found to show Mn(II) 

oxidation activity, which was required for oxidation of polymeric lignin [4]. A multifunctional dye-



2 

decolorizing peroxidase Dyp2 from Amycolatopsis sp 75iv2 has also been reported to show activity 

for oxidation of lignin model compounds, and shows much higher Mn(II) oxidation activity than 

other bacterial DyPs [5]. Amongst Gram-negative bacteria, strains of Pseudomonas have shown 

activity for lignin oxidation, and a peroxidase Dyp1B from Pseudomonas fluorescens Pf-5 has been 

identified, that shows activity for oxidation of phenolic substrates and, in the presence of Mn(II), 

polymeric lignin [6]. Uniquely, this enzyme releases an oxidized lignin dimer product from treatment 

of wheat straw lignocellulose in the presence of Mn(II) [6]. Bacterial DyP-type peroxidases therefore 

show great potential as biocatalysts for conversion of lignin from industrial processes such as 

pulp/paper manufacture and biofuel production into renewable chemicals [7,8].  

     The active site of DyP-type peroxidases contains catalytic aspartic acid and arginine residues that 

are believed to catalyse formation and stabilization of the compound I iron-oxo reactive intermediate 

in the catalytic mechanism [2,8]. In Bjerkandera adusta DyP, replacement of Asp-171 by Asn leads 

to a 3,000 fold loss in catalytic activity, consistent with a catalytic role of the bound peroxide ligand 

[2], whereas in R. jostii DypB, replacement of Asp-153 by Ala only slightly reduced the rate of 

compound I formation, whereas replacement of Arg-244 by Leu led to complete loss of activity [9]. 

In a Thermobifida fusca DyP also shown to have activity for oxidation of Kraft lignin, replacement 

of Asp-203 by Ala led to a 30-fold loss in kcat, while replacement of Arg-315 by Gln led to complete 

loss of activity [10]. Replacement of a nearby Asn-246 residue in R. jostii DypB led to an 80-fold 

increase in kcat for Mn2+ oxidation [11]. The heme pocket of Auricularia auricular-judae has been 

engineered for asymmetric sulfoxidation activity, with a F359G mutant showing up to 99%ee for 

sulfoxidation of aryl sulfide substrates [12]. Recently, error-prone PCR has been used to engineer a 

DyP peroxidase from Pseudomonas putida MET94 for oxidation of phenolic compounds, with three 

mutations (E188K, A142V, H125Y) distant from the active site shown to enhance catalytic efficiency 

for 2,6-dimethoxyphenol by 100-fold [13]. 

    The aim of this study was to enhance activity of P. fluorescens Dyp1B for phenolic and 

polymeric lignin substrate via directed evolution, using the combinatorial active site saturation 

(CAST) method developed by Reetz et al [14]. The strategy employed was to use an initial 

screen using high redox potential substrate 2,4-dichlorophenol (DCP) which can be monitored 

spectrophotometrically, and then to use alkali Kraft lignin as a secondary screen, monitoring 

for increases in absorbance at 465 nm, observed previously for DyP enzymes [4,6]. Since the 

binding of Mn2+ by bacterial DyPs is relatively weak [4,6], we also investigated site-directed 

mutations at or near the Mn(II) binding site, in order to seek to enhance the activity for Mn(II) 

oxidation. 

Materials and methods 
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Homology modelling 

The Swiss-Model webserver [15-19] was used for the homology modelling of the DyP1B protein 

structure using the FASTA formatted target sequence with UniProt entry number of 

Q4KAC6_PSEF5. The Crystal structure of Rhodococcus jostii RHA1 DyPB, (PDB ID 3QNS), was 

selected as a template. The structural model of the DyP1B protein was obtained in a PDB 

structure format. The generated model was without any gaps, from amino acid 4 to 283. The Z-

score of the model was within the range of scores calculated for proteins of similar size with 

experimentally determined structures indicating a good overall quality of the built model.  

 For removing potential steric clashes and suboptimal geometries, the structure was 

successfully minimized by the AMBER package program [20, 21]. Figure S1 shows the 

structural model for DyP1B after molecular dynamics. The Z-score of the model was within the 

range of scores calculated for proteins of similar size with experimentally determined 

structures.  

 

Molecular dynamic simulation 

A 50-ns independent molecular dynamics simulation was performed for the DyP1B 

homology model. The MD simulation was carried out using the AMBER 12.0 package. The 

system was solvated by using an octahedral box of TIP3P water molecules with a size of 

174.81×153.69×229.20. Periodic boundary conditions and the particle-mesh Ewald method 

were employed in the simulations [22]. Particle-mesh Ewald method enabled us to calculate 

the 'infinite' electrostatics without truncating the parameters. During the simulation, all bonds 

in which the hydrogen atom was present were considered fixed, and all other bonds were 

constrained to their equilibrium values by applying the SHAKE algorithm [23].  

A cut-off radius of non-covalent interactions was set to 12 Å for the protein. The 

minimization and equilibration phases were performed in two stages. In the first stage, ions 

and all water molecules were minimized for 500 cycles of steepest descent followed by 500 

cycles of conjugate gradient minimization. Afterward, the whole system was minimized for a 

total of 2500 cycles without restraint wherein 1000 cycles of steepest descent were followed 

by 1500 cycles of conjugate gradient minimization. In the second stage, the systems were 

equilibrated for 500 ps while the temperature was raised from 0 to 300 K, and then 

equilibration was performed without a restraint for 100 ps while the temperature was kept at 

300 K. Sampling of reasonable configurations was conducted by running a 50-ns simulation 

with a 2 fs time step at 300 K and 1 atm pressure. A constant temperature was maintained by 

applying the Langevin algorithm while the pressure was controlled by the isotropic position 
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scaling protocol used in AMBER [24]. Time dependence of RMSD (Å) for the backbone atoms 

relative to the starting structure during 50 ns MD simulation of DyP1B is shown in Figure S2. 

RMSD curves show that the simulation has reached equilibrium after ~ 30 ns indicated by the 

relatively stable RMSD values from 30 ns to the end of the simulations. 

 

Sequence Alignment and structure observation 

CLC main workbench 6 software was used for protein sequence alignment of DyP1B from 

Pseudomonas fluorescens (UniProt entry number: Q4KAC6), DyP2 from Amycolatopsis sp 

(UniProt entry number: K7N5M8), AauDyP1 from Auricularia auricula-judae (UniProt entry 

number: I2DBY1) and PpDyp from Pseudomonas putida (UniProt entry number: Q88HV5). 

PyMOL software was used for observation of structures of DyP2 (PDB ID 4G2C), AauDyP1(PDB 

ID 4AU9) and homology model generated structure of DyP1B. 

 

Production of libraries by polymerase chain reaction 

For randomizing the selected amino acids, NNK and NDT codons were used for the single and 

pair sites respectively. NNK codon covers all amino acids codon plus one stop codon whereas 

NDT codes only 12 amino acids but with a good representation for all amino acid groups. Quick-

change II XL site-directed mutagenesis kit was used for introducing the mutations and making 

libraries. Briefly, PAGE purified primers containing NNK or NDT (Table 4) were used in PCR 

reactions containing 15 ng DyP1B-TOPO151 plasmid for randomizing each site/s. Except of an 

increase in the number of PCR cycle to 25, all of PCR conditions and Dpn-I enzyme treatment of 

PCR reactions were adhered to Quick-change II XL kit protocol. After Dpn-I digestion (2 hours), 

PCR products were purified using QIAGEN PCR purification kit and subsequently transformed 

into E. coli electrocompetent BL21 (DE3) cells by electroporation. Transformed cells were 

plated on agar plates containing 100 µg/ml ampicillin and incubated for 14 hours in 37 °C. 

Plates were kept in 4 °C. For each single site randomization, 96 colonies were picked, and the 

cells were grown in 700 µl of Luria Bertani media in the presence of ampicillin overnight at 37 

°C with 180 rpm shaking in 2ml deep 96 well plates, as a starter culture and glycerol stock for 

storage in -80 °C. 100 µl of each culture was used to inoculate 700 µl of Luria Bertani broth in 

the presence of ampicillin and the cells were allowed to grow for four hours in 37 °C with 180 

rpm shaking. To each well IPTG and FeSO4 were added in final concentration of 1 mM and 100 

µM respectively, and after induction by IPTG the cells were allowed to grow in 20 °C with 180 

rpm shaking overnight.  The 96 well plates were centrifuged at 4000 rpm for 15 minutes, 

supernatant was discarded and the cells in the plates were stored at -80 °C.  The library quality 
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was confirmed for each site by sequencing several clones from each library to make sure that 

the distribution of codons is compatible with the type of degenerate codons used (NNK or NDT) 

for each site (see Figure S3). 

 

 

Screening of libraries for DCP oxidation activity 

After two freeze-thawing steps, to each well a 400 µL lysis buffer pH 7.4 containing 50 mM 

NaH2PO4, 300 mM NaCl, 0.25% v/v Tween 20 supplemented with 1mg/ml lysozyme, 400 

units/ml of DNase type I and 0.5mM PMSF was added. The plates were stirred on an orbital 

shaker at 37 °C for 60 minutes, then the plates were centrifuged at 4000 rpm for 60 minutes. 

2,4-dichlorophenol (DCP) assay was used for screening the generated mutants. The assay was 

performed in triplicate in 250 µL Nunc plates in 50 mM acetate buffer pH 5.5 at 510 nm. Briefly, 

each well was containing 3 mM DCP, 0.33 mM 4-aminoantipyrene and 50 µL cleared cell lysate. 

The reaction was initiated by adding hydrogen peroxide at 1 mM final concentration and 

monitored for 20 minutes by a Tecan plate reader. Total protein concentration of each cell 

lysate was measured by Bradford assay in triplicate in 595 nm by a Tecan plate reader.  

 

 Enzyme purification 

Protein purification, heme reconstitution and storage for kinetic characterization of the best 

mutants was performed according to the method previously described in reference 6.  

 

Kinetic characterization  

Kinetic characterization of selected mutants for 2,4-dichlorophenol (DCP) was performed in 

DCP concentration of 10 μM-6 mM with 1 mM hydrogen peroxide in the presence of 0.18 µM 

Dyp1B enzyme (engineered or wild type), monitoring at 510 nm (ε510 = 18,000 M-1cm-1). 

Oxidation of alkali Kraft lignin (Sigma-Aldrich) was performed with 50 μM Kraft lignin and 1 

mM hydrogen peroxide in the presence of 0.2 µM Dyp1B enzyme (engineered or wild type), 

monitoring at 465 nm. The molar concentration of Kraft lignin was calculated using an average 

molecular mass of 10000 Da. Oxidation of Mn2+ was carried out using 0.1-6.0 mM MnCl2 in 100 

mM sodium tartrate buffer (pH 5.5) in the presence of 1 mM hydrogen peroxide, monitoring at 

238 nm (ε238 = 6,500 M-1cm-1). Steady state kinetic data (rate vs [S] plots) are shown in Figures 

S4 (single mutant enzymes) and S5 (multiple mutant enzymes). 

 

Thermostability 
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Thermostability of selected mutant was performed in 50 mM acetate buffer pH 5.5, in presence 

of 3 mM DCP, 0.33 mM 4-aminoantipyrene and 1mM hydrogen peroxide. Briefly, 1 ml of enzyme 

solution containing 0.075 mg/ml of Dyp1B enzyme in PBS (engineered or wild type) was 

incubated in 60 °C for 30 minutes and then 100 µl of the enzyme solution was added to 900 µl 

of the assay buffer, and reaction was initiated by adding hydrogen peroxide.   

 

Assay for release of ketone products from lignin oxidation 

For detecting any released aldehydes or ketones molecules result of reactivity of DyP1B 

mutants with Lignin, an assay based on reaction of aldehydes with 2, 4-dinitrophenylhydrazine 

and formation of coloured complex was used [25]. Briefly, 10 μL of Protobind lignin (Green 

Value Ltd) dissolved in DMSO (25 mg/ml) was added to succinate buffer (1mL, 50 mM, pH 5.5), 

followed by adding DyP1B (wild type and selected mutant) (100 μL, 1 mg/mL) and hydrogen 

peroxide (1 mM). The resulting solution was incubated at room temperature for 1 h. Then, 20 

μL of solution was mixed with 30 μL HCl (100 mM) followed by adding 50 μL of 2,4-DNP (1 mM 

dissolved in 100 mM HCl). The mixture was incubated in room temperature for five minutes 

and then 100 μL NaOH (100 mM) was added and the absorbance was read in 485nm.  

 

HPLC assay for detection of low molecular weight products 

Powdered Protobind lignin (25 mg) was dissolved in DMSO (1 mL), and 30 μL of the sample 

was added to succinate buffer (3 mL, 50 mM, pH 5.5), followed by addition of DyP1B (wild type 

or selected mutant) (100 μL, 1 mg/mL) and hydrogen peroxide (1 mM). The resulting solution 

was incubated at room temperature for 1 h. The reaction was stopped by adding 1M HCl (10 

µL), and reaction products were extracted into two volumes of ethyl acetate, and then the 

solution was centrifuged for 5 min at 10000 rpm. Supernatant was removed, evaporated and 

the precipitate was dissolved in methanol. HPLC analysis was conducted using a Phenomenex 

Luna 5 μm C18 reverse phase column (100 Å, 50 mm, 4.6 mm) on a Hewlett-Packard Series 1100 

analyzer, at a flow rate of 0.5 mL/min, monitoring at 310 nm. The gradient was as follows: 10 

to 30% MeOH/H2O over 10 min, 30 to 40% MeOH/H2O from 10 to 20 min, 40 to 70% 

MeOH/H2O from 20 to 30 min and 70 to 100% MeOH/H2O from 30 to 40 min. 

 

 

Results 

Selection of amino acid residues in Dyp1B for protein engineering 
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 A homology model of P. fluorescens Dyp1B (residues 4-283 of 295 amino acid sequence) 

was generated from PDB structure 3QNS using the SWISS-MODEL software, followed by 50 

nanosecond molecular dynamics energy minimization and structure optimization. Seven amino 

acid residues positioned around the heme cofactor were selected for saturation mutagenesis 

using the combinatorial active site saturation (CAST) method developed by Reetz et al. [14], on 

the basis of proximity to the heme cofactor, and sequence alignment, as shown in Figure 1. On 

the proximal face of the heme cofactor, His169, Val205 and Ala209 were selected. Close to the 

edge of the heme cofactor, Asn193, Gln165 and Trp167 were selected, while on the distal face 

of the heme cofactor, Phe218 was selected. The positions of the residues are shown is Figure 

1A. Alignment of the sequences of P. fluorescens Dyp1B with P. putida DyP, Amycolatopsis DyP2 

and Auricularia DyP is shown in Figure 1B, indicating that only Asn-193 is conserved across all 

four sequences. 

 

Figure 1. Active site of Dyp1B, showing positions of amino acid residues selected for directed 

evolution. A, active site view; B, amino acid sequence alignment. 

 

Directed evolution for activity towards DCP & alkali Kraft lignin 

 Separate libraries were generated for each amino acid or pair of amino acids noted 

above. Libraries were screened for activity against 2,4-dichlorophenol (DCP), a high redox 

potential substrate for which wild type PflDyp1B has relatively low activity [6]. For a single 

amino acid site, 96 colonies were screened for activity, and for a pair of amino acids, 450 

colonies were screened. 

 Screening of the His169 mutant library gave 7 isolates with >2-fold higher activity than 

WT enzyme, whose gene sequences were determined. Three mutations were observed:  

replacement of His by Leu, Val, or Tyr. Specific activities (see Figure 2) were 5-8 fold higher 

than WT Dyp1B for substrate DCP, with the H169L mutant being the most active mutant. The 

H169L mutant shows a 3-fold higher kcat than WT Dyp1B, and an 8-fold higher catalytic 

efficiency (see Table 1). Screening of the Phe218 mutant library also gave 7 isolates with >2-

fold higher activity than WT enzyme, which contained replacement of Phe-218 by Pro, Arg, Thr, 

Ser, Ile, Leu and Gly. Specific activities for five mutants (see Figure 2) were 2-3 fold higher than 

WT Dyp1B for substrate DCP, with the F218P and F218R mutants being the most active. Both 

mutants showed similar kcat for DCP, compared to WT Dyp1B, but reduced KM, and F218P shows 

2-fold higher catalytic efficiency than WT Dyp1B (see Table 1). Screening of the Asn193 mutant 

library gave 12 isolates with >2-fold higher activity than WT enzyme. Eight mutations were 
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observed, containing replacements of Asn-193 by His, Arg, Lys, Leu, Ala, Gly, Tyr and Thr. 

Specific activities were 1.5-2.5 fold higher than WT Dyp1B for 4 mutants with substrate DCP 

(see Figure 2), with the N193H and N193L mutants being the most active mutants. Both 

mutants showed reduced Km for DCP (see Table 1), and mutant N193L shows 8-fold increased 

catalytic efficiency, compared with WT Dyp1B. 

 Screening of the Gln165/Trp167 mutant library gave no mutants with higher activity 

than WT Dyp1B, suggesting that one or both of these residues, which lie close to the edge of the 

heme cofactor, is important for binding or positioning of the heme cofactor. Screening of the 

Val205/Ala209 mutant library gave 30-40 mutants with >2-fold higher activity than WT 

Dyp1B. Determination of the gene sequences gave >25 new sequence variants at these two 

positions. In position 2015, Ile/Leu/Val was observed most commonly (12 isolates), with Arg 

or His observed 7 times. In position 209, Asn was observed in 6 isolates, followed by His (4), 

Leu and Gly (3 each). Testing of 26 isolates against DCP as substrate (see Figure 2) showed that 

the most active combinations were Ile-His, Val-Asn, Leu-Asn, and Ile-Asn, each with 2.5-fold 

higher activity than WT Dyp1B. Of these, the V205I/A209H mutant showed highest catalytic 

efficiency, 4-fold higher than WT Dyp1B (see Table 1). 

 39 mutants were then re-assayed against alkali Kraft lignin as substrate, monitoring 

increase at 465 nm versus time, an activity shown previously to exhibit Michaelis-Menten 

kinetics [6]. As shown in Figure 2B, the pattern of activity against alkali Kraft lignin was rather 

different to activity for DCP. Whereas replacements at position 169 were most active against 

DCP, replacements at positions 205/209 were most active against Kraft lignin, with the most 

active combinations being Leu-His, Val-Cys, Tyr-Asn, His-His, Val-Phe, Val-Leu, and His-Leu. 

  

Table 1 Specific activities of mutants selected by directed evolution 

 

Figure 2 Activities of mutants for DCP vs alkali Kraft lignin 

 

Mutations that gave increased activity were combined to make four mutant enzymes 

with multiple mutations: two containing mutations with highest activity for Kraft lignin as 

substrate (P2, V205L/A209H/N193L/H169V/F218G; P3 A209F/N193L/H169V/F218G), and 

two containing mutations with highest activity for DCP as substrate (P4, 

V205I/A209H/N193H/H169L/F218P; P5 V205I/A209N/N193H/H169L/F218R), and a 

further mutant containing a favourable mutation at the Mn2+ binding site (P6, 

V205I/A209H/N193H/H169L/F218P/S223N). Each mutant enzyme was expressed and 
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purified as above. Assay of the multiple mutant enzymes with DCP as substrate revealed that 

mutants P3 and P4 showed 2-fold higher kcat that wild-type Dyp1B. Both of these mutant 

enzymes contained the favourable H169L mutation, and the multiple mutants showed similar 

kinetic parameters to the H169L single mutant enzyme. 

 

Screening for thermostability 

 Active mutants from libraries at positions 169, 193, and 218 were also tested for 

thermostability at 60 oC. Mutant F218R was found to exhibit enhanced thermostability, 

compared with WT Dyp1B, as well as enhanced activity, as shown Figure 3A. F218R was the 

only mutation at position 218 to show enhanced thermostability, and Phe218 is positioned 

close to the heme edge (see Figure 3B). A homology model of the F218R mutant suggested that 

the guanidinium sidechain of Arg could form favourable hydrogen bonds with the heme 

propionate and with Glu216 (see Figure 3C). 

 

Figure 3. Thermostability of F218R mutant. 

 

Site-directed mutagenesis of residues at Mn(II) binding site 

 Site-directed mutants were also made at residues predicted to be at or near the Mn2+ 

binding site of Dyp1B, in order to improve the binding and catalytic activity for Mn2+, which is 

required for oxidation of polymeric lignin, but is bound relatively weakly by wild-type Dyp1B, 

with a Km of 7.3 mM [6]. The Mn(II) binding site determined by X-ray crystallography in R. jostii 

DypB comprises Glu-156, Glu-239, Asp-241 and a heme propionate sidechain [11], however, 

Asp-241 of R. jostii DypB is not conserved in PfDyp1B. The PfDyp1B homology model predicted 

that His-127 and and Ser-223 might be used as new Mn2+ binding residues in this enzyme, as 

well as Glu-153 and Asp-154. Ser-223 corresponds to Asn-246 in R. jostii DypB, whose 

replacement by Ala is known to cause increase in activity [11]. 

 

Figure 4. Predicted Mn(II) binding site for P. fluorescens Dyp1B 

 

 

 In order to modify the Mn(II) binding site, each residue was replaced by Ala, and Asp154 

was replaced by Glu, His, and Asn,; and Glu153 was replaced by Asp. Ser223 was replaced by 

Asn (found in RjDypB), and His127 was replaced by Arg (found in RjDypB). The kinetic data for 

these mutants is shown in Table 2. Mutants D154E, S223N and H127R show 3-4 fold higher kcat 
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for oxidation of Mn2+, with D154E and H127R showing 7-fold higher kcat/KM than wild-type 

Dyp1B. S223N and H127R also show 2-4 fold higher kcat for ABTS oxidation, compared with 

wild-type Dyp1B. Mutants S223N and H127R were then assayed against alkali Kraft lignin 

(monitoring changes in absorbance at 465 nm) in the presence of 3 mM MnCl2, and both 

mutants show 3-4 fold higher rates of lignin oxidation, compared with wild-type Dyp1B (see 

Table 3). 

 

Table 2. Activities for Mn2+ oxidation for site-directed mutants at Mn2+ binding site 

 

Table 3. Activity of selected mutants for Kraft lignin oxidation  

 

Activity against polymeric lignin substrates 

 In order to test for the release of low molecular weight products from lignin by Dyp1B 

mutants, 2,4-dinitrophenylhydrazine was used to detect the release of aldehyde or ketone 

products, according to a method developed by Tonin et al [25]. As shown in Figure 5, wild-type 

PfDyp1B shows release of some low molecular weight product compared with control, but 

mutant H169L and multiple mutants P3 and P4 showed 1.5-2 fold higher product release, 

compared with wild-type PfDyp1B.  

 

Figure 5. Assay of product formation from Protobind alkali lignin using 2,4-

dinitrophenylhydrazine 

 

Mutants H169L and V205I/A209N (highest kcat double mutant enzyme) were then 

incubated with Protobind alkali lignin, and the products analysed by C18 reverse phase HPLC. 

As shown in Figure 6, three peaks were enhanced in size by treatment with mutant enzymes, 

with greatest product formation by mutant H169L in each case. Both mutant enzymes caused 

>5 fold enhanced release of a peak 2 at retention time 13 min, compared with WT Dyp1B, which 

gave m/z 165.5 by electrospray mass spectrometry. A possible structure for this product is 4’-

hydroxyphenyl-propane-1,2-dione, which could be formed by -elimination of water from an 

oxidised triol sidechain observed previously from treatment of wheat straw lignocellulose by 

wild-type Dyp1B [6]. Peak 1 at retention time 6 min was enhanced by treatment with mutant 

H169L, and gave m/z 159.3 by electrospray mass spectrometry (unidentified structure). Peak 

3 at retention time 19 min was enhanced 2-fold by treatment with both mutant enzymes, and 
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gave m/z 175.3 by electrospray mass spectrometry, and was identified as vanillin (MNa+ 175) 

by comparison with authentic standard.  

 

Figure 6. Analysis by C18 reverse phase HPLC of low molecular weight products formed from 

Protobind alkali lignin by treatment with mutant Dyp1B enzymes. 

 

 

Conclusions 

 Using a focussed library approach for directed evolution close to the heme binding site 

of Dyp1B, several mutations have been identified, that show high activity for DCP oxidation. 

Replacement of His169 by Leu, Val or Tyr leads to increases in activity for DCP, and the H169L 

mutant shows enhanced product release from Protobind alkali lignin. This residue is found as 

Asn in Amycolatopsis Dyp2 and AuDyP, and is situated close to Trp-167 and Gln-165 for which 

no active mutants were found, suggesting that the latter residues are important in positioning 

heme cofactor. Replacement of Asn193, positioned where there is an additional loop in DyP2 

and AuDyP, by His, Leu or Lys leads to increased activity for DCP oxidation, but the N193L 

mutant had little effect on Kraft lignin oxidation or Protobind lignin processing.  

Several replacements were found at V205/A209 that showed slightly increased activity 

for DCP oxidation, but greater activity for Kraft lignin oxidation. Amino acid sequences of DyP2 

& AuDyP contain Ile-205, Asn or Arg at position 209, and the optimal sequences for DCP 

oxidation appear to be V205I and A209H. The V205I/A209H double mutant showed enhanced 

product release from Protobind lignin. 

The different effects of single mutations on activity towards phenolic substrates vs 

polymeric lignin suggest a different mechanism of oxidation by Dyp1B. It is likely that small 

molecule substrates such as DCP are bound in the active site close to the heme cofactor, 

whereas polymeric lignin is oxidised via a surface interaction. A surface residue Trp-377 has 

been implicated in Auricularia auricular-judae dye-decolorizing peroxidase that can form a 

radical intermediate via long-range electron transfer, for oxidation of bulky dyes [26]. A 

Recently Brissos et al have used error-prone PCR to identify three surface mutations (E188K, 

A142V, H125Y) in Pseudomonas putida MET94 DyP whose replacement gives enhanced activity 

for DMP substrate [13]. The CAST method for directed evolution focuses on active site residues 

[15], whereas error-prone PCR is able to identify residues throughout the protein structure, 

hence it appears that there are residues both near the active site and on the protein surface that 

contribute towards catalysis in the DyP peroxidase family. 
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Mutant DyP enzymes with enhanced activity towards lignin substrates are potentially 

useful for conversion of lignin substrates with recombinant enzyme, either via in vitro 

biotransformation, or via gene overexpression in a lignin-degrading bacterial strain. Future 

work will therefore investigate the use of such higher activity mutant enzymes for lignin 

conversion to high value chemicals. 
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Table 1. Activities of selected mutant enzymes from directed evolution against DCP 

 

Enzyme kcat (s-1) KM (mM) kcat/KM 

(M-1s-1) 
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WT Dyp1B 

 

 

0.63 

 

1.2 

 

525 

N193H 

N193L 

H169L 

F218P 

F218R 

V205I/A209H 

V205I/A209N 

V205I/A209Y 

A209N 

 

V205L/A209H/N193L/H169V/F218G 

V205I/A209H/N193H/H169L/F218P 

V205I/A209N/N193H/H169L/F218R 

A209F/N193L/H169V/F218G 

V205I/A209H/N193H/H169L/F218P/S223N 

 

 

0.26 

0.51 

2.06 

0.66 

0.47 

1.08 

0.72 

0.57 

0.66 

 

0.52 

1.02 

1.09 

0.62 

0.18 

0.2 

0.14 

0.49 

0.65 

0.97 

0.52 

0.61 

0.42 

0.65 

 

0.53 

0.26 

0.47 

0.24 

0.72 

1,310 

3,720 

4,200 

1,010 

480 

2,070 

1,180 

1,350 

1,010 

 

980 

3,930 

2,330 

2,580 

250 
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Table 2. Activities of site-directed mutants at Mn(II) binding site 

 

Substrate Mn2+ ABTS 

Enzyme kcat (s-1) KM (mM) kcat/KM 

(M-1s-1) 

kcat (s-1) KM (mM) kcat/KM 

(M-1s-1) 

 

WT Dyp1B 

 

 

2.54 

 

3.8 

 

660 

 

23.7 

 

0.94 

 

23,700 

E153A 

E153D 

D154E 

D154H 

S223N 

D230A 

H127R 

1.84 

2.68 

9.4 

2.3 

7.6 

4.6 

7.7 

12.4 

14.0 

2.0 

5.0 

2.7 

2.8 

1.76 

150 

170 

4.700 

470 

2,800 

1,600 

4,400 

7.2 

10.0 

5.4 

0.14 

48.4 

7.0 

129 

0.64 

0.14 

0.64 

1.31 

0.26 

0.96 

0.44 

11,000 

71,000 

8,400 

110 

190,000 

7,200 

290,000 

 

 

      

 

Table 3. Activity of selected mutants against alkali Kraft lignin (change in absorbance at 465 

nm/min) 

 

Enzyme Enzyme + lignin Enzyme + lignin  

+ 3 mM MnCl2 

Wild type Dyp1B 

Mutant S223N 

Mutant H127R 

0.0248 

0.0397 

0.0207 

0.036 

0.1085 

0.0893 
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Table 4. PCR primer sequences for directed evolution, containing either NNK or NDT 

modifications (underlined). 

 

Phe218 library 

FW-PHE218: CGCCCCGGAAGCCNNKCTCGTGCGTCGCT 

REV-PHE218: AGCGACGCACGAGMNNGGCTTCCGGGGCG 

 

His169 library 

FW-HIS169: CGATCCAGCAATGGCAGNNKGACTTCCAGGGCTTTGC 

REV-HIS 169: GCAAAGCCCTGGAAGTCMNNCTGCCATTGCTGGATCG 

 

Asn193 library 

FW-ASN193: GCGCCTGAGCGACNNKGAAGAACTGGACGAC 

REV-ASN193: GTCGTCCAGTTCTTCMNNGTCGCTCAGGCGC 

 

Gln165-Trp167 library 

FW-Q165-W167:  TGGCAGTTTTGCCGCGATCNDTCAANDTCAGCACGACTTCCAGGGC 

REV-Q165-W167:  GCCCTGGAAGTCGTGCTGAHNTTGAHNGATCGCGGCAAAACTGCCA 

 

Val205-Ala209 library 

FW-V205-A209:  GTCTCGGCCCACNDTAAGCGCACCNDTCAGGAAAGCTTCGCC 

REV- V205-A209: GGCGAAGCTTTCCTGAHNGGTGCGCTTAHNGTGGGCCGAGAC  
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Figure legends 

Figure 1 Active site residues selected for saturation mutagenesis. A, active site view, drawn 

using PYMOL software; B, amino acid sequence alignment of P. fluorescens Dyp1B, P. putida 

DypB, Amycolatopsis sp. Dyp2, and Auricularia auricular-judae DyP. 

 

Figure 2 Activity of mutant enzymes against (A) 2,6-dichlorophenol (DCP) (B) alkali Kraft 

lignin, assessed by absorbance change at 465 nm. Methods described in Materials and 

Methods. 

 

Figure 3 Thermostability of F218R mutant. A, activity at 60 oC, compared with wild-type 

PfDyp1B and other mutant enzymes at Phe-218; B, position of Phe-218 in homology structural 

model of PfDyp1B; C, predicted structure of arginine residue at position 218, showing 

additional hydrogen-bonding interactions. 

 

Figure 4. Predicted Mn(II) binding site of PfDyp1B, based on structural homology model. 

 

Figure 5. Formation of low molecular weight products from oxidation of Protobind alkali lignin, 

using 2,4-ditrophenylhydrazine to detect aldehyde and ketone low molecular weight products 

(see Materials and Methods). 

 

Figure 6. Products of treatment of Protobind alkali lignin, analysed by reverse phase HPLC. 
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Figure 4.  
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Figure 6.  
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